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Summary. For a bounded Jordan domaihwith quasiconformal bound-

ary L, two-sided estimates are obtained for the error in B€$6) poly-
nomial approximation to functions of the forfa — 7)%, 3 > —1, and

(z — 7)™ log'(z — 7), m > —1,1 # 0, wherer € L. Furthermore, An-
drievskii's lemma that provides an upper bound for fi#€(G) norm of a
polynomialp,, in terms of theL?(G) norm of p/, is extended to the case
when afinite linear combination (independentpbf functions of the above
form is added tg,,. For the case when the boundary®fs piecewise ana-

Iytic without cusps, the results are used to analyze the improvement in rate
of convergence achieved by using augmented, rather than classical, Bieber-
bach polynomial approximants of the Riemann mapping functi@r ofito

a disk. Finally, numerical results are presented that illustrate the theoretical
results obtained.
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1 Introduction and notations

If G a bounded Jordan domain whose boundaris piecewise analytic
without cusps and is a normalized conformal mapping @fonto a disk,

then Bieberbach polynomiats, can be used to approximafg(see Sect. 4).
In [9], [10], and [11], D. Gaier obtained estimates of the form

@) - mlee=0(E) (o)

for the uniform norm of the error in approximation, wherés explicitly
determined from the interior anglesm, 0 < «; < 2, at the corners; of
L (see [11, Theorem 2]).

To obtain (1.1), two essential ingredients are the Lehman formulas [13]
for the asymptotic expansion g near the corners;, and Andrievskii's
lemma [2] which provides an estimate for the? (G) norm of a polynomial
in terms of theL?(G) norm of its derivative. Since the Lehman formulas
involve power functions of the form

(1.2) fo,(2) = (z = 75)°
and logarithmic functions of the form
(13) gm,l,Tj (Z) = (Z - T])m logl (Z - T]) 5

it is natural to expect an improvement in the convergence rate (1.1) if the
ordinary Bieberbach polynomials are replaced by “augmented Bieberbach
polynomials” that include suitable singular functions of the above power

and logarithmic type. This was first observed by Levin, Papamichael and
Sideridis [14] and subsequently used by Papamichael, Kokkinos, Hough
and Warby for improving the convergence rates of certain orthonormaliza-
tion methods associated with the mapping of interior, exterior and doubly-

connected domains; see e.g. [16], [15], [19] and [18].

One goal of the present paper is to obtain sharp estimates for the im-
provement gained in using such augmented Bieberbach polynomials. For
this purpose, upper and lower bounds are derived for the error in the best
L?(G) n-th degree polynomial approximation to functions of the form (1.2)
and (1.3). These estimates (cf. Corollary 2.2) are, in fact, obtained in the
more general setting when the boundaris a quasiconformal curve.

In Lemma 2.3 and Corollary 2.5 we present extensions of Andrievskii’s
lemma to the case when one or several singular functions of the form (1.2),
(1.3) are adjoined to ordinary polynomials to form “augmented polynomi-
als”.

In Sect. 3 we apply the above results to obtain upper and lower estimates
for the error in approximating, by augmented Bieberbach polynomials
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(see Theorems 3.1 and 3.2). The lower estimates provide new sharpness
results, even in the case of classical Bieberbach polynomials (cf. (3.19)).
Finally, in Sect. 4, we present numerical computations that illustrate our
theoretical results.

For convenient reference we provide here a listing of the main notations
used throughout the paper.

2 Approximation of power and logarithmic functions

In what follows we denote b§, ¢, C1, . . . constants whose values either are
absolute or depend on parameters not essential for arguments; at least, they
are independent of.

For quantitiesA > 0, B > 0, which depend on some parameters, we
use the notatiomd < B (inequality with respect to the order) if < CB;
the expressioml < B means thatl < B andB =< A simultaneously.

Unless otherwise specified, we assume throughoutihata bounded
Jordan domain with quasiconformal bounddryandz, € G. Denote by
y(¢) a quasiconformal reflection with respect g i.e., an orientation-
changing quasiconformal mapping of the extended p2wato itself that
carriesG into its complement? := C\ G and conversely, leaves the points
of the curveL fixed, and satisfieg (zy) = oo, y(oc0) = 2o ([1, Chapter IV,

§D]).

Let @(z) denote the Riemann function that conformally and univalently
mapsf2 onto the complement of the unit difknormalized by the conditions
&(00) = o0, ?'(00) > 0. This function can be extended to a homeomor-
phism between closed domains, and we keep the previous notation for the
extension.

We extend®(z) to a quasiconformal map of the plane onto itself by
setting forz € G

B(z) = { 1@ y(2)], =z # 2,

0, z = 29.

Denote byL,, r > 0, ther-th level curve of the furlcticlqﬁ(z), ie.,
L, :={C: |9(¢)| =r}. Also, letG, := Int L, andf2, := C\ G,.
Forz € C andu > 0 we define
u(2) = -7 [P 2]
dy(2) og;?;w’z [®(2) + ue']|
Remark2.1 Recall that any quasiconformal mBmf C onto itself satisfies
the so-called-property, i.e.,

(2.1) G [F(¢) = F(z)| = (e [F(¢) - F(z)|, z€C
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This implies thatforany € L1_,,0 < u < 1,
(2.2) dist(z, L) < dy(2)

and, foranyfixed < ¢ < 1,2 € G4/, \G 1/, the quantityl, ,,, (z) has
the same order (as — oo) as the traditional quantity in the approximation
theory of functions of complex variable - the distance froto L, ,,, (see
[5]). In particular, it follows from Warschawski's results in [21] that/if
consists, near € L, of two analytic arcs meeting at an interior angle,

0 < o < 2, atr, then

(2.3) dy sy (1) <072

Forz € C,r > 0,denote byD(z,r) := {( : |( — z| < r} the open disk
centered at with the radius-.

Letw := @(7),v, := ¥ ({w : argw = argw, |w| > 1}). For noninteger
B > —1 and arbitrarym > —1, [ # 0 denote byfs ,(z) and g, ;. (2)
branches ofz — 7)° and (z — 7)™ log!(z — 7), respectively, which are
analytic inC \ ~,. Givenm, [ we also define

o _Jl—=1, ifm>0,1>1 areinteger
(24) I"=F(m0) = {l, otherwise

In this paper we obtain two-sided estimates for the error in the best
L?-approximation

Ena(f,G) = alin 1f = pllrz

of fz.+(2) andg.,; -(z) by polynomials of degree at mostn = 1,2,.. .,
and apply these estimates to the problem of approximation of the Riemann
function fy(z) that conformally and univalently maps the doméironto
the diskD (0, 7o) with fo (20) = 0, f} (20) = 1 (ro is the conformal radius
of G with respect to).

In our arguments we need the following two auxiliary results. The first
lemma describes the propertiesdf,, (z) (cf. [5, Lemma 2]).

Lemma 2.1 There exists a constant= ¢(G) > 0 such that for arbitrary
pointsz € G and( € £2;_q !
1)if [( — z| = dy/y, (2), then

2)if |[¢ — 2| = dyp (2), then
dl/n (Z) e dl/n (C) dl/n (Z) ¢
(2.6) e R e bl

3)foranyl < v <u <1,
2.7) (u/v)° 2 du(2)/do(z) = (u/0)"°.
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The next lemma is a modification of the Tamrazov's result [12, Theo-
rem 1].

Lemma 2.2 Suppose that for a polynomial, of degree at most, n =
1,2, ..., some positive constanid, p, and a pointr € L the inequality

C
>7 Cl>07

is satisfied for all pointg € L. Then, for any fixed positive constari and
all z € D (r,p) NInt Ly ¢, /p, there holds

Ipn(2)| < C3M, C3=Cs(Cq,C2) > 1.

Z—=T

lpn(2)| < M (1 -

We remark that this result holds more generally for any bounded contin-
uum with connected complement (cf. [4, Theorem 6.1]).

Let w(d) be continuous, monotonic and positive @ oo). Suppose
there exist constants, C; > 0, ca € [0,1) andCs > 0 such that for all
0 >0andt>1

(2.8) et~ 2w(6) < w(td) < C1t%%w(9).

Note that (2.8) is clearly satisfied (with; = ¢; = 1) if for x > 0 small
enough the functions(z) /2“2 andw(z )2 are decreasing and increasing,
respectively. In particular, if we specify the monotonicity.efd), one of

the inequalities in (2.8) becomes obvious (say, for increasing functions - the
left one). Note also that the left-hand side of (2.8) implies

1 1
1 fw(l)
(2.9) O/w(:v)dx < CIO/ s

Theorem 2.1 Let g(z) be an analytic and single-valued branch@\ -,
of some multi-valued analytic function having branch points a L and
oo. Denote byy*(¢), ¢ € v, the boundary values @f(z) on~,. Suppose
the functiong;™(¢), ¢ € v,, |¢ — 7| small enough, satisfy the inequality

dr < oo.

(2.10) 1g7(C) = g~ (O] < w(|¢ —7I).
Then
(211) En,2(97 G) = dl/n (7-) w (dl/n (T)) :

Proof. Fix R > 1 such that (2.10) holds true on the subarc= v N G

of 4. It was shown in [3] that is a quasi-smooth arc (i.e., for any subarc,

its length and the distance between endpoints have the same order) and, for
any( € v,z € G

(2.12) dist(¢,L) = [ — 7|,  dist(z,7) = [z — 7|
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and, hence,

(2.13) =zl = |¢=7|+[z—7]

Because of (2.9), it is easy to verify that (2.10) implies the validity of the
Cauchy formula for the functiog(z) in the domainGr \ v, i.e., under
suitable orientation of all the arcs,

o) = 5 /gwé_du/(; &

5
The last integral represents a function that is analytlc up tarttle level

line of the domainG and, therefore, can be approximated by polynomials
geometrically fast (with the ratex R, ™ for any fixedR; € (1, R)). So,

we can restrict ourselves to the approximation of the Cauchy-type integral

along~. Set
_ (9 -9 ()
f(z) = / - dg.
Y
In order to estimatéZ, > (f, G) we use Dzjadyk's polynomial kernels to
approximate the Cauchy kernel(¢ — z). By [5, Lemma 3], for every fixed

m > 0andR > 1and foralln = 1,2, ... there exists a polynomial kernel
K, m(C, z) of degree (inz) at mostn with the following property: for any

ze€Gand¢ € Ggp\ G
L 1 dl/n(z) >m
coz KnmlG?)| 2 (rc—z|+d1/n @)

We define approximating polynomiglg by the formula

pal2)i= [ (5= 7)) Knm(C, 20
Y
Setr := [z — 7| andd,, := dy,, (7).
First, suppose that < d,,, and denoté := v N D (7,d,). Then, by
using (2.14), (2.13), (2.5) and taking into account the quasi-smoothness of
v, we get

(2.14)

Y\

T o) [ w(t) m
2.1 < — 7 n =171 n) - Is.
(2.15) < [ ar e @ [ Sd =+ @)

0 dn
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For the first integral we have

(/ /) o gio/ (t)dt+7ﬂdt
dn
< :(_7;)2 /£+max{w(7‘),w(dn)}/t(fr
; v

(2.16) < w(r) + (w(r) + w(d,)) log —

To estimatel; we choosen > C5, where the constartfs, is taken from
(2.8). Then

w(t) W ((t/dy)dn) ~ w (dy) 4C2—m—1

tm+1 - tm+1 — (dn)Cz
and
w(dn) [ ch—m—1 w (dy)
(2.17) I < /t aom—lgy < 20
(dn)@d (dn)

Substituting (2.16) and (2.17) into (2.15) we get

(2.18) 7(2) = pu(2)] = (w(r) + (dn)) log “.

Suppose now that > d,,, and sety := v N D(r,r). Using (2.6), in a
manner similar to the previous case we obtain

() = pu(2)
< (dyn )" [0 [ (¢ = 7))

5

¢—
v/ |c| \mﬂ‘ «l
04%7
< (dl/n (z))m (r(mH) w(t)dt—i—/;g)ldt)

@19  =wn(2) < (2)7

o\ﬁ ~———

r
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Then from (2.18) and (2.19) we conclude

I1f *pnlliz
dy))" log® —dzdy
T
D(1,dn)
2mc
o) (") ol
C\D(7,dn)
dn J dn J
= /er(r) log? endr—i-w(dn)/rw(r) log? £ gy
r r
0 0
dn, d oo 2( )
2 2 €ln 2mc wor
+w (dn)/rlog Tdr+(dn) /szc_ldr
0 dn

(2.20) = Ji +w(dy) 2 +w? (dn) 3+ (d)*™ Ja.
According to (2.8), for al- € (0,d,,), there holds

o) 2@ (%)

r

So, using integration by parts, we easily get

dn
Ji = w2 (dy) (dn)*® / ri=2e2 og? en g, < (dpw (dp))?.
T
0

Similarly,
Jo 2 (dn)?w(dy)  and  J3 < (dn).

Furthermore, to estimaté we apply the right-hand side of (2.8) to deduce
that

[e.e]

w? (dy) dr 2(1—me) 2
1025 | e 2 @R ),

dn

providedm > (Cy + 1) /c.
Combining these estimates we finally get

1f = PallZ2(qy = (dnw (dn))?,
and (2.11) follows. a
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Since for all¢ € v, |¢ — 7| small enough,
7500 = 15,0
<[5+ |15, 0] 2 lc =17,
\gi,m(() - QJL,Z,T(C)’

m l _ l
< |<_T| (10g+(<-_7—)) - (log (C_T)) ) mal € Na
B ‘g;,lJ(C)‘ + )g;hlﬁ(() , otherwise
1
<1¢ = 7™ logt ———,
= ¢ —7["log T
applying Theorem 2.1 we get
Corollary 2.1 For all n > 1 large enough there holds
(2.21) Ens (f5.r,G) = (dym ()
* 1
2.22 Eno (gmir, G) =< (d gl T
(2:22) 2 s G) = (A (7)™ log” s
Theorem 2.2 For all n > 1 large enough there holds
(2.23)  Eus(f5r:G) = (diyn (1)
. 1
2.24 Ep o (gmir, G) = mH gl .
(2.24) 2 (gmirs G) = (dyjn (1)) og dom (7)

Proof. Suppose that

En,2 = En,2 (fﬁ,ﬂ G) < (dl/n (T))ﬁ—i_l :

Denote byp,(z), degp,, < n, the polynomial of besk.,-approximation to

the functionfs - (z). Then, for any fixed: € IN and any point € L;_; ,,
applying Lemma 1 of [8, p. 4] and taking into account (2.2), we get

D En 2 En 2
(fB,T - pn)(k) (Z) = ki'\/m - J =< ) ‘
(dist(z, L))" 7 (dy, (2))"F
(2.25)
Let7, := ¥ [(1 — 1/n) &(7)] € Ly_y,,. It follows from (2.1) that

(2.26) dl/n (o) 2T =Tl < dl/n (Tn) »

and (2.5) implies
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DenoteD,, := D (7, 2dy/,, (14)). Settingk := [] + 1, for z € Ly_y,
we conclude:
1.if z € D,, it follows from (2.5), (2.25), (2.26) and (2.27) that

(o =) ()] = m < (dn (7))
= (dyyn (1),
where{s} := g — [A]. Since forz € D, N L_y,, n large enough,
(2.28) |2 = 7| = dijn (2) = dijn (T) = diyn (7)),
we have
2.29) [P (2)] < [£52)| + | (o = 5)® ()] 2 (dajm (7))
2.if z € D, then (2.5), (2.6) and (2.25) imply

N ~ d n(Tn) g
e 0] B (3

— T k
= (din (T)){ﬂ}_l <|dzl/ (ZD

(811 ke
= (dl/n (T>)

A

Z— Tp

dl/n (Tn)

and, therefore,
Z—Th ke
dl/n (Tn)
FTn

dl/n (Tn)

k/c)

Combining the estimates (2.29) and (2.30) we get foralL,_, ,,

k/c
=< (dyym (7)) (1 T ) .

Note that we can choose the constahtsuch thatD,, lies inside thg1 +
Ca/n)-th level line for domainG;,_, ,, (see the proof of [5, Lemma 1]).

Applying Lemma 2.2 to the polynomiﬁﬁk), considered it _; /,,, we get

A < 12 = 717 o (g () P

k/c
<z =l (dyg (1)

zZ— Ty

dl/n (Tn)

(2.30) < (dyy (1)1 (1 +

Z — Tn

(k) s n
dl/n (Tn)

pr (%)

@. 31)’13““ ‘ <Ci(dim @)D zeD(rmdijm (),
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with some constant’y = C4(53, G).
On the other hand, for € G

2:32) 1520 = (18Dlz = 71,

where({3}),, .= 3(8—1)---{B}.

Fore > 0 small enough take

(2.33) ze € 0D (T, edy sy (1)) N ([D(7), P (10)]) -

As &(z) is a quasiconformal mapping, the akq[®(7), ? (1,,)]) satisfies
an inequality similar to the first one in (2.12), and we have

(2.34) dist(zc, L) > ciedy y, (7).

Since—1 < {8} — 1 < 0, (2.31) and (2.32) allow us to choose> 0 (take,
for instanceg = (({8}), /(2C4))"/ 1% y such that

> Loy, edin ()P

At the same time, by Lemma 1 of [8, p. 4] applied in the diSkz.,
dist(z., L))

2.35)  |(far — )™ (2)] >

[\)

» ‘(fﬁ;r - ﬁn)(k) (2¢)
En2 = ”fﬁ,T _anLQ(G) = N
This inequality together with (2.34) and (2.35) implies

ket

WDt
E'WWk+1

which completes the proof of (2.23).

In (2.24), the case whel = [ can be treated similarly. So, we assume
that!* =1 —1,i.e.,,m > 0 andl > 1 are both integers. Suppose that

(dist(z., L))"

B, W () = 00(8,6) (dyn (7))

En,2 = En,2 (gm,l,ﬁ G) < (dl/n (T)) logl*

dl/n (T) ’

and letp,,(z), degp,, < n, be the polynomial of best,-approximation to
the functiong,,, ; - (z). Then, similarly to (2.25), for any point € L;_, ,
we have

m By,
(2.36) (gmir = Bn) " (2)] = s

m+2°
In the previous notations, we get ferc L;_ ;'
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1.if z € D,, it follows from (2.5), (2.26), (2.27) and (2.36) that

E,2 = logl* (1/d1/n (T))
TS e TG R

(gm,l,‘r - ﬁn)m—’—l (Z)‘ =

Note thatgg”l)T(z) is, in fact, a polynomial otog(z — 7) of degred, i.e.,

(2.37) g (2) = qi(log(z — 7).

Therefore, using (2.28) we get

‘ 7(71171;;1)( )‘ < log”" (1/|z —7|) - log" (l/dl/n (1))

=7l T di(7)
and
()] < \gn’;ﬁl )|+ [(Gmar = 7)™ (2)]
(2.38) _ log" (1/dyn (7))

o dl/n (T) ’
2.if z ¢ D,, then (2.5), (2.6), and (2.36) imply

[(Gmar = )™ (2)
En,2 (dl/n (Tn) ) (m+2)
N (dl/n (Tn))(m+2) dl/n (Z)
_ Jog” (1/dyyn (7)) < di/n (7) )“"“) <|z — 7l > e
N dl/n (Tn) dl/n (Tn) dl/n (Z)
) logl* (l/dl/n (T)) Z—Tn (m+2)/e
N dl/n (7—) dl/n (Tn)
Thus,
ﬁflm—&-l)(z)
_ | (log(z = 7)) | og" (1/diyn (7)) | 2= |[™FD/°
- Z—T dy/n (1) d/n (Tn)
_ Jog" (Cldyn (1) | log” (1/diyn (7)) | 2= 426
dl/n (Tn) dl/n (7—) dl/n (Tn)
log" (1/din (7)) =7 [
2.39) < 1+ )
( ) dl/n (T) dl/n (Tn)
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whereC; = (m + 2)/c.
Estimates (2.38) and (2.39) imply

log"” (1/dy, (7))
dl/n (T) <1 "

Z— Tp

dl/n (Tn)

()] 2

Ch
, ZE Ll—l/na

and, consequently,

iy JoB (/s ()
N

On the other hand, because of (2.37),|for- 7| small enough there holds

z€D (Tn, di/n (Tn)> i

(2.41) (m+1)( )’ - logl* (1/|z — 7'|)

m,l,T ‘Z o 7.’

This inequality and (2.40) allow us to choaose- 0 such that at the point
z¢, defined by (2.33), we have

log"" (1/dy

Now applying Lemma 1 of [8, p. 4] we get

. (gm,l,r pn) m (Zs)

En - m,l, T — Nn -
which together with (2.34) and (2.42) implies

(dist(z., L))™ "2,

1
dl/n (7—)

En 2 - (5d1/n ( ))m—H IOgl*

From Corollary 2.1 and Theorem 2.2 we immediately deduce

Corollary 2.2 If G is a quasidisky € L, then

Ens (f5.0,G) = (dyjm (7)),

m+1 * 1
En,2 (gm,l,n G) = (dl/n (T)) - logl

dl/n (7—)

asn — oo. In particular, if (nearr) L consists of two analytic arcs forming
an interior anglear, then(see(2.3))

) = p(a-2)(3+1)

(2.43)

En72 (fﬁ,T? G
En,z (gm,l,q—7 G) = n(o‘*Q)(m#l) logl* n,

wherel* is defined by2.4).
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We can prove even more.

Theorem 2.3 LetT € L, {an;};_,, n = 1,2,..., be arbitrary complex
numbers, and, for eacfy let h; denote eithelfg, -, 3; > —1 noninteger,
Of g, ;- Mmj > —1. Suppose also that; # hy, for j # k. Then for the
function

(2.44) h(z) = h(n,z) = Zs:amjhj
j=1

the inequalities

(2.45) Epy(h,G) =< lans| Ena(h,G)  n=1.2,...,

j=1
are satisfied.

Proof. The upper estimate in (2.45) is trivial. Proving the lower one, we
restrict ourselves, for simplicity, to the case- 2, i.e., we have to show that
for
En2 (anihi + ap2ha, G)
(2.46) > lan,1| En2 (h1,G) + |an2| En2 (he, G) .
If eithera,,; = 0oray, 2 = 0, then (2.46) is trivially satisfied. So assume

that neither otu,, 1, a,, 2 is zero. Taking into account (2.43) we can further
assume that

Emg (hQ, G) =0 (En72 (hl, G)) as n — oo.
Without loss of generality, we takg, » = 1. If

1 En,? (h27 G)
2FE,2(h1,G)

E, 2 (he,G)
En,Q (hh G) ’

then (2.46) holds witle = 1/4. For instance, in the first case, the triangle
inequality yields

En2(apihi + he,G) > Ey 2 (he, G) — |an| Eng2 (b1, G)

lan1] < or lan 1| > 2

1
> §En,2 (h27 G)
1
> 1 (lan1| Enz (h1, G) + En2 (ha, G)).
Suppose now that
1En2(h2,G) En?(h27G)
2.47 =L <lap1| L2
(247 2E,2(h,G) ~ a1 | < Ens2 (h1,G)
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In this case, using (2.43), we can apply the arguments, given in the proof
of Theorem 2.2, to the functiola = a,, 11 + hs to get an estimate similar

to either (2.31), ithy = f3,, or (2.40), ifha = gy, -. Further, instead of
(2.32) (or (2.41)) we have

e
"h(2)

wherek is chosen (see proof of Theorem 2.2) for. If we show that, for
everyr > 0 small enough, one canfind a po{n€ G satisfying|/¢ — 7| = r,
the first inequality in (2.12), and such that

+1

i

’h(k)(z)’ -

anah$? () + 1 ()] = |n(2)] |a

(2.48) W0 > e (1,1, G) [ (2)

)

then we can again follow the proof of Theorem 2.2 to obtain a lower estimate
for E, 2 (h, G) interms ofd, ;,, (7), which is similar to that fo#,, 5 (ha, G).
Then, in view of (2.43), we get

1
En2(h,G) = E, 2 (ha,G) > 1 (lan1| Eng (h1,G) + Ep 2 (he, G))

because of the assumption (2.47).
To prove (2.48), one can proceed as follows. et fy(7),

A= fit({w: |w—w| < 5/4,|arg (w —w)| < 7/6}).

Sinced is a quasidisk, so ig\ (with the coefficient of quasiconformality
depending only on that off). Moreover, for any point € A the first
inequality in (2.12) holds. The quasiconformality @f\ also implies that,
for » < ro small enough, for the circular arc

I, = {z €A z—7]=r0/(r)<arg(z —7) < 92(7“)} ,
separating imA pointsT andz,, we have
92(7") - 91(7“) Z 0= (S(L)

Further arguments depend on the explicit form&pandhs, and are left
to the reader.

Note that, for each particular pair of functiohs, hs, the above argu-
ments can be substantially simplified. For exampléy;ifand i, are both
power functions, i.ely; = f3, -, j = 1,2, 2 > (1, (the case we are mostly
interested in), then using the left inequality in (2.47), (2.43), and applying
(2.32) toh; andhg with k = [2] + 1, we get

(k) B2—PB1

h z d n\T

an,1 zk)( ) = ¢ (B, Be) yn(7) > 2,
h (2 Z2—T
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if [z — 7| = edy, (7) With anye < g¢ (81, B2, G). Hence, for the point.
defined by (2.33), we have

‘h(k) (Ze)’ > )hgk) (2:)

for anye < ¢p, which is sufficient to then follow the proof of Theorem 2.2.
0

Corollary 2.3 Leth be defined by2.44) Then, for any fixed > 0,
E,2(h,GND(1,R)) = Ep2(h,G).

Proof. In view of (2.45), it is sufficient to get the desired inequality in the
case wher is eitherfg - or g,,, ; -. Letr > 0 be chosen in such a way that

D (®(7),r) C & (D(r,R)). DenoteG = ¥ (D (&(r),) N ID). ThenG is

a quasidisk and? ¢ G N D(t, R). Obviously,
(2.49) Ens (h,GND(1,R)) > Ens (h, é) .

The domaings andG have the same local structure near the poirgo, it
is not difficult to verify that

(2.50) dyjn(T) = dy sy, (7) as n — oo.

Thus, applying lower estimate in (2.43) to the functiom G, using (2.50)
and upper estimate in (2.43) fat, we easily get

(2.51) Ens (hé) = Ena(h,G),

which together with (2.49) gives the required. O

Corollary 2.4 Suppose€f(z) is analytic inG and, for someR > 0, on the
setG N D(r, R), T € L, can be represented in the form

f(z) = h(z) + 9(2),

whereg is analytic onD(7, R), ”g”Lw(T

=) < 1, andh is of the form
(2.44) Then

Em?(fv G) > CEn,Q(h’a G)7

wherec is a constant independent ofandg.
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Proof. We follow the previous proof and construct, fBr/2 instead ofR,
the domain, for which (2.49) and (2.50) are satisfied. Observe now that

By (9.G) < Bua (9, D(r, B/2))
(2.52) < Rllgllpepirry 2" <27"R.
It follows from (2.7) that, for any- € G,
(2.53) dyjn (1) = n7Ye,
Hence, (2.45) and (2.43) imply
(2.54) Ena(h,G) = n".

Similar estimates hold fa. Using the triangle inequality, (2.52), and (2.51)
we get

Ena(f,G) > Ens (h, é) —Eps (g, é) > s (h, é) = By (h, é) .

This completes the proof. a

The following result is an analog of Andrievskii’'s lemma ([2]).

Lemma 2.3 Letzy € G andh(z) be analytic on7, continuous orGG and
such thath/ € L%(G). Suppose that for some positive integer consgnt
and everyt € IN

(2.55) By (W, G) < %Em (W,G) .
If for somep € IP,,+1 (n > 2) and constants,, € C, M > 0,
(2.56) 1" + enl || ooy < M
andp (zo) + cnh (20) = 0, then

Ip + eahll ooy < CM/logn,
whereC is independent of,,, M, andn.

Proof.If ¢,, = 0, the assertion reduces to Andrievskii’'s lemma, so we assume
thatc,, # 0.LetQ},,deg Q) < k,k = 1,2,..., be the best?-approximants
to //. Then from (2.56) we have

/
W4
Cn

M
<

(257)  Ens (h’,G)=Hh'—Q%HL2(G>§‘ leal’
2@ len
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and so
1P+ en @l HL2 <M + |ep| Enp (W, G) < 2M.

Selecting®y, so thatp (z9) + ¢, Qk (20) = 0, i.e.,Qk (20) = h (zo) for all
k, Andrievskii’'s lemma yields

(2.58) lp + en@nll o () < C1M\/log n.

Next we claim that
M
(2.59) 1h = @nll () < Cav/logn—.

Indeed, following a well-known scheme (see e.qg. [2]) we chacasaisfying
Ck <n < C¥1. Since

(2.60) [

12(G) = 2E0372 (¥, G)

and, thanks to (2.55), the serigs; E_; , (', G) converges, we get for
[ORi
ze€G

(=)0 = (g =) O+ 3 (2= g) )

j=k+1

From (2.60) we conclude (via Andrievskii's lemma) that

L) Ci\log C§ By, (I, G).

|@ci - g

In the same way,

Q Qn < C1\/log CE M E, 5 (W, G) .
H Ck+1 Lo (G) 1 & o 2( )
Hence
Ih = Qnll ooy
<O (\/logWEng (e Z Vg CIT™E Eg s (W',G )
j=k+1

< Cj3 (\/ log C(I)C—HEnJ (h/7 G) + EC§+1,2 (h/, G)
X Z 1/ log Cg+12k+1j)

j=k+1
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< Cy\/lognEns (W,G) [ 1+ > ,/%2“1*1

j=k+1

< Cy\/lognEys (K, G) (1 +2 Z \/m—m>
m=1
< Cs/lognky, o (h’,G) < C5x/logn%

el
which proves the claim.
Finally, from (2.58) and (2.59) we obtain
lp+ CnhHLOO(G) <lp+ CnQnHLOO(G) + [enl [ — QnHLOO(G)

< C1MA/logn + Co |cy| \/logn% = CM+/logn.

|cnl

This completes the proof. O

We will need the following application of Lemma 2.3.

Corollary 2.5 Letr; € L, j = 1,r, and, for eachj andk = 1,k;, let

h; i denote eitherfs, , -, Bjx > 0 noninteger, orgm, , 1., r;» Mjk > 0.

Suppose that for some constants x, k = 1,k;,j = 1,7, and a polynomial
p € P41 (n > 2) the inequality

r kj
P D cngillyl| <M
holds. If
r o kj
p(20) + Cn,jkhik (20) =0,
=1 k=1
then

r kj
P+ cnjrhik < CM+/logn,

j=1 k=1 L(G)

. T
whereC' is a constant independent ofand {{cn,j,k}?zl} .
j=

Proof. Let ¢, := maxy, j |c, ; 1|. For allj, k denotec,, j . := ¢y jk/cn, and

set
r kj
h:= Z ZEn,jJﬁh]"k.

j=1k=1
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It is sufficient to show that the functionsatisfies (2.55). Since

ﬁj,kfﬁjyk—lﬂ'j lf h],k = fﬁj,kﬂ’]#
!/
j,k — mj,kgmjykfl,lj‘k,”l'j + lj,kgmj’kfl,ljykfl,ﬂ'j
If h]}k - gmj,k>lj,k7Tj7

we have

T

h/ = Z Z bn,j,kﬁj,k = Zﬁj,
7j=1

j=1 k

where hjk is one of the functionsfs, -1+, 9m;,—11,,7, and

Imj 105517 Hence,hj is of the form (2.44). Note that the set of all
b,.; 'S is bounded by a constant independentoClearly,

(2.61) Ena2 (W,G ZZ!b ,jk\EnQ(jk, )

k=1 k

Onthe otherhand, by (2.12), there isiaydepending only onthe sét; }._,

and the coefficient of quasiconformality &f such that forj = 1,r the
functionh; is analytic onD (7, R), for k # j. Therefore, by Corollary 2.4
and Theorem 2.3, we get

E, 2 (h', G) > maxr {Eng (ﬁj, G)}

<5<

z@imAMQ
(2.62) >03ZZ|bmk|En2( i G).

k=1 k

If 7j, = f3, 1.7, then by Corollary 2.2 and (2.7) we have

Bucya (Rt G) < Cr (dyjacy (7))
< o (Cy “dyn (7))
< C3CO_Cﬁj,k En,2 (fﬁj’k, G) .

Therefore, taking’; ,, = [(203/C3)1/(Cﬁf’k)} + 1, wherecs is the constant
from (2.62), we get

~ C
Enco2 (hj,k> <2

2 En (Ej,k, G) .
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A similar inequality holds iﬁm is any of the other possible functions. With
Co := max;y Cj 1, (2.61) and (2.62) yield

Ency2 (B, G) < Z Z |bnj k| Enco,2 (ﬁj,ka G)

k=1 k

1 <« ~ 1
< 563 Z Z b k| Enco,2 <hj,k7 G) < §En,2 (W, G),
k=1 k

which establishes (2.55). The result now follows from Lemma 2.3. O

3 Approximation of the Riemann mapping

Now we apply the results obtained to the approximation of Riemann map-
ping functionfj(z).

Suppose that the boundalyof a domain is a piecewise analytic curve
without cusps, i.e . is composed of a finite number of analytic arcs meeting
at corners; and forming there interior angleg, 0 < o; < 2,j = 1, M.
Obviously,G is a quasidisk.

With zp € G, letw = fy(z) denote the conformal mapping 6f onto
the diskD(0, ), normalized so thafy(z9) = 0 and f{(z9) = 1, where
ro := ro(G, zp) is the conformal radius @¥ with respect ta,. The behavior
of fy at an analytic corner has been considered in [13] and applied to the
problem of approximation of the Riemann mapping function in [11].

We shall assume throughout this section timtogarithmic terms occur
in the asymptotic expansions ffnear the corners;, j = 1, M, whereM
is the total number of corners of the boundaryThis would be the case if,
for everyj, j = 1, M, either the corner; is formed by two straight-line
segments or two circular arcs, ordf; is irrational; see [13, Theorem 2],
[7, p. 170] and [19, pp. 169-170]. Suitable modifications of the analysis for
the cases when logarithmic terms appear in the asymptotic expansifins of
near some corner; are left to the reader.

Let m denote the number of corners for whielj is not of the form
1/N, N € IN, and assume: > 1. For convenience, such cornesswill be
indexed byj = 1, m. (That is, ifj > m, then the mapping functiofy has
an analytic continuation in some neighborhood of the corngr

For eachk = 1, m denote by{y(.k) }Oo . the increasing arrangement of
]:

J
the possible powers + q/ay (p € Ny, ¢ € IN) of (2 — 7) that appear in
the asymptotic expansion ¢f(z) nearr. In particular, ifry is formed by
two straight-line segments, then

k . .
W=, j=1,2....
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Also, if i, is irrational, or the corner;, is formed by two circular arcs, then

k

ryg):l/ak;

’Yék) =1/ag +min (1/ay, 1);
lak+2, 0<ap<1/2,

%()k): 2/, 1/2 <oy <1,
Veap+1, 1<ap<2

The mentioned asymptotic expansion ngatan thus be written in the form

(3.1) fo(z)=2a§-k (z =)V Za f(k)
=0

where
(3.2) vék) =0, for(z)=1, and a1 7& 0.
In (3.1) we remark thaték) = 1/ay > 1/2 and that in the case when
oy, is rational, it is possible tha}tj(k) € IN for indicesj > 2, so thatfﬂym )
5 3T

is analytic atry.
For eachk = 1, m choose a number, € INg and denote

Vk::min{j>pk\fyj ¢ IN, a 7&0}

In what follows, we assume that at least one/g$ is finite; otherwise,
results become trivial.
Consider the function

Vi

1) = fol2) = 30 fLoo (o) + H(2),

k=1 j=0

where, forn > 1, H(z) isthe polynomial interpolating each of the functions

and its derivatives up to and including the orc[ i)ﬂ} at the pointr,
[ =1,m.Form = 1, we takeH (z) = 0. Clearly,

degH < Z [%IH} +m—1
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and the function
P = 5 - Yl Ui (@) + H()
k=1 j=1 I

has, near each;, the asymptotic expansion

(k)
fl(z) = ’YSZ)Jrlaz(xi)ﬂ (z— )

Proceeding as in [11], we denote

m
H z = T)

and conclude thdt := g o ¥ € A(s) with
$:= min {(2 — ag) ’y,E]z)Jrl} .

This means thatfa¥ = p+,p € Ny, 0 < v < 1, h®) € Lip~, if vy < 1,
andh(?) belongs to the Zygmund class;if= 1, ondID. SinceG is a Faber
domain, it immediately follows that

3.3) Fpoo(g,G) := mi —pll oo =075, n=1,2,....
(3:3) Enco(9:G) prgﬁg!\g Plipeoiay 2 n n

Then (see [10, Theorem 2]) there is a polynomial sequé@eg -, @n €

P,,, such that )
Hf/ B QTLHLQ(G) = n_s\/@.
That is,

m

(3.4) |fo— ZZG f(k) +Hl Qn < n~%y/logn.

k=1 j=1 12(G)
Note now tha’gfl’h(z) = Bfs-1,+(2). So, using Corollary 2.2 and (2.3) we
construct polynomial#’, ,, € IP,,, kK = 1, m, such that

k
< by

L2(G)

(35) - Pk,n

Then for the polynomials

pn(z) = Pn (Pla‘--aPmQZ’)

m l/k—].

=>_ > “§‘k)f;]<_k>7 2)+ Y al) Pen(z) — H'(2) + Qu(2)

k=1 j=pi+1 k=1
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we get from (3.4) and (3.5)

m Pk

/ (k) pr A
Jo— Z Zaj f,y;k)ﬁk - b,
k=1 j=1 LQ(G)
(3.6) <n~°y/logn + Z n_(Q_O"f)VyZ) <n~,
k=1
where
(3.7) 8= 5" (propm) = min. {(2 ~ay) %gl;)} ,

and an empty sum has value zero.

Fgemarle.; Taking, for instance, all the, = 0, £k = 1, m, and setting
P,(z) := P,(0,...,0; z) we get from (3.6):

/6 — P”HL2(G) =n

9 _
s:=8"(0,...,0) = min {(2—ak)7§k)}: min { ak}.

1<k<m 1<k<m e
(3.8)

Because of the minimal property of Bieberbach polynomiglg:), it fol-
lows that

(3.9) 16 = mall 2y = O (n7°)

and, consequently,

as n — oQ.

1
(3.10)  |[fo— mullpec(qy = O (@)

This rate of convergence is an improvement of [10, Theorem 1] and, partic-
ularly, [11, Theorem 2], where the corresponding results contain the factor
log n instead of its square root. Such improvement was also shown in [6]
for domains with piecewise quasianalytic boundary.

In view of the asymptotic expansion @f near the corners,, k = 1, m,
and the estimate (3.6), it is reasonable to extend the power systejm
n € Ny, by adjoining the functiong’ ,, (2), j = 1,px, k = 1,m (cf.

’Y] 3Tk

[14]). For this purpose, put

!
ro :=0, T ::Zpk, l=1,m,
k=1
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and consider the systefw; };° defined by

nj(z):=fo (), J=natln, l=1m,
Tj=ri_1’

Nrov1(2) =1, my, 10(2) =22, ... 1 in(2):=n2""1,

If some «y, is rational, it is possible that somg, 1 < j < 7y, is a
polynomial, in which case we avoid redundancy in the basis by omitting
suchn;. For convenience in exposition, we assume that this situation does
not arise.

Set

z

(3.11) wi(2)i= [ Qe =€

Next we orthonormalize the systefm;, }7° by means of the Gram-Schmidt
process to gefn; }7°. The functions;; have the representation

k
2) =Y brymi(2)
i=1

whereb,,, > 0,k =1,2,....
Let

Tm+n
IPn 1= {pA : PA(Z) = Z teme(2),  tk € C}
k=1

{tlf & ( )+ +trmf my . (2) Ftr 1+ 2t 402

Y1 T Ypm Tm

+...+ ntTernz”_l}.

Also, for zg € G, let K(z, zy) denote theBergman kernel function ofz,
which has the reproducing property

(3.12)  g(=0) // K(z,2)dzdy, foranyg e L*(G).

Then (see [8, p. 34])

K (z,z0)

) = s

313) ) = ey [ K (G e
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We form the partial Fourier sum fdx (z, zo):

Tm+n
Kn(z,20) = > (K(~20),m5) nj(2)

=
Tm+n Tm+n

= = Z hin,jn; ()
j=1 :

=hnaf oy (2)+ +hnrmf my _ (2) + Pt

Y1 5Tl Ypm sTm

+ oo nhp 2

Obviously, augmented polynomiafén (2, zo) are the best approximants to
K (z,20) in L?(G) out of the spac®? ,, i

HK(',ZO) — K, (',Zo)’ ) < || K (-, 20) —pAHLQ(G) for any

pt e ]Pﬁ—l
Following (3.13) we approximatg,(z) and fy(z) respectively by

7 Tm+n
B14)  F(z) = onlm) > gz
K, (20,20) Kn (ZO>ZO =

and

1 [
Tn(2) = =——— | K, ((,20)d
(2) Knm,zo)/ (¢, 20) d¢

Tm+n
= Z P g (2
(anZU j=1
1 m T <
== b { o (2) = fo (Zob
K, (Z(),Zg) ;j=7;+1 i Viir_qoTe V=107

(3.15) + znj A (zj - zg)

j=1

Clearly,7,, (20) = 0,7}, (20) = 1,n = 1,2,.. .. Itis natural to call the func-
tions 7, theaugmented Bieberbach polynomialger the systerf, }7°.
Hence, from (3.6) and the minimum property of the Fourier sum we get

*

(3.16) 1f6 = Fall oy =7
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Now we follow the method of Andrievskii [2]. Applying Corollary 2.5 we
derive an estimate for the uniform norm»f. — 7or-1, k = 1,2, ..., from
an estimate of th&2-norm of (7o — 7or—1)" and get

1fo = Fall ooy = ™" V/logn.

Thus, we have established

Theorem 3.1 Supposd. = 9G is a piecewise analytic curve with interior
angleso;m, 0 < o < 2, at the corners;, j = 1, M, where we assume
that no logarithmic terms occur in the asymptotic expansior okarT;.
Withm (> 1) described as at the beginning of this section, we have: For any
fixed numberg; € INy, j = 1, m, the augmented Bieberbach polynomials
Tn, defined by(3.15) approximatef,(z) with the estimate

~ V1o
B17)  fo—Fullpeoiey = O ( ns%n>

as n — oo,

wheres* = s*(p1, ..., pm) is defined by3.7).

LetEg‘m (fo, G) denote the error in best uniform approximatiorfg¢z)
out of the spac@f spanned by the functiorfgs; }[" "™ (cf. (3.11)).

Theorem 3.2 LetG ands* be as in Theorer8.1, and letx be the index for
which the minimal value i3.7)is attained. Then

*

(3.18) 1fo = Tall ey = Erioo (for G) =<0~

In particular (sincea\™ # 0 and~\*) = 1/a, ¢ IN), for the classical
Bieberbach polynomials,

1 1 Vlogn
(3:19) [[fo = mll 2y = —s and = =< fo =l ey X 0

wheres is given by(3.8).

Proof. SinceG is a Faber domain, the upper estimate in (3.18) follows from
the fact that for the function

we haveh o ¥ € A (s*) onoDD.
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~ A . .

Letg’) € IP,,, n > v,, be an arbitrary augmented polynomial. Then, for
r small enough, using the expansion (3.1)¢fz) in G" := GN D (7, 7)
we get

Pr

fo2) =g (z) =) engflio . (2)+ al(,':,)fﬂé?’m(z)

J=0

(3.20) + D afm,, (2) = h) ~ anl2),

j:l’n‘i‘l

where the functiom is analytic inD (7., 2r), ¢, € P, is an algebraic
polynomial of degree at most. By arguments similar to those used for
the estimate (3.3) (see also [11, Sec. 1.3]), the second sum in (3.20) can

. ) () .
be approximated with the rate®~~2.+1. Also, h can be approximated
on G" geometrically fast. Therefore, it is sufficient to show that for any
constant{Cy, ;}7~; the function

Pk
9(z) =) Cugf o () +f 0 (2)
J=0 L

Tk Tk

cannot be uniformly approximated @ by algebraic polynomials essen-
tially faster thanfvm . for which the rate, according to the Corollary 2.2,

is n=°". Estimating the uniform norm from below by tHé&-norm and ap-
plying Theorem 2.3, we arrive at the desired lower estimate in (3.18).

The assertions of (3.19) follow from (3.9) by applying a similar argument
to get a lower bound foif f — 7, [[ 12 - O

We remark that we can also apply Gaier's method ([11, p. 39]) to get the
pointwise estimate

(3.21) It (20)| = O (nl) oo (20€0)

for the augmented orthonormal polynomigjs For the nonaugmented case,
i.e. whenn; = P,_; is the ordinary Bergman orthonormal polynomial,
Gaier[11] raised the question of finding more precise estimatég{or,)|.

In our case, (3.21) gives

1

(3.22) Pl =0 ()0 (0
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with s given by (3.8). On the other hand, from (3.19) and Lemma 4.4 of
[17],

0
> 1Pe(20)* = 1K (-, 20) — Ko (-5 20) 72
k=n+1
2 _
= || fo - F;LHLQ(G) =n7%,
fromwhichitfollows that for each > 0, there exists a subsequentec IN
such that

(3.23) 1P (20)] = !

——, neA.
nstate’ c

Numerical results in Sect. 4 indicate that for certain regiGnthe precise
rate of decrease is indeed

4 Numerical experiments
4.1 The test regions

Let G, denote the circular sector of radius 2 with interior angte
Go:={z: 2] <2,—ar/2<argz < an/2}, 0<a<2;
let fo be the conformal ma@', — D (0, 7p), normalized by the conditions
fo(1)=0 and fi(1)=1;

(recall that-y is the conformal radius ¥, with respecttay = 1); and, asin
Sect. 3, letk(z, 1) denote the Bergman kernel function@f, with respect

to zo = 1. Also, letm,(z) denote the Bieberbach polynomial obtained,
as indicated in Sect. 3, by integrating the best approxima{ (e, 1) in
L?*(G,,) out of the space of polynomials of degree- 1, and similarly, let

7 (z) denote the augmented Bieberbach polynomial obtained by integrating
the best approximant t& (z, 1) in L? (G,,) out of the space

IP??—l = {tlzl/a—l +to+t3z2+ -+ tn+12n_1,
(4.1) t,eC, j= MH};

see (3.15). Finally, for nonintegér> —1 andm € IN, let
4.2) fa(z) =27 and g, (z) = 2™ log 2.
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In this section we present numerical results illustrating the orders of
approximation predicted by the theory, regarding the following six errors:

(4.3) Ens (f3,Ga) = Jnin 18 = pllr2 ., -
(4.4) En2 (gm,Ga) == prg]})ri lgm — Pll2(G)
and S (for Ga) = 14— Loy
(45) Enco (frGa) = l1fo = Tull ooy
“s) &5 (0, Ga) = 1 = Fhll 2y

gn,oo (f07 a) = ||f0 - %’HHL‘”(GQ) :

In addition, we present numerical results illustrating the rate of decrease of
the Bergman orthonormal polynomidts(z) of G, asn — oco. We do these
by considering: (a) an Orthonormalization Method (ONM) for constructing
both P, (z) and the polynomials that realize the minimum in (4.3) and (4.4),
see e.g. [8, Chapter I]; (b) the application of the Bergman Kernel Method
(BKM) for computing approximations to the conformal mgpwith respect
to the errors in (4.5) and (4.6), see e.g. [8, Chapter I] and [14].

For each value of the parameter the mappingw = fy(z) can be
computed by means of the transformation

(4l _ _
4.7) folz) = (2 @ ”) t-d

4l/e 41 td — 1’
where ) )
izt/ 4 2t/a i+ 2Ye
Thus, the value of the conformal radiggis given by

2a(4Y* — 1)

ro=fol2) = =y

Since the kernel functioi’(z, 1) is related tofy(z) by

(49) K(z7 1) 2f0( )

see e.g. [8, p. 34], it follows, in particular, that

2
1 1 |
4.10 K(1.1)= — = =
( ) (L,1) ¢ o <2a(41/0‘—1)>
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We consider now the asymptotic behavior of the nfgmear the three
cornerst; = 0, 5 = 2¢71%7/2 and 3 = 2¢197/2 of G,,. The two arms
forming the corner at the origin are both straight lines, and therefore from
the Schwarz-Christoffel transformation, as- 0,

(4.11) fo(z) = fo(0)+ D _a;2"*, a1 #0;
7=1

see e.g. [19, pp. 169-170]. We note that the coefficients (4.11) can be
computed explicitly in terms af from (4.7)—(4.8). In particular,

(4.12) a1 = 2rg (1 —47Y%) and  ay = —2rg (1 — 4Y/)2 472/,

Each of the two other corners, j = 2, 3, has interior angler /2 and is
formed by a straight line and a circular arc; hence, as remarked in Sect. 3,
foisregular atr;, j = 2, 3. Furthermore, has a branch point singularity
at0 wheneverl /a ¢ IN. In other words, the only singularity gf on the
boundaryL of G, occurs at the origin, in cases whéfx is not an integer
and, in such cases, the dominant term of the asymptotic expansifn of
at0 is 2!/, This observation, and the fact that in the BKM one constructs
best approximations with respect to the kernel function (4.9) explains the
particular choice of the space (4.1); see also [14], [16].

4.2 Computational details

Let {nj}j?”:l be a complete set of functions it? (G,,). In both ONM and

BKM the set{nj}é-:1 is orthonormalized by means of the Gram-Schmidt
!

processto produce the orthonormal%@}t} . This, in particular, requires
j=1

the computation of the inner products

(4.13) (Mg, nj) = //nk(z)nj(z) dedy, k=1,1, j=1,1L
Ga

For the application of the ONM we use the computational convenient
monomial set

n+1
Once the orthonormal syste{m;} - has been constructed, the values of
J

the Bergman polynomials are obtained from

Pii(z) =nj(2), j=1n+1
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Also, the two errors (4.3) and (4.4) can be computed from the Fourier co-
efficients of the functiongs andg,,, since the minimum property of finite
Fourier sums implies

n+1
%\ |2
414 B2y (f5.Ga) = 1 fslli2y — D | (Fom) |
j=1
and
n+1

(4.15)  E25(gm: Ga) = lgml2ay — 3 [(gmsi) [
j=1

For our purposes here it is important to note that each one of the inner
products involved in (4.13), (4.14), and (4.15) is given explicitly in terms of
sines and cosines of the opening angte

In the BKM, the approximation tgy is obtained from (4.9) after first
approximating the kernek'(z, 1) by a finite Fourier sum. The reason for
doing so is that, due to the reproducing property (3.12), the Fourier coeffi-
cients of K (z, 1) can be computed without requiring the explicit knowledge
of K(z,1). Therefore, in order to construct the approximatianéz) and
7n(z) we orthonormalize, respectively, the monomial set (MB),

(4.16) nj(z) =271, j=Tn,

and the augmented set (AB)
4.17) (z) =Yl Gi() =272 j=2n+ 1.

As with the ONM, the inner products in (4.13) are given explicitly in terms
of sines and cosines of the opening angte

The details of the BKM are as follows: Lét;}7_, and{ﬁj}’?ill denote
respectively the two orthonormal systems obtained from (4.16) and (4.17).
Then, because of (3.12),

(4.18) Kn(z,1) =Y ni)ni(2),
j=1
and
~ n+17
(4.19) Kn(2,1) =Y _ 7 (D) (2),
j=1

are, respectively, the-th BKM/MB and then-th BKM/AB approximation
to K(z,1), and from (3.15) we set

(4.20) ™) = e [ Kl DA
1



L?-Approximations of power and logarithmic functions with applications 535

N S
(4.21) M) = 1/ Ro(C,1)dC.

(Note thatr, () andm,(z) are normalized so that,(1) = 7,(1) = 0 and
(1) =7, (1) = 1)
Regarding the four errors (4.5)—(4.6) we observe the following:
The order of approximation in each of the two errfy — | .2,

and || fo — 7l 12(c,,) can be computed with the orthonormal functions,
using (4.10), (4.18) and (4.19). This follows by noting that:

i)
1fo - 7r;sz(Ga) =K1 = Kn(5 Dl 2y

and

145 = Fall ey = [KC1) = Ral 1)

L2(Ga) ;

see [17, Lemma 4.4].

i) The minimum property of finite Fourier sums and Parseval’s identity
imply that

(4-22) HK(> 1) - Kn('v 1)”%2((},1) = K(lv 1) - Kn(L 1)7

and

) :K(lal)*[?n(lvlh

(4.23) HK( 1) = K-, 1)‘ L%(Ga)

see e.g. [8, p. 25].

Estimates for the two other errors|fo — mpl/[(g,) and
1 fo = nll oo (cr,.) CaN be obtained from (4.7)-(4.8) and (4.18)~(4.21), by
using a number of test points on the boundary

4.3 Numerical results

The results of Corollary 2.2 indicate that for amy0 < a < 2,

1 1
(424) En,Z (f,@u Ga) = WJ En,2 (gn’m Goe) = n)‘(m"fl) )

with A = 2 — «, for the polynomial approximations to the special functions
(4.2). Furthermore, since for afly< « < 2, the coefficients; andas in
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the asymptotic expansion (4.11) if nearr; = 0 are different from O (cf.
(4.12)), we have from Theorems 3.1, 3.2 and (3.16) that] far¢ IN,

1 1 Vlogn

(4.25) En2 (fo,Ga) < Na pa =& (fo,Ga) =

~ 1 1 ~
(426) 5n,2 (fO?Ga) = Wa W = 6‘n,oo (anGa) = nz)\/a .

Finally, regarding the Bergman polynomigiB, } >~ ,, foranyo,0 < o < 2,
with 1/a ¢ IN, and any( € G, we have from (3.22) and (3.23):

— foralln € IN,

o
Q
3

1
(4.27) 1Pa(O] = 75
n
— for anye > 0, there exist infinitely many. such that,
1

For the remainder of this section we present numerical results that illustrate
the laws in the above errors and rates. All the results were obtained with
Maple V, using the systems facility for 128-digit floating point arithmetic,
on an IBM RS/6000. We have chosen to perform numerical work using this
high accuracy, in order to postpone the breakdown of the Gram-Schmidt
process. This was essential for our purposes here, because we needed to use
a large number of basis functions, typically up to 100, to observe a distinct
behavior for the orders of approximation in (4.25) and (4.26). (We note in
passing that numerical experiments with,, using the double precision
Fortran conformal mapping package BKMPACK of Warby [20], failed to
produce precise conclusions for the orders in (4.25)—(4.26); see also [18,
Example 5.3].)

We recall that the Gram-Schmidt process is required by the application
of both ONM and BKM for the construction of the orthonormal system.
See [18] for a comprehensive study regarding the stability properties of
Bergman Kernel Methods and a characterization of the level of instability
in the Gram-Schmidt process, in terms of the geometry of the domain under
consideration. In particular, [18, Theorem 3.1] implies that the level of insta-
bility for the domainG,,, increases with decreasing Also, see [9, Sect. 6]
for a report on numerical experiments regarding the etféfs— 7, || .2 ()
and|| fo — Tl (), WwhenG is the image of(¢ : |t — 1| < 1} under the
mappingz = t%,0 < a < 2.

In presenting the numerical results we use the following notations:

— o This denotes the order of approximation (the exponenya) in the

errors (4.3)—(4.6), or the rate of decreasg®f(¢)|, as they are predicted
by the theory of Sects. 2 and 3; see (4.24)—(4.28).
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— o, This denotes the estimate @fcorresponding to the use afbasis
functions and is determined as follows: WiH), denoting any of the

errorsEn 2 (f3,Ga)s En2 (gms Ga)s Ena (fo, Ga)s Ena (fo, Ga), Or the
value of|P,,(¢)|, we assume that

(4.29) B, ~ 0L
nO’

and seek to estimateby means of the formula

En—ZO n
4.30 n =1 1 .
(4.30) o og( o >/0g<n_20>

If £, denotes either of the uniform errds o (fo, Go) oré’vn,oo (fo,Ga),
then we assume that

1
(4.31) E, =~ Cy/logn —,
nU

and seek to estimateby means of the formula

B log(n —
op = (log < En20) - %log <Og(lzgn20)>) /
(4.32) log <n fzo) :

— o)1 With E,, denoting either of the uniform erro&, . (fo, Ga) Of
Enoo (fo, Ga), We also test the law

1 .

no’

(4.33) E, ~

thereby estimating by means of

EanO n
4.34 =1 — /1 .
@aze) oo () s ()

L?-approximations to special functions

The numerical results for the valué$ and1.5 of the parameted, and for
n = 20(20)100, are given in Tables 4.1-4.4. More precisely, Table 4.1 and
Table 4.2 contain the results for the orders in ffeapproximations ta?,
corresponding to the valugs = —0.5, 6 = 0.5 and = 1.5. Table 4.3
and Table 4.4 contain the results for the orders infth@pproximations to
2™ log z, corresponding to the values = 1, m = 2 andm = 3.

The presented results indicate clearly a close agreement between the
theoretical and the computed order of approximation, thus providing exper-
imental confirmation of the results in Sect. 2.
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Table 4.1. L? polynomial approximations te®: Casex = 0.5

B=—-050=07  B=050=225  B=150=2375
n Ena(fs,Ga)  on  Enp(fs,Ga) on  En2(fp,Ga)  on

20 9.8e-02 - 8.6e-04 - 4.1e-05 -
40 6.0e-02 0.73 1.8e-04 2.22 3.2e-06 3.71
60 4.4e-02 0.74 7.5e-05 2.23 7.1e-07 3.72
80 3.5e-02 0.75 3.9e-05 2.24 2.4e-07 3.73
100 3.0e-02 0.75 2.4e-05 2.24 1.1e-07 3.73

Table 4.2. L? polynomial approximations te®: Casex = 1.5

B=-050=025  B=050=075 B=150=125
n En,Q (fo Ga) On En,2 (f[% Ga) On En,2 (fﬁ, Ga) On
20 1.1e-00 - 1.7e-01 - 7.1e-02 -
40 9.6e-01 0.24 1.0e-01 0.74 3.0e-02 1.24
60 8.7e-01 0.24 7.4e-02 0.74 1.8e-02 1.24
80 8.1e-01 0.25 6.0e-02 0.74 1.3e-02 1.24
100 7.7e-01 0.25 5.1e-02 0.75 9.7e-03 1.25

Table 4.3. L? polynomial approximations te"™ log z: Casex = 0.5

m=1oc=3.0 m=2oc=4.5 m=3 oc=6.0
n En2(gm,Ga) on  En2(gm,Ga) on  Ena(gm,Ga) on
20 5.2e-04 - 3.9e-05 - 5.7e-06 -
40 6.7e-05 2.97 1.8e-06 4.46 9.2e-08 5.96
60 2.0e-05 2.98 3.0e-07 4.47 8.2e-09 5.96
80 8.5e-06 2.98 8.2e-08 4.48 1.5e-09 5.97
100 4.4e-06 2.99 3.0e-08 4.48 3.9e-10 5.97

BKM approximations to the conformal map

The numerical results for the values= 5/11, a = 0.8 anda = 4/3,
respectively fom = 20(20)100, n = 20(20)120 andn = 20(20)120, are
giveninTables4.5,4.6 and 4.7. (When= 5/11 the Gram-Schmidt process
breaks down before = 108 is reached.) We consider these particular values
of a because the corresponding powigrr — 1 of the singular function
m(z) = z'/*=1 needed for the application of BKM/AB, can be presented
exactly in finite precision.

In all three tables, the results associated with the e&QEs( fo, Go)
andgn,g (fo, G) indicate the convergence of, to 0. Regarding the errors
Enoo (f0,Ga) andg‘wo (fo,Ga), o converges faster te thano,. This
suggests, at least for the geometry under consideration, a behavior of the
type (4.33) for the errors,, o (fo, Go) aNdE, o (fo, Ga)-

In the application of BKM/AB witha = 5/11, presented in Table 4.5,
the slow convergence of,, ando}, to o can be explained by observing
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Table 4.4. L? polynomial approximations te™ log z: Casen = 1.5

m=1oc=1.0 m=2oc=15 m=3 oc=2.0
n  En2(gm,Ga) on  FEn2(gm,Ga) on En2 (gm,Ga) On
20 3.2e-01 - 1.7e-01 - 1.2e-01 -
40 1.6e-01 0.99 6.1e-02 1.49 3.1e-02 1.99
60 1.1e-01 0.99 3.3e-02 1.49 1.4e-02 1.99
80 8.1e-02 0.99 2.2e-02 1.49 7.8e-03 1.99
100 6.5e-02 0.99 1.6e-02 1.49 5.0e-03 1.99

Table 4.5. BKM approximations tofo: Casea = 5/11

BKM/MB: o = 3.4 BKM/AB: 0 = 6.8
n Enz(f0,Ga) On Enoo (f0,Ga) on  on Enz(f0,Ga) on  Enoo (fo,Ga) on  on
20 3.7e-04 - 2.0e-04 - - 4.4e-04 - 1.8e-04 -

40 6.1e-06 5.90 1.0e-05 4.38 4.22 2.3e-07 10.89 7.6e-08 11.40 11.25
60 1.5e-06 3.37 2.7e-06 3.50 3.37 3.3e-10 16.16 4.2e-10 12.97 12.84
80 5.9e-07 3.38 1.0e-06 3.49 3.37 5.1e-11 6.50 6.2e-11 6.77 6.65
100 2.8e-07 3.38 4.7e-07 3.49 3.38 1.0e-11 6.84 1.3e-11 6.96 6.84

Table 4.6. BKM approximations tofy: Casex = 0.8

BKM/MB: ¢ = 1.5 BKM/AB: ¢ = 3.0
n En2(f0,Ga) 00 Ense(f0,Ga)  on  0h  En2(f0,Ga)  n  Enco(f0,Ga)  on o

20 4.4e-03 - 1.4e-02 - - 2.2e-04 - 4.1e-04 - -

40 1.5e-03 157 4.6e-03 1.70 155 2.1e-05 3.38 4.6e-05 331 3.16

60 8.0e-04 1.53 2.5e-03 1.65 152 5.9e-06 3.12 1.3e-05 323 311

80 5.2e-04 151 1.6e-03 163 151 2.4e-06 3.08 5.4e-06 319 3.07
100 3.7e-04 151 1.2e-03 162 151 1.2e-06 3.05 2.7e-06 3.16 3.05
120 2.8e-04 1.50 8.8e-04 161 150 7.1e-07 3.04 1.6e-06 3.14 3.04

Table 4.7. BKM approximations taofy: Casex = 4/3

BKM/MB: o = 0.5 BKM/AB: o = 1.0
n En2(f0,Ga) o Eneo (fo,Ga) 0w i En2(f0,Ga) o Enco(f0,Ga) om0k

20 8.2e-02 - 2.5e-01 - - 7.2e-03 - 2.4e-02 - -

40 5.5e-02 0.59 1.8e-01 0.62 047 4.7e-03 0.62 1.4e-02 092 0.77

60 4.3e-02 0.60 1.5e-01 0.63 0.50 3.3e-03 0.90 9.4e-03 1.10 0.97

80 3.6e-02 0.60 1.3e-01 0.63 0.51 2.5e-03 0.99 7.0e-03 1.14 1.03
100 3.2e-02 0.59 1.1e-01 0.63 0.52 2.0e-03 1.03 5.5e-03 1.16 1.05
120 2.8e-02 0.58 1.0e-01 0.62 0.52 1.6e-03 1.04 4.5e-03 1.17 1.06

that in this case the mapping functignhas a pole singularity close to the
boundaryL. This affects the quality of the obtained approximation. (See
[15] and the references cited there for ways of determination and treatment
of pole-type singularities in numerical conformal mapping.)

We note in passing that Maple V may not be regarded as a well-suited
environment for the construction of BKM approximations to conformal
mappings of complicated geometries. The main restriction is the enormous
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Table 4.8. Rate of decrease 0P, (¢)|: Casex = 5/11, o = 3.90

(=05 ¢=1.0 (=15
n Pl o POl on [Pa(Q o
20 1.2e-02 - 25e04 - 32e-04 -
40 15e-04 6.31 24e-06 6.69 8.2e-07 853
60 3.5e-06 9.42 5.4e-07 3.69 1.8e-07 3.72
80 1.6e-06 281 1.8e-07 390 5.9e-08 3.90
100 6.6e-07 3.93 7.4e-08 3.90 2.5e-08 3.90

Table 4.9. Rate of decrease P, (¢)|: Casex = 0.8, 0 = 2.0

=05 (=10 (=15
n POl on [Pa(@l  on  [Pu(Q]  on
20 20e-02 - 19e-03 - 25e03 -
40 1.9e-03 340 4.2e-04 281 21e04 356
60 8.0e-04 208 1.8e-04 204 9.1e-05 205
80 4.4e-04 212 1.0e-04 203 5.1e05 201
100 2.8e-04 206 6.5e-05 202 33e05 201
120 1.9e-04 204 45e-05 202 23e05 2.00

Table 4.10. Rate of decrease ¢P,, (¢)|: Casex =4/3,0 = 1.0

=05 ¢=1.0 (=15
n POl on POl on [Pu(Ql o
20 53e02 - 20e02 - 63e03 -
40 3.1e-02 079 9.6e-03 0099 4.8e-03 0.38
60 2.1e-02 096 6.1e-03 1.10 3.1e-03 1.08
80 1.5e-02 1.05 4.4e-03 1.12 2.3e-03 1.07
100 1.2e-02 1.10 3.4e-03 112 1.8¢-03 1.06
120 9.8e-03 112 2.8e-03 1.12 15e-03 1.06

amount of C.P.U. time required, in general, for the accurate computation of
the inner products needed by the Gram-Schmidt process.

Rates of decrease of the Bergman polynomials

The numerical results for the rates of decrease of the vaRigg )| of the
Bergman polynomial§ P, } , of G, for ( = 0.5, ( = 1 and{ = 1.5,
corresponding tax = 5/11, « = 0.8, « = 4/3, and forn = 20(20)100,

n = 20(20)120, n = 20(20)120, respectively, are given in Tables 4.8, 4.9
and 4.10.

The numerical results contained in the three tables indicate a behavior
of the type

1 1
¢ = Cn(Q—a)/a—i-l/Z’

nO’

~
~

[Pn(C)]
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hence provide experimental support to the remark made at the end of Sect. 3,
regarding the rate of decrease of the Bergman polynomials.
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List of notations

G

02
D(z,r)
D
fo(2)

Quasidisk, i.e., a Jordan domain in the complex pl@meith quasiconformal
boundaryL.

The complement of.

Open disk centered atand of the radius.

The unit disk.

The Riemann mapping function, i.e., conformal and univalent map of the
domainG onto D (0, ) normalized byfo (20) = 0, f§ (20) = 1.

Conformal and univalent map @¢® onto the complement dbD normalized

by #(c0) = o0, &'(c0) > 0, and extended to a quasiconformal map of the
complex plane onto itself.

The inverse ofp(z).

Ther-th level line of®(z), that is, the sef( € C: |®(¢)| = r}.

The bounded and unbounded component€ §fL.., respectively.

The quantitymaxo<,<onx |z - [@(2) + uei"] |, z€ C,u>0.

The Hilbert space of functions that are analytic and square-summable over
the domainG.

The class of all polynomials of degree at mast

The error of the beskt?-approximation to a functiorf € L?(G) out of IP,,.

The error of the best uniform approximation of a continuous funcfion G

out of IP,,.

Then-th Bieberbach polynomial fo&.

A single-valued, analytic branch of the function— T)ﬁ inG,withg > —1
noninteger.

A single-valued, analytic branch of the functign— 7)™ log'(z — 7) in G,

with m > —1,1 # 0.

The extended system of power functions, that is, the set

{{f,{;kﬂ };:1 , {z’“‘“l}:iﬂ_l} with 8y, 7, andr depending orG.
The orthonormal system obtained frdmy (z) }7°.
The class of “augmented polynomials”, i.e., polynomials over the system

{medr i

Then-th Bieberbach “augmented polynomial” f6f.

The Bergman kernel (reproducing kernel fot(G)).

The n-th partial Fourier sum foi (z, ¢), i.e., then-th partial sum of the
expansion ofX (z, ¢) into Fourier series over the system;; }°.



