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Abstract

Let Q:={€;z2),23,23,24} be a quadrilateral consisting of a Jordan domain Q and four points zi, z, 23, z4 in counter-
clockwise order on 0Q2. We consider a domain decomposition method for computing approximations to the conformal
module m(Q) of Q in cases where Q is ‘long’ or, equivalently, m(Q) is ‘large’. This method is based on decomposing the
original quadrilateral Q into two or more component quadrilaterals O, Q>,... and then approximating m((J) by the sum
Z}. m(Q;) of the modules of the component quadrilaterals. The purpose of this paper is to consider ways for determining
appropriate crosscuts of subdivision (so that the sum ) . m(Q;) does indeed give a good approximation to m(Q)) and, in
particular, to show that there are cases where the use of curved crosscuts is much more appropriate than the straight line
crosscuts that have been used so far. © 1999 Elsevier Science B.V. All rights reserved.

MSC: 30C30; 65E05

Keywords: Numerical conformal mapping; Quadrilateral; Conformal module; Domain decomposition

1. Introduction

Let Q:={8;2),25,23,2,} be a quadrilateral consisting of a Jordan domain Q and four points
z1, 23, 23, Z4 in counterclockwise order on 052 and let m(Q) be the conformal module of Q. Also,
let R, o) denote a rectangle of base m(Q) and height 1, i.e.

Ruoy={w: 0 < Rw <m(Q), 0 <3Iw<1}.
Then, Q is conformally equivalent to the rectangular quadrilateral

{Rm(Q]; ia 0’ m(Q)a m(Q) + l}’

* Corresponding author.
E-mail addresses: mif@math.uminho.pt (M.1. Falcdo), nickp@ucy.ac.cy (N. Papamichael), nikos@ucy.ac.cy (N.S. Styliano-
poulos)

0377-0427/99/$ - see front matter (©) 1999 Elsevier Science B.V. All rights reserved.
PI: S0377-0427(99)00067-9



178 M.1 Falcdo et al | Journal of Computational and Applied Mathematics 106 (1999) 177-196

in the sense that there exists a unique conformal map f: Q — R, that takes the four points
7y, 23, Z3, Zs, Tespectively, onto the four vertices i, 0, m(Q), m(Q) + i of R, ).

This paper is concerned with the study of a domain decomposition method (DDM) for computing
the conformal modules of long quadrilaterals. The DDM was introduced by two of the present
authors (N.P. and N.S.S.) in [10,11], for the purpose of computing the conformal modules and
associated conformal maps of a special class of quadrilaterals. The method was also studied by the
same authors in [12-15] and by Gaier and Hayman [3,4], in connection with the computation of
conformal modules, and by Laugesen [8] in connection with the determination of the associated
conformal maps. For the computation of conformal modules, the method consists of the following
two main steps:

(i) Decomposing the original quadrilateral Q (by means of appropriate crosscuts {;, j =1,2,...)
into two or more component quadrilaterals Q;, j=1,2,.... ‘

(ii) Approximating the conformal module m(Q), of the original quadrilateral, by the sum > m(Q;)
of the conformal modules of the component quadrilaterals.

(Note that

mQ)> > m(Q)) (1.1)

and equality occurs only when the images of all the crosscuts /; under the conformal map f: Q —
R, are straight lines parallel to the imaginary axis. This follows form the well-known composition
law for modules of curve families; see e.g. [1, pp. 54-56] and [5, pp. 437-438].)

The problem of determining m(Q) is closely related with that of measuring resistance values of
electrical networks and, in this connection, the DDM is of considerable practical interest for the
following two reasons:

(i) It can be used to overcome the crowding difficulties associated with the problem of computing
the modules of long quadrilaterals, i.e. the difficulties associated with the conventional approach
of seeking to determine m(Q) by first mapping Q onto the unit disc or the half plane (see e.g.
[9, Section 3.1] and [13, Section 1]).

(1) It takes advantage of the fact that in many applications (for example VLSI applications) a
complicated original quadrilateral Q can be decomposed into very simple components Q; (see
e.g. [14,15]).

Our work 1in this paper is concerned with the fact that all the available DDM theory is based on
the use of straight line crosscuts of subdivision. Our specific objective here is to investigate whether
there are cases for which the use of curved crosscuts is more appropriate. In this context, we
describe a simple technique for determining curved crosscuts of decomposition and show, by means
of examples, that there are many cases for which the use of such crosscuts is more appropriate than
the straight lines that have been used so far.

In presenting our results we shall adopt throughout the notations used in [12-14]. That is:

o Qand Q:={Q;z),25,23,2,} will denote respectively the original domain and corresponding quadri-
lateral.
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e Q,0Q,...,and O, 0,,..., will denote, respectively, the ‘principal’ sub-domains and corresponding
quadrilaterals of the decomposition under consideration.

e The additional subdomains and associated quadrilaterals that arise when the decomposition of QO
involves more than one crosscut will be denoted by using (in an obvious manner) a multisubscript
notation.

For example, the five component quadrilaterals of the decomposition illustrated in Fig. 1 are

Ql = {Ql;ZhZZaaad}a Q2:= {QZ;dsavbsc}a Q3 = {Qg;c,b,23,24},

Q= {91,2;21322,173 C}, Or3:= {92,3; d,a, 23,24},
where

51.2 = ﬁ] U ﬁz, ?2_2,3 = ?2-2 U §3.

2. A method for determining curved crosscuts

The available DDM theory for conformal modules, given in [12-15] and, in particular, the results
of Theorems 2.4 and 2.6 of [15] can be used to derive approximations of remarkable accuracy to the
modules of very complicated quadrilaterals of the type that occur frequently in VLSI applications
(see the numerical examples given in [12-15]). These results, however, suffer from the following two
drawbacks: (a) they require that the quadrilateral under consideration involves substantial symmetry
(see e.g. the requirements of Theorems 2.4 and 2.6 of [15]); (b) they allow only for straight line
crosscuts, although there are situations where, intuitively speaking, curved crosscuts appear to be
much more appropriate.

The purpose of this section is to describe a simple, and yet very effective, device for overcoming
the above drawbacks, in cases where the quadrilateral Q :={;z,,2,,23,2,} is characterised by the
following (see Fig. 2):

(1) The defining domain € is part of an infinite polygon 2.
(i1) 02 consists of two segments of the opposite components of 62 and two Jordan arcs y, and
72 each joining the two opposite components of 02,
(iii) The points z;,z, and z3,z, of Q are points on the boundary arcs y, and y,, respectively.
(iv) There is a corner point b € dQ N % through which it is, in some sense, ‘natural’ to seek
to determine a crosscut /, thus decomposing Q into two ‘simpler’ component quadrilaterals
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0, :={Q\;21,2,b,¢} and 0, :={;c,b,23,24}. (Of course, the crosscut / must be determined
so that the sum m(Q;) + m(Q,) is a good approximation to m(Q).)

With reference to Fig. 2, let T be the Schwarz—Christoffel transformation that maps the upper
half plane # onto the infinite polygon # so that

TO)=a;, T(1)=b, and T(x)=a,

where a, and a, denote the two vertices of # at infinity. Then, we claim that an appropriate crosscut
I for the subdivision of the quadrilateral Q:={Q;z,2,,25,24} is given in parametric form by

l:={z:z=T(e™), 0<t<1}. (2.1)
The above choice of / can be justified as follows:
Let % denote the infinite strip
F={w=s+ir 0<t <1}
Then, the transformation
®:w— T(™), (2.2)

maps ¥ onto # so that #(0) =b (see Fig. 3). This shows that the crosscut / of (2.1) is, in fact,
the image under the conformal map &:% — £ of the straight line 4 joining the points 0 and i on
0, ie. | = P(4).

Let Q:={Q;z,,25,23,24} be a quadrilateral of the form illustrated in Fig. 2 and assume that
the four points z|,z,,z3,24, are the four end points ofA the arcs and y,, i.e. the four corners
where 7, and 7, meet 02 (see Fig. 4(a)). Further, let Q:={€;w,,wy, w3, w,} denote the image of
Q:={Q;2,,2,,23,2,}, under the transformation ¢~'1: 2 — ¥, and let 0, and @, denote respectively
the corresponding images of the subdomains €2, and €, (see Fig. 4(b)). Then, we have the following:

Theorem 2.1. For the decomposition illustrated in Fig. 4(a)

0<m(Q) — {m(Q1) + m(Q,)} <5.33¢*™, (2.3)
provided that m*:=min{m(Q,),m(Q,)} > 1.
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Proof. The result follows by applying Theorem 2.2 of [15] to the decomposition of the trans-
formed quadrilateral @ illustrated in Fig. 4(b) and recalling that conformal modules are conformally
invariant. [

We consider now the more general case, where the two points z3,z, of the quadrilateral Q := {Q; z,,
25,23,24} are not necessarily the two end points of 7,. In this case, for the statement and proof of the
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corresponding decomposition result, it is convenient to introduce an auxiliary crosscut y), as shown
in Fig. 5(a). That is, 7, is a Jordan arc in £ that shares the same end points with y, and, together
with the crosscut 1, divides  into three subdomams Q,9Q, and Q;, so that Q=Q, U Q, U Q.
Further, we let Q {Q Wi, Wa, W3, Wy }, Q,Q,, O, 4y, 4, and A, denote, respectively, the images
of O:={Q;z),2,23,24}, @y, 5, Q3, 71, 72 and ¥}, under the transformation ¢~ : Z — & (see
Fig. 5(b)).

Theorem 2.2. Let Q be the quadrilateral of Fig. 5(a) described above. Then, for the decomposition
defined by the curved crosscut |,

0<m(Q) — {m(Q1) + m(Q23)} <28.52¢*™", (2.4)
provided that m* = min{m(Q,),m(Q,)} >1.5.
Proof. With reference to Fig. 5(b), let Ay be a straight line to the left of the arc A, parallel to A

and joining the lines 3w =0 and 3w =1, and denote by Q, the domain bounded by the straight
lines Iw = 1,4),Iw =0 and the arc 4,. Also, let QOI,sz and Q0123 denote, respectively, the

three quadrilaterals defined by the domains Qo,l,Qo_l,z and 90‘1,2‘3, where

Qi =2UQ, R4,=0,UQ and (20123 ‘—‘sz uQ;.
Then, by applying Theorems 2.5 and 2.2 of [15] to the quadrilaterals Q01 22 and Q1 , respectively,
we find that

l m(Q0,1,2,3) - {m(Qo,l.z) + m(Q) - m(Ql,z)} [<2.71 e_m@]'ﬂa (2.5)
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provided m(Ql‘2)>3, and
0<m(Q,,) — {m(Q,) + m(Q,)} <5.33e7>, (2.6)

provided m* :=min{m(Q,),m(D,)} > 1. Also, if » denotes the distance of the straight line 4 from
the arc A}, then the application of Theorem 2.7 of [15] to the quadrilateral QOl .3 gives that

0 <m(Q0,1.2,3) - {m(QO.l) + m(Qz.s )}<128 e,
provided 4> 1. Further, from Theorem 4 of [4] and Koebe’s %-theorem we have that

A 1
h=z2m(0,) — - log 4.

Therefore,

0<m(Qy;,5) — {m(Qy,) + m(Qy5)} <1.28x 16>, 2.7)
provided m(Q2)>1.5. The result (2.4) follows easily from the three estimates (2.5)—(2.7), the
additivity property

m(QO,l.Z) >m(Qo.1) +m(Q,),
and the fact that conformal modules are conformally invariant. O

We consider, finally, a quadrilateral Q:={Q;z,25,23,2,4} having the general form illustrated in
Fig. 2 (where neither z),z, nor z;,z, are assumed to be the end points of y; or y,). In this case,
for the statement and proof of the corresponding result, we introduce two auxiliary crosscuts y; and
75, as shown in Fig. 6. (Here, y), 5 are two Jordan arcs in € that share the same end points with

71 and y, respectively and, together with the crosscut /, divide  into four subdomains Q,, ©Q,, ©,
and Q,, sothat Q=0,UQ,UQ, UQ,. )

Theorem 2.3. Let Q be the quadrilateral of Fig. 6 described above. Then, for the decomposition
defined by the curved crosscut I,

0<m(Q) — {m(Q12) + m(Qs4)} <59.75¢ ™", (2.8)
provided that m* := min{m(Q,),m(Q;)} > 1.5.

Proof. From [15, Theorem 2.5] we have that

Im(Q) — {m(Q123) + m(Q234) — m(Q23)}| <2.71e ™), (2.9)

provided m((,3)>3. Also, the application of Theorem 2.2 to the quadrilaterals Q,,3 and Q,;4
gives, respectively, that

0<m(Q123) — {m(Q12) + m(Q3)} <28.52e*™", (2.10)

and

0<m(Qr34) — {m(Q2) + m(Qs4)} <2852, (2.11)
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Fig. 6.

provided m* :=min{m(Q,),m(Q;)}>15. The result (2.8) follows easily from the three estimates
(2.9), (2.10), (2.11) and the additivity property

m(Q,3)=Zm(Q,) + m(Qs). ]

Remark 2.1. It is easy to show, by using continuity arguments, that the auxiliary arc y; in Fig. 5
may be taken to coincide with the boundary arc y,. Similarly, the two auxiliary arcs y{ and ¥, in
Fig. 6, may be taken to coincide with the boundary arcs y, and 7,, respectively. This means that,
in practice, it is much more convenient (and efficient) to apply the results of Theorems 2.2 and 2.3
in the following form:

(i) For the decomposition of quadrilateral Q :={Q;z,,2,,23,24} illustrated in Fig. 7,

0<m(Q) — {m(Q) + m(Q,)} <28.52¢~*", (2.12)
provided that m* :=min{m(Q,),m(Q;)} = 1.5, where Q5 is the quadrilateral
Q5 :={;¢,b,23,2; }.
(ii) For the decomposition of the quadrilateral Q :={Q;z,,23,23,24} illustrated in Fig. 8,
0<m(Q) — {m(Q1) + m(Q>)} <59.75¢7™, (2.13)
provided that m* := min{m(Q7),m(Q3)} =1.5, where QF and Q; are the quadrilaterals
0 :={Q;z],2;,b,c} and QO :={;c,b,z],2; }.

Remark 2.2. Theorems 2.1-2.3 remain valid even when the domain € is part of a general strip-like
domain (instead of an infinite polygon #). In this case, however, the determination of the curved
crosscuts will require the conformal map from . onto the strip-like domain.

3. Examples of curved crosscuts

If the Schwarz—Christoffel map 7': # — 2, of Fig. 3, is known in closed form, then the parametric
equation of the associated curved crosscut / is given in exact parametric form by

l:={z: z = T(e™), 0<t<1}. (3.1)
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Fig. 7.

Fig. 8.

Otherwise, / can be obtained approximately by using a numerical approximation 7" to 7. In particular,
[ can be approximated by

[:={z:z=T(e™), 0<t<1}, (32)

where T is an approximation to 7 obtained by using the Schwarz—Christoffel conformal mapping
package SCPACK of Trefethen [16,18]. We illustrate the above remarks by the following examples,
where in cases for which the associated Schwarz—Christoffel transformation 7: # — £ is known
in closed form, we simply state the corresponding mapping function:

Example 3.1. For a quadrilateral of the form illustrated in Fig. 9 the associated Schwarz—Christoffel
mapping function is

T(W)=;Ci—7-r—log{ii::§}+%10g{i—;§}, (3.3)

where

) w—1)"
é_{W—Q-KZ}

(see e.g. [2, p. 351] and [7, p. 157]).
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Example 3.2. For a quadrilateral of the form illustrated in Fig. 10 the associated Schwarz—Christoffel
mapping function is

1 2w -kt -1 K S la+Hw -2
T(W)—Ecosh { - } ncosh { =W , (3.4)

with 0 < k < 1 (see e.g. [7, p. 161]).

Example 3.3. For a quadrilateral of the form illustrated in Fig. 11 the associated Schwarz—Christoffel
mapping function is

T(W):—};/Wl(l_ccyd{-l-i, 0<a<l (3.5)

(see e.g. [7, p. 155-156]), i.e. the crosscut / is given in parametric form by

z=—i{/(1—e“’~")“dy—1}, 0<t<l. (3.6)
Q0

Thus, in this case, / must be determined by numerical quadrature.

Example 3.4. If for a quadrilateral of the form illustrated in Fig. 2 the associated transformation
T:# — 2 is not known exactly, then we approximate 7' by

T=T 0ToT;, (3.7)
where

e T, is the SCPACK approximation of the conformal map of the unit disc D onto 2.
e T, is the bilinear transformation mapping D onto itself so that

n(-iy=Z,, T()=2Z, and T:(i)=Z,,
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where Z,, Z, and Z are respectively the approximate pre-images of a;, b and a,, produced by
the mapping T,.
e 75 is the bilinear transformation,

Ta(W):=iZ:L;, (3.8)
mapping the upper half plane 5 onto D so that
T3(0) = —i, T5(1)=1 and T3(o0)=1i.
Thus, the required crosscut / is given in approximate parametric form by
[:={z:z=T(e™), 0<t<1}, (3.9)

where T=T,0T,0T5.

In order to check the above numerical process, we consider the quadrilateral of Example 3.2,
with k = 0.5, and compare the approximate crosscut I, obtained by means of Eq. (3.9), with the
exact crosscut given by Eq. (3.4). We do this by computing

e -2 Gr10-2;
ei= max [I(107%)) = I(107%))], (3.10)
and find that

£<3.04x107 "%,

This is in agreement with the SCPACK error estimate which, in this case, is 2.24x 10712,
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4. Numerical examples

In this section we present four numerical examples, illustrating the application of the DDM with
curved crosscuts. Our objectives are as follows:

(i) To compare the theoretical estimates for the DDM errors given by (2.3) with the actual DDM
errors. We do this in Example 4.1, by considering a simple decomposition for which we can
find a reliable approximation to the module of the original quadrilateral.

(ii) To consider a case where it is possible to obtain DDM results by using straight line crosscuts
and to compare these results with those obtained by using the DDM with curved crosscuts
(Example 4.2).

(iii) To present examples where the application of DDM is possible only when curved crosscuts
are used and to estimate the errors of the resulting DDM approximations (Examples 4.3 and
4.4).

In our examples, if the conformal module m(Q;) of a component quadrilateral is not known
exactly, then it is computed by means of the conventional method, i.e. by using the unit disc D as
intermediate canonical domain (see e.g. [9, Section 3.1] and [17, Section 2]). For this purpose, we
use either the Schwarz—Christoffel package SCPACK [16,18] or the double precision version of the
integral equation conformal mapping package CONFPACK of Hough [6],' as follows:

e If Q; is a polygon, then the approximation to m((;), together with an estimate of the corresponding
error, is obtained by using the subroutine RESIST of SCPACK.

e If Q; involves curved boundary segments, then: (a) we use CONFPACK to compute the images
of the four special points of O;, under the conformal map f:Q;, — D; (b) we determine the
approximation to m(Q;), in the usual manner, by computing the ratio of two complete elliptic
integrals of the first kind whose moduli depend only on these four images. In this case, we
estimate the error in the approximation to m(Q;) by means of the following ‘rule of thumb’,
which takes into account both the error in the approximation to f and the crowding of points
on the unit circle (for a discussion on the crowding phenomenon and on ways for measuring
the crowding of points on the unit circle, see e.g. [9, Section 3.1] and [13, Section 1]): “If the
estimate of the error in the approximation to the conformal map f is of order 10~% and the
measure of crowding is of order 107, where d, > d,, then the resulting approximation to the
conformal module is correct to at least d\ — d,, decimal places”.

Regarding the use of CONFPACK, care must be taken in order to fulfill the package’s require-
ment that each boundary segment of the defining domain is given by a parametric equation with
non-vanishing first derivative.

Example 4.1. Consider the decomposition of the quadrilateral illustrated in Fig. 12, where the cross-
cut of subdivision has the parametric form

l:i={z:z=T(™), 0<t<1},
and T is the special case k = 0.5 of the Schwarz—Christoffel mapping (3.4) in Example 3.2.

"The double precision version of CONFPACK has only become available very recently; see http://www.mis.
coventry.ac.uk/ ~dhough/.
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Fig. 12. The coordinates of the corners, starting from z; and moving in counter-clockwise order, are (—1.5,1.),(—1.,0.5),
(0.,0.5),(0.,0.),(3.,0.), (2., 1.).

The approximations to the conformal modules of the component quadrilaterals O, and O, are
obtained by using CONFPACK and are as follows:

m(Qy) ~ 24458094834,  m(0,) ~ 2.3620709676.

These are expected to be correct to at least 9 decimal places, because: (a) the error estimates for
the associated conformal maps onto the unit disc are 1.0x10~"" and 9.6x107'%; (b) the corre-
sponding measures of crowding are 4.3x107% and 1.2x 107!, Therefore, we expect that the DDM
approximation to m(Q) is given correct to 9 decimal places by

m(Q) := m(Q) + m(Q,) = 4.807880451. (4.1)

For the ‘actual’ value of the module of the original quadrilateral we use the subroutine RESIST
of SCPACK and find that m(Q) is given correct to 9 decimal places by

m(Q) = 4.807880808.

Therefore, the actual error in the DDM approximation (4.1) is
E:=m(Q)— m(Q)=3.57x10"".

By contrast, (2.3) gives the theoretical error estimate
0 < m(Q) — m(Q)<5.33e 27 min{m@um@)} < 1.97x107°

which, in conjunction with (4.1), leads to the following DDM prediction:
4.807880 < m(Q) < 4.807883.

Example 4.2. Consider the decomposition illustrated in Fig. 13, where the crosscuts of subdivision
are all straight lines and are determined in the ‘best possible’ way by using the relevant DDM theory.
(The parametric equations of the crosscuts separating Q, from £,, Q, from 5, ©; from Q,, Qs
from Q¢ and Q, from €, are respectively z=5+1it, t € [0,1], z=¢+6i, t € [0,2], z=1t+ 151, t €
[0,1], z=6.5+1t, t € [18,19] and z =¢ + 12.51, ¢ € [12,13].)

Regarding the components of the decomposition, the modules of the trapezoidal quadrilaterals
04, Os, Os and Q; are known exactly in terms of elliptic integrals (see e.g. [12, Remark 2.4]). The
modules of the other component quadrilaterals are computed by using SCPACK, in the case of Q,,
and CONFPACK for Q;, O; and Qg. The numerical results are as follows:

e To 10 decimal places,
m(Q,) = 3.2793643995,

m(Qs) =m(Qs) = m(Q;) = 5.7793643998.
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Fig. 13. The coordinates of the corners, starting from z, and moving in counterclockwise order, are (13.,0.), (13..2.),
(8.2.), (8,1.), (2,1.), (2.,11.), (1.,12.), (1.,18.), (12,,18.), (12.,9.5), (7.,9.5), (7.8.5), (5..8.5), (5,7.5), (13.,7.5), (13.,19),
(0.,19.), (0.,0.). 'y and I'; are semicircles of radius 1 and 0.5 and centers at (13.,1.) and (5.,8.) respectively, and I'; is
given by the parametric equation, z(t) = 20 =32 4240+ 11), t€[0,1].

e SCPACK gives the approximation
m(Q,) ~ 6.143537228,

which is expected to be correct to all the figures quoted.
e CONFPACK gives the approximations

m(Q,) ~ 5.94518113, m(Q;) ~ 636125572, m(Qs) ~ 8.58892796.

These are expected to be correct to 6, 7 and 3 decimal places, respectively, because: (a) the error
estimates for the associated conformal maps onto the unit disc are 2.8x107'", 1.1x107'? and
2.3%x107'%; (b) the corresponding measures of crowding are 5.9x107°, 4.8 107> and 9.8x107".

We note that (because Qg is ‘long’) the crowding of points, introduced by the conformal map
Qs — D, affects seriously the accuracy of the CONFPACK approximation to m((Qz). As a result,
we can only state with certainty that this approximation is correct to 3 decimal places.

Regarding the DDM error, the repeated application of Theorems 2.4 and 2.6 of [15] gives that

0<m(Q) — M(Q) < 2.60x10". (4.2)
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However, because of the relatively poor approximation to m((Qs), we can only be certain of the first
three decimal places in the resulting DDM sum

8
Q)= > m(Q,) = 476563596369, (4.3)

=1
i.e. we can only predict that m(Q) is given correct to 3 decimal places by
m(Q) = 47.656. (4.4)

We consider now the same quadrilateral Q but decomposed as illustrated in Fig. 14 where the
straight line crosscuts are as before and the curved crosscuts /, and /, are of the form given in
Examples 3.2 and 3.1, respectively, in each case with x = 0.5.

Regarding the components of this decomposition, the quadrilaterals Qs, Qs, Os, Os, Q7 and Qg are
the same as the quadrilaterals Q,, 03, Q4, Os,Os and @; of Fig. 13. For the modules of the other
four component quadrilaterals, CONFPACK gives the following approximations:

m(Q,) ~ 2.77862607, m(Q,) =~ 3.16655506, (4.5)

m(Qs) =~ 3.22009207, m(Qp) ~ 5.36881489. (4.6)

These are expected to be correct to all the figures quoted, because: (a) the error estimates for the
associated conformal maps onto the unit disc are 1.0x107'", 53x10~"!, 53x107"" and 3.5x10"'";
(b) the corresponding measures of crowding are 5.5x1072, 42x1072, 7.4x10~% and 1.1x1073.
Therefore, we expect that the DDM approximation to m(Q) is given correct to 7 decimal places by

10
m(Q):= Y m(Q,) = 47.6563386. (4.7)

J=1

The error in m(Q) can be estimated by applying, as before, Theorems 2.4 and 2.6 of [15] to the
various quadrilaterals associated with straight line crosscuts, and Theorem 2.1 and Estimate (2.12)
of the present paper to the quadrilaterals Q;, and Qoo associated with the two curved crosscuts.
More specifically, the application of Theorems 2.4 and 2.6 of [15] gives

8
0<m(Q) - {m(Qx.z) +>_m(Q)+ m(Qo.m)} <2.60x107", (4.8)

Jj=3
while the application of Theorem 2.1 to Q,, gives
0<m(Q,.2) — {m(Q1) + m(Q,)} <5.33¢~ 2" min{m(@).m(@)} (4.9)

(Remark. (4.5) and (4.9) imply that
5.94518113 <m(Q, ) <5.94518127.

By contrast, if instead of /, we use a straight line crosscut joining the points 8 + i and 8 in Fig.
14, then from the resulting decomposition we get the approximation

#(Q12) = 5.91598417,

which is correct only to 1 decimal place.)
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Let Q;, denote the auxiliary quadrilateral
O = {Qi0; 2, 02,25, 24}
Then, by using CONFPACK, we find that to 8 decimal places,
m(Q7,) = 3.00656460.

Therefore, since m* :=min{m(Qy),m(Q},)} > 1.5, the application of (2.12) to the quadrilateral Qs o
gives that

0<m(Qy10) — {m(Qo) + m(Qio)} <28.52¢2" melm@m@i)}, (4.10)
Hence, by combining (4.8)—(4.10), we obtain the estimate

0<m(Q) — m(Q) < 5.78x1077
which, in conjunction with Eq. (4.7), implies that

47.6563386 <m(Q) < 47.6563393. (4.11)

Thus, by introducing the two curved crosscuts /, and /, (and using the associated DDM theory of
the present paper) we are led to a much better approximation to m(Q) than that obtained by using
only straight line crosscuts, in the sense that we can now predict the value of m(Q) correct to six
decimal places.
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Fig. 15. The coordinates of the corners, starting from z; and moving in counterclockwise order, are (—9.5,1.), (—9.5,0.5),
(-9.,0.5), (—8.5,0.75), (—7.5,0.25), (—7.,0.5), (—6.,0.5), (—5.5,0.), (3.,0.), (3.,1.), (9.5,1.), (9.5,1.5), (9.,1.5), (8.5,1.25),
(7.5,1.75), (7.,1.5), (6.,1.5), (5.5,2.), (—3.,2.), (—3.,1.). The two boundary segments connecting the points (—6.,0.5) to
(—5.5,0.) and (6.,1.5) to (5.5,2.) are quarter-circles each of radius 0.5.

Example 4.3. The quadrilateral Q illustrated in Fig. 15 does not involve sufficient symmetry for the
use of the DDM with straight line crosscuts. On the other hand the direct application of CONFPACK
leads to the approximation

m(Q) ~ 21.730. (4.12)

This, however, cannot be relied upon because (although the CONFPACK error estimate for the
associate conformal map onto the unit disc is 2.2x107'%) the quadrilateral Q is ‘long’ and, as a
result, the corresponding measure of crowding is 1.2x107'*. Thus, because of the severe crowding,
CONFPACK cannot be used directly to provide a reliable approximation to m(Q). The same applies
to the other general purpose conformal mapping packages, i.e. to the other packages that can deal
with domains involving curved boundary segments. In fact, because of the severe crowding, the
other two general purpose conformal mapping packages that are available to us, i.e. the single
precision version of CONFPACK and the orthonormalisation package BKMPACK of Warby [19],
fail completely in their attempt to compute m(Q).

Consider now the decomposition of Q illustrated in Fig. 15, where the curved crosscuts /, and /,
are both of the form given in Example 3.2, with k = 0.5. For the modules of the three component
quadrilaterals, CONFPACK gives the following approximations:

m(Q) =m(Q;) ~ 1131680962, m(Q,) ~ 3.1666235579.

These are expected to be correct to 6 and 10 decimal places respectively, because: (a) the error
estimates for the conformal maps onto the unit disc are 7.3x 1073, 9.7x10~'2; (b) the corresponding
measures of crowding are 1.5x1077, 5.5x107%. Therefore, the DDM approximation to m(Q) is
given, correct to 6 decimal places, by

Q) :=m(Q)) + m(Q,) + m(Qs) = 25.800243. (4.13)

For estimating the error in #M(Q), we need to know the values of the conformal modules of the
following four auxiliary quadrilaterals (see Fig. 15):

QT = {Ql;zl,zgaclab}s Q;~: {Qz;a,C],d,C2},

05 ={Q3;b,c1,25,2;}, O :={D;01,d,23,2} }.
To this end, CONFPACK gives the following approximations to m(Q?), m(Q;) and m(Q3)
m(Q7) =m(Q7) ~ 2.852789 and m(Q;) ~ 3.024515,
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which are expected to be correct to all the figures shown. Regarding the value of m((5;), the
comparison principle for conformal modules (see e.g. [1, p. 54]) and the rotational symmetry of £,
imply that,

m(Q; ;) > m({; b,c1,23,c2}) = m(Q7).

The details of the error analysis are as follows:
e Since m* :=min{m(Q;),m(Q5,)} > 1.5, the application of (2.13) to Q gives:
0<m(Q) — {m(Q)) + m(Qr3)} <59.75¢ 7" Mm@},
e Since m* :=min{m(Q5),m(Q3)} > 1.5, the application of (2.13) to 0,3 gives:
0<m(Qn3) — {m(0s) + m(Qs)} <59.75¢ 2 mntm(Ci)mED},

Hence, by combining the above we obtain the estimate
0<m(Q) — m(Q) < 1.97x107°,
which, in conjunction with (4.13), shows that m(Q) is given correct to 5 decimal places by
m(Q) = 25.80024. (4.14)

This should be compared with the approximation (4.12), obtained by trying to compute m(Q)
directly.

Example 4.4. The quadrilateral Q := {Q;z,25,23,z,} illustrated in Fig. 16 does not involve sufficient
symmetry for the use of the DDM with straight line crosscuts. Furthermore, the direct application
of CONFPACK fails completely in this case, in the sense that (because of the severe crowding) the
computer fails to recognise the images of the four special points z,z,,z3,z,, in the correct order on
the unit circle.

Consider now the decomposition of Q illustrated in Fig. 16, where the curved crosscuts /; and
l; are determined by means of SCPACK, in the way explained in Example 3.4. (The straight line
crosscut /, is auxiliary and is needed only for the error analysis.)

The approximations for the conformal modules of the three component quadrilaterals Q;, 0, ; and
Q. are obtained by means of CONFPACK and are as follows:

m(Q,) ~ 7.51137089, m(Q,3) ~ 5.80190545,

m(Qy) ~ 8.19083464.

These are expected to be correct to all the figures quoted, because: (a) the error estimates for
the associated conformal maps onto the unit disc are 43x107"3, 2.0x107'%, 1.9x10"; (b) the
corresponding measures of crowding are 1.2x107°, 2.3x107%, 3.5x107°. Therefore, the DDM ap-
proximation to m((Q)) is given, correct to § decimal places, by

m(Q):=m(Q) + m(Q3) + m(Qs) = 21.50411098. (4.15)
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ZI ~aw 2 3

Fig. 16. The coordinates of the corners, starting from z; and moving in counterclockwise order, are (—26.,5.),(—24., —-2.),
(0.,0.),(6.,~1.5),(15.,0.),(45.,~2.),(43.,4.),(17.,2.),(6.,3.),(2.,1.). The curved segment connecting the points z3 and zs
is given by the parametric equation, z(t) = —4t° + 2t + 45 + (428 + 2 — 2)i, t € [0,1].

For estimating the error in #((Q), we need to know the values of the conformal modules of the two
auxiliary quadrilaterals O, and Q;. To this end, the use of CONFPACK gives the approximations

m(Q;) ~ 2.96855956 and m(Q;) ~ 2.82678466,

which are expected to be correct to all the figures shown.
The details of the error analysis are as follows:

e Since m*:=min{m(Q,),m(0,)} > 1.5, the application of Theorem 2.2 to the decomposition of
0, defined by /,, gives:

0<m(Q) = {m(Q1) + m(Qr54)} <28.52¢ 2 mnim@mi@:),

e Since m* :=min{m(Qs),m(Qs)} > 1.5, the application of Theorem 2.2 to the decomposition of
>34, defined by I, gives:

0<m(Qa34) — {m(Q23) + m(Q4)} <28.52¢~ 2 mn{m(@miQu],
Hence, by combining the above we obtain

0<m(Q) — m(Q)<7.8x1077,
which, in conjunction with (4.15), gives that

21.5041109 <m(Q)<21.5041118.
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