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Abstract. This paper is concerned with certain aspects of the theory and application
of a domain decomposition method for computing the conformal modules of long
quadrilaterals. Our main purpose is to make use of the theory of the method in order
to investigate the quality of certain heuristic rules that we have come across in the
VLS literature, in connection with the measurement of resistance values of integrated
circuit networks.

1 Introduction

The work of this paper is concerned with certain aspects of the theory and appli-
cation of a domain decomposition method (DDM) for computing the conformal
modules of long quadrilaterals. The DDM was introduced by us [16], [17] for the
purpose of computing the conformal modules and associated conformal maps
of a special class of quadrilaterals, i.e. quadrilaterals that are bounded by two
parallel straight lines and two Jordan arcs. In this context, the method was
also studied by Gaier and Hayman [3], [4], in connection with the computation
of conformal modules, and more recently by Laugesen [13], in connection with
the determination of the conformal maps. These three papers contain several
important results that enhance considerably the associated DDM theory. In
particular, the results of Gaier and Hayman provided us with the necessary
tools for extending the area of application of the DDM to a much wider class of
quadrilaterals [18], [19].

Our objectives in this paper are as follows: (a) to present a number of results
that improve somewhat the available DDM error analysis, (b) to consider the
method from a more practical point of view, by studying certain engineering
applications. More specifically, our main objective is to make use of the DDM
theory in order to investigate the quality of certain heuristic rules that we have
come across in the VLST' literature [6], [7], [11], [14], [22], in connection with
the measurement of resistance values of integrated circuit networks. We do this
in Section 3. In addition, in Section 2 we show how a result which is given as a
“note added in proof” in (3], p. 467 can be used to improve some of the DDM
error estimates that we derived in our two earlier papers [18], [19).

1VLSI stands for Very Large Scale Integration. It is a subject that covers a broad area of
study including semiconductor devices and proccesing, integrated electronic circuits, digital
logic, design disciplines and tools for creating complex systems.
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For the sake of completeness, we list below several facts regarding the prop-
erties of conformal modules and the application of the DDM that are needed
for our work in Sections 2 and 3. Further details of all these can be found in
(15], [18], [19] and the other references cited there.

Remark 1: A system consisting of a Jordan domain { and four points z;, j =
1,2,3,4, in counterclockwise order on 89 is said to be a quadrilateral @ :=
{Q; 21, 22, 23,24} The conformal module m(Q) of Q is defined as follows: Let
Ry :={(&n):0<€<1, 0<n< H}. Then, m(Q) is the unique value
of H for which Q is conformally equivalent to the rectangular quadrilateral
{Ryg;0,1,1+iH, iH}, in the sense that for H = m(Q) and for this value only
there exists a unique conformal map F : Q — Ry that takes the four points
21, 22, 23, 24 Tespectively onto the four vertices 0,1,1+1iH,iH of Rp.

Remark 2: Assume that 8 is piecewise analytic and let A and 3/dn denote
respectively the two-dimensional Laplace operator and differentiation in the
direction of the outward normal to 89. Then we call the mixed boundary value
problem

Ay = 0 in Q

w = 0 on (21,22),

v = 1 on (z3,7), (1.1)
gu = 0 on (2,23)U(2,2),

the harmonic problem associated with the quadrilateral Q = {9 21, 22, 23, 24 }-
It is easy to see that the solution of this problem is

where F is the conformal map Q! — Rg.

Remark 3: The above observation leads to the following physical interpretation
of m(Q). Let Q represent a thin plate of homogeneous electrically conducting
material of specific resistance 1, and suppose that constant voltages are applied
on the two boundary segments (21, 22) and (23, z4) while the remainder of 6Q
is insulated. Then, the conformal module m(Q), of the quadrilateral @ :=
{Q;zl,Z2,z3,z4}, gives the resistance of the conducting plate. This physical
interpretation of m(Q) provides the link between the problems of computing
conformal modules and of measuring resistance values of electrical networks.

Remark 4: The domain decomposition method (DDM) is based on decomposing
the original quadrilateral @ into two or more component quadrilaterals @; and
approximating m(Q) by the sum > m(Q;) of the modules of the component
quadrilaterals. The objectives for doing this are: (a) to overcome the crowd-
ing difficulties associated with the problem of computing the modules of long
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quadrilaterals, i.e. the difficulties associated with the conventional approach of
seeking to determine m(Q) by going via the unit disc or the half plane (see e.qg.
[15], p. 67-68 and [19] §1), (b) to take advantage of the fact that in many ap-
plications a complicated original quadrilateral Q can be decomposed into very
simple components @;.

Remark 5: In general, m(Q) > > ;m(Q;) and equality occurs only in the
special case where the crosscuts of subdivision, i.e. the crosscuts that subdivide
@ into its components Q;, are equipotentials of the harmonic problem (1.1)
associated with Q. In other words, m(Q) = 2_; m(Q;) only in the case where
the images of these crosscuts, under the conformal map F : Q — Ry, are
straight lines parallel to the real axis.

Remark 6: In view of the above remark, the DDM consists of the following
three steps:

Step 1 Determining appropriate crosscuts of subdivision, i.e. crosscuts that are
“near” equipotentials of the associated harmonic problem.

Step 2 Computing the modules m(Q;) of the component quadrilaterals Q.

Step 3 Estimating the error in the DDM approximation m(Q) = 5 5 m(Q;)

Remark 7: In connection with the above, Steps 1 and 3 are closely related
and involve the use of the available DDM theory given in [3], [4] and [18], [19].
As for Step 2, in some cases the modules of the component quadrilaterals are
known exactly and can be written down immediately (see e.g. [18], Remark 2.4
and Section 3 of this paper). In some other cases, when Q; is bounded by two
straight lines and two Jordan arcs, m(Q;) can be computed by mapping directly
the domain §2; onto the rectangle R, (q,) using the simple and efficient Garrick
iterative algorithm described in [5] (see e.g. [16], [17], [18], Ex. 5.1, Ex. 5.2 and
(19], Ex. 3.1). More generally, since by construction the component quadrilater-
als are not long (and consequently the effects of crowding are not serious), the
modules m(Q;) can be computed by first mapping the domain Q; onto the unit
disc using one of the available computer packages for numerical conformal map-
ping such as: (a) the Schwarz-Christoffel package SCPACK of Trefethen [20)
(see e.g. [18], Ex. 5.2, Ex. 5.3), (b) the integral equation package CONFPACK
of Hough [10] (see e.g. [19], Ex. 3.3-Ex. 3.5), and (c) the orthonormalization
package BKMPACK of Warby [21].

Remark 8: In VLSI applications the quadrilaterals under consideration are
bounded typically by straight lines inclined at angles of 90° and 45°. For this
reason, all the numerical examples of this paper involve polygonal quadrilaterals
with corners of 90° and 45°. It should be noted, however, that the DDM can
also be applied to quadrilaterals with curved boundaries (see e.g. [19], Ex. 3.3
- Ex. 3.5).
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Remark 9: We shall adopt throughout the notations that we used in our earlier
papers [18], [19]. That is:

ce Qand Q := {Q; 21, 22, 23, 24} will denote respectively the original domain
and corresponding quadrilateral.

e 0,0y, -+, and @y, Q2, - - -, will denote respectively the “principal” subdo-
mains and corresponding quadrilaterals of the decomposition under con-

sideration.

¢ The additional subdomains and associated quadrilaterals that arise when
the decomposition of @ involves more than one crosscuts will be denoted
by using (in an obvious manner) a multisubscript notation.

Figure 1.,

For example, the five component quadrilaterals of the decomposition illus-
trated in Figure 1 are:

Ql = {Q1;21,Z2,a,d}, Q2= {QZ;d7a’b1 C}, Q3 = {Qg;c,b,23,24}
and
Q1,2 = {leg;ZI,ZQ,b,C}, Q2,3 = {Q2,3;d7a)z3)z4}7

where
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2 Improved error estimates

We first state three results due to Gaier and Hayman [3], [4].

Result 1 Consider the decomposition illustrated in Figure 2, where:

(i) the domain ) of the original quadrilateral Q := {Q; 21, 22, 23, 24 } is bound-
ed by two segments of the lines z = 0 and z = 1 and two Jordan arcsvy,, ¥z,

(ii) the points 21, 22, 23, z4 are the four corners where the arcs v1,y2 meet the
linesz =0 and z =1,

(i) the crosscut of subdivision [ is a straight line parallel to the real axis.

Let h := min(hy, ho), where hy, hy are respectively the distances of | from the
arcs y1,7vs. Then

0 <m(Q) = {m(Q1) + m(Q2)} < 0.761e~*™", (2.1)

provided that h > 1.

Z4

ha Q,

l

hi Q,

21 /71_\/
Z2

Figure 2.
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Result 2 If in Figure 2 the boundary arc v, is a straight line parallel to the real
axis (so that m(Q1) = hy), i.e. if the decomposition is of the form illustrated in
Figure 3, then

0 < m(Q) — {h1 +m(Qs2)} < -;- x 0.381e=2mh2 (2.2)

provided that hy > 1.

Result 3 For the decomposition illustrated in Figure 3 we also have that
4
0 <m(Q) = {h1 +m(Q2)} < —e7™™(R), (2.3)

provided that m(Q2) > 1. Here 4/m cannot be replaced by a smaller number.

24
72
23
ha Qy
z=20 ! r=1
h1 Q
21 T 22
Figure 3.

As was previously remarked, all the above results are due to Gaier and
Hayman [3], [4]: (2.1) and (2.2) follow easily from the precise estimates given
in [4] (see [18], p. 218), whilst (2.3) is given as a “note added in proof” in [3],
p. 467.

For comparison purposes, we note the following in connection with the two
estimates given in Results 2 and 3:

Apart from the trivial case, where 7, is a straight line parallel to the real
axis (so that m(Q2) = hy) we have that:

m(Qz2) = ha +¢,
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for some ¢ > 0. Therefore, the condition m(Q2) > 1 needed for estimate (2.3)
is less restrictive than the corresponding condition k2 > 1 needed for (2.2). On
the other hand, (2.3) gives a sharper bound for the DDM error only if

1
¢> 5-In{8/0.3817} = 0.302 341 48 -- .

Thus, it is not always advantageous to use (2.3), rather than (2.2), for estimating
the DDM error of special decompositions of the form illustrated in Figure 3.
However, by making use of (2.3) it is possible to improve some of the results
derived in [18], [19] for the purpose of estimating the errors of more general
decompositions. The details of these improvements are as follows:

By making use of (2.3) (rather than (2.2)) in the proof of Theorem 3.2 of
(18], p. 222, we can state the corresponding result in improved form as follows:

Result 4 Consider the decomposition of the quadrilateral Q := {Q; 21, 22, 23, 24}
illustrated in Figure 1 and assume that the crosscut 7; is an equipotential of
the harmonic problem associated with Q (see Remark 2). Then

- %‘f“"’””“‘”’ <m(Q) — {m(Q1,2) + m(Q2,3) — m(Q2)} <0, (2.4)

provided that m(Q2) > 1.

Further, by making use of Result 4 we can state Corollary 2.6 of [19] in the
following improved form: '

Result 5 Consider a quadrilateral Q := {Q; z1, 22, 23, 24} of the form illustrated
in Figure 4, and assume that the defining domain {2 can be decomposed by a
straight line crosscut | into §}; and Q,, so that §; is the reflection in ! of some
subdomain of Q1. Then, for the decomposition defined by I,

0 < m(Q) ~ {m(Qu) +m(Q2)} < Ze ), (25)

provided that m(Q2) > 1.

The improvements in the above two results are the constant 4/7 (in the left
hand side of (2.4) and the right hand side of (2.5)) and the condition m(Q2) > 1.
These replace respectively the larger constant 4.41 and the more restrictive
condition m(Q2) > 1.5 involved in the original versions of the results (see [18],
Theorem 3.2 and [19], Theorem 2.2, Corollary 2.6).

Finally, by making use of (2.5), we can state Corollary 2.7 of [19] in the
following improved form:
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24

Figure 4.

Result 6 Consider a quadrilateral Q := {§; z1, 22, 23, 24} of the form illustrated
in Figure 5, and assume that the defining domain ) can be decomposed by
means of a straight line crosscut | and two other crosscuts v, and 7y, into four
subdomains Qy, Q2, Q3 and Q4, so that Q3 is the reflection in | of {2;. Then,
for the decomposition of Q defined by I,

0 < m(Q) — {m(Qu1,2) + m(Qs,4)} < 11.37e727™(32),

provided that m(Q2) > 1.5.

1 ¢!

z2

Figure 5.

The improvement here is the constant 11.37, which replaces the constant
17.64 involved in the original version of the result.
We consider next the following useful inequality:
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Result 7 Consider the decomposition of the quadrilateral ) := {21, 29, 23, 24}
illustrated in Figure 1, and assume that the crosscut v, is an equipotential of
the harmonic problem associated with the quadrilateral Q5 3. Then,

0 <m(Q1,2) — {m(Q1) + m(Q2)} < m(Q) — {Mm(Q1) + m(Q23)}.  (2.6)

Proof: The well-known composition law for conformal modules implies that
m(Q1,2) + m(Qs) < m(Q).
Hence,
m(Q1,2) + m(Qs) — {m(Q1) + m(Q2,3)} < m(Q) — {m(Q1) + m(Q2,3)}
and the result follows because the hypothesis about 7, implies that

m(Q2;3) = m(Q2) +m(Q3). M

0

29 ! 21 71

o8 Qy
Z4

! J . .
0y Y2 Q3 Y2 Q4
Z3
(a) (b)
Figure 6.

As an example of the usefulness of the above result, consider the decompo-
sition of the L-shaped quadrilateral Q := {Q; 21, 22, 23, 24} illustrated in Figure

6(a), and let
h:=min{m(Q1),m(Q2)}.

Then the direct application of Result 5 gives that

0<m(Q) — {m(@1) +m(Q2)} < Se?,
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provided h > 1. It is, however, possible to obtain a much sharper estimate by
making use of the inequality (2.6) as follows:

Reflect Q; in 71 and 2 in 2 and denote the resulting quadrilateral, illus-
trated in Figure 6(b), by @. Then, by construction,

m(@1) = m(@2) = m(Q1), m(Qs) = m(Qs) = m(Q2), m(Qz,3) = m(Q),

and the lines v, and -y, are equipotentials of the harmonic problems associated
with the quadrilaterals Q1,2 and Q3,4 respectively. Therefore, by applying the
inequality of Result 7 twice, we get

0 < m(Q) — {m(Q1) + m(Q2)} = m(Q23) — {m(Q2) + m(Q3)}
<m(Qr23) — {m(Q1,2) + m(Q3)} < m(Q) — {m(Q1,2) + m(Q3,4)},

where, by making use of Result 5,
A A - 4
m(Q) — {m(Q1,2) + m(Q3,4)} < ;e‘z”H,

provided that R R
H = min{m(Q1,2),m(Q3,4)} > 1.

Therefore, since m(Ql,g) = 2m(Q:) and m(Q3,4) = 2m(Q3), we have the fol-
lowing substantially improved estimate for the decomposition of the L-shaped

quadrilateral of Figure 6(a):
0 < m(Q) ~ (m(Q)) +m(@2)} < e, (27)

provided that h := min{m(Q1),m(Qz)} > 0.5.

As might be expected, by using the results of this section we can improve
somewhat the DDM error estimates that we derived in some of the examples of
our earlier papers [18], [19]. This can be achieved by following, in each example,
the same error estimation technique and replacing, where appropriate, the basic
error estimates by their improved counterparts. For example, by considering the
decomposition of the spiral quadrilateral Q := {§; 21, 22, 23, 24} illustrated in
Figure 7 and applying the error estimation technique described in [19], Ex. 3.2,
but with the estimate (2.5) of Result 5 (rather than its original version given in
[19], Corollary 2.6), we find that

132.704 539 3 < m(Q) < 132.704 540 3. (2.8)
This improves somewhat our previous estimate
132.704 539 < m(Q) < 132.704 543,
and provides further evidence that the approximation

m(Q) =~ 132.704 54,
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22 Z1

Q4

g

Qg Q4 Qi

z3 Z4

Q10

5

32

Figure 7. -

which was obtained by Howell and Trefethen in [12], p. 943, using a modified
Schwarz-Christoffel technique is, in fact, correct to all the figures given.

We consider next another example taken from the paper of Howell and Tre-
fethen [12]. This is the quadrilateral Q := {Q, 2,22, 23,24} of Figure 8, for
which the modified Schwarz-Christoffel technique gives the approximation

m(Q) ~ 49.436 547,

(see [12], p. 944).

For the application of the DDM we consider the decomposition illustrated in
Figure 8 and note that the module of the component quadrilateral Q; is known
exactly in terms of elliptic functions and integrals (see (3.11)). Thus, to eight

decimal places,
m(Q1) = 3.469 394 16.

Also,
m(Qz2) =6, m(Q4) = 30.5,

and by using the subroutine RESIST of the Schwarz-Christoffel package SC-
PACK of Trefethen [20] we find that m(Q3) and m(Qs) are given correct to
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eight decimal places by
m(Q3) = 4.970 221 11 and m(Qs) = 4.496 930 26.

Therefore, the DDM approximation to m(Q) is
5
m(Q) =Y _ m(Q;) = 49.436 545 53. (2.9)
i=1

For the error in (2.9), the repeated use of Result 6 gives:

(@) - {m (Q1) + m(Qa, .. 5)} < 11.37¢757,
(Qa,...5) — {m(Q2) + m(Q:z 45)} < 1137747,
(Qs3,4 5) — {m(Q3) + m(Qu5)} < 11374,
(Qa,5) — {m(Q4) + m(Qs)} < 11.37¢7°".

<O O O
IAIA A IA
s 3 8 3

Thus,
5
0<m(Q) - > mQ;) <E, (2.10)
g=1
where
E:=11.37{2e™*" 4+ 75" + 75"} < 8.11 x 107°. (2.11)

Therefore, from (2.9),

49.436 545 < m(Q) < 49.436 627.

We end this section by considering two quadrilaterals that we shall need, for
comparison purposes, in the next section.

With reference to Figure 8, let Q = {Q; 21, 22, 23, 24}, i.e. Q is the same
quadrilateral as the one considered above except that we now take 10i, rather
than 8i, as the fourth specified point. Then, the modules of all the component
quadrilaterals of the decomposition remain as before, except for m(Qs) for which
the subroutine RESIST of [20] gives

m(Qs) = 4.719 790 96.

Hence, the DDM approximation to m(Q) is

5
(@) =Y m(Q;) = 49.659 406 23
J=1
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Qs

24

Q4

Qs Qs 2

2y 23

Figure 8. The coordinates of the corners, starting from z» and moving in counter-
clockwise order, are (14.,0.), (14,,1.), (2.,1.), (2.,10.), (0.,10.), (0.,8.), (1.8,8.), (1.8,0.).

and, as before, the corresponding DDM error is given by (2.10) and (2.11).
Therefore, with the notations of Figure 8, if Q := {Q; z1, 23, 23, 24}, then

49.659 406 < m(Q) < 49.659 488. (2.12)

Finally, we consider the quadrilateral Q = {Q, 21, 22, 23, 24} illustrated in
Figure 9, and note that the modules of the trapezoidal component quadrilaterals
Qs, Qs, Q7 and Qg are known exactly in terms of elliptic integrals (see e.g.
(18], Remark 2.4, and Section 3 of this paper). Thus, to eight decimal places,

m(Qs) = 2.279 364 21,
m(Qs) = m(Qr) = 5.279 364 40,
m(Qs) = 3.279 364 40.

Also,
m(QZ) = 2)

and by using again the subroutine RESIST of [20] we find that m(Q1), m(Qs),
m(Q4) and m(Qo) are given correct to eight decimal places by

m(Q,) = 3.810 473 74,
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Q6 Qy
Qs
- Qg
Q4 “3
g
24
3
0
| 2 |

z2

Z1

Figure 9. The coordinates of the corners, starting from z; and moving in counter-
clockwise order, are (12,0), (12,3), (8,3), (8,1), (2,1), (2,9), (1,10), (1,14), (11,14),
(11,8) (8,8), (8,5), (12,5), (12,15), (0,15), (0,0).

m(Qs) = 4.643 536 66,
m(Qq) = 4.834 640 84,
m(Qs) = 4.763 034 81.

Therefore, the DDM approximation to m(Q) is

m(Q) =D _ m(Q;) = 36.169 143 46.

=1

(2.13)

For the error in (2.13), the repeated use of Results 5 and 6, gives that

0 < m(Q) — {m(Q1) + m(Qa, o)} < 11.37e4,

0 < m(Q2,....0) — {m(Q2) + m(Qs,
0 < m(Qs,....9) — {m(Q3) + m(Qq,
0 < m(Qq,....0) — {m(Q4) + m(Qs,
0 < m(Qs,....0) — {m(Qs) + m(Qs,

L9} < (@/met
.9)} < 11.37e7*",
o)} < 11.37e~27™(@s)

o)) < (4/7r)e‘“2"m(Qs),

0 < m(Qs,.0) — {m(Qs) + M(Qr.s)} < (4/m)e2m™(Q0)
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0 < m(Q7,8,9) — {m(Q7) + m(Qs,0)} < (4/m)e2mm(Q7)
0 < m(Qs,0) — {m(Qs) + m(Qe)} < (4/m)e~27m(Qs),

Thus, by combining the above,

9
0<m(Q) - > m(Q;) <518 x107°

J=1
and therefore, from (2.13),

36.169 143 < m(Q) < 36.169 196. (2.14)

3 On certain heuristic rules for computing conformal
modules

In this section we make use of the DDM theory to investigate the validity of
certain heuristic rules that we have come across in the VLSI literature, in con-
nection with the measurement of resistance values of integrated circuit networks.
In terms of our conformal mapping terminology these rules are, in fact, rules of
thumb for computing by domain decomposition the conformal modules of long
quadrilaterals.

We consider first two approximations which (in our terminology) are used
for estimating the modules of component quadrilaterals in a heuristic domain
decomposition algorithm due to Horowitz and Dutton [11] (see also [22], p. 122).

Z4 z1 24

21

Q 97} Q
45° 45°
22 Z3 22 23

(a) Ti:={Q;21,22,23,24} (0) P :={Q;21,29,23,24}

Figure 10.

Let T} and P, denote respectively the trapezium and parallelogram quadrilat-
erals illustrated in Figure 10(a) and Figure 10(b). Then, Horowitz and Dutton
[11] propose the following estimates for the conformal modules m(T}) and m(P,):

A(T1) = {1 +4(1 - 1)} /4 = I - 0.75, (3.1)
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and
m(P) =1 | (3.2)

The actual errors in the above two heuristic approximations can be determined

as follows:
For the trapezium of Figure 10(a), the error estimate (2.2) implies that for

any ¢ > 0,
1
0 < m(Tiye) — {c+m(Th)} < 5 % 0.381e~27(-1),

provided that I > 2. Therefore, by using the known exact values of m(Tz), m(T3)
and m(Ty) listed in [18], p. 219 and [19], Remark 2.8, we can conclude that

m(T}) = 1 — 0.720 635 600 5 + Ei, (3.3)

where

~1.03x107% < E; < 2.53 x 1074, if 2<1<3,
~1.92x1077 < B <4.73x 1077, if 3<1<4, (3.4)
0< E; <1.25x107°, if 1> 4.

Thus, for the approximation (3.1),
m(Ty) = m(Th) + ¢,

where, for all [ > 2,
29x1072 <e<3.0x1072

To determine the error in (3.2) we decompose the parallelogram into two
equal trapezia, as illustrated in Figure 10(b), and note that each of the resulting
component quadrilaterals has modulus m(T{;41)/2). Hence, by using the error
estimate of Result 1,

m(P) = 2m(Tas1y/2) + &,

where, for all { > 3,
0< e <0761 ™01, (3.5)
Therefore, from (3.3),

I+1
m(B) = 2{—’;-— —0.720 635 600 5} + & = [ — 0.441 271 201 + £,

where, for all | > 3,
El - 2E(1+1)/2 + €1,
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and Ej, € are given respectively by (3.4) and (3.5), i.e.

-2.06 x 107* < £ < 1.93 x 1073, if 3<1<5,
—3.84x 1077 < & < 3.60 x 1075, it 5<1<7,
0< & <T.46x%x1079, if 1>7.

Thus, for the approximation (3.2),
m(B) = ﬁl(-Pl) — €

where, for all [ > 3,
43%x107 ' <e<d44x107L,

Z9 21

0

Iy

24
Qs

23

Figure 11.

We consider next the L-shaped quadrilateral Ly, 1,) and the two rectangular
quadrilaterals R(; ;) and S(; ;) illustrated in Figure 11, Figure 12(a) and Figure
13(a). For these three quadrilaterals the heuristic methodology of Horowitz and
Dutton [11] leads easily to the following approximations to m(L, 1,)), m(R,z))
and m(S(l,m)):

ﬁl’(L(ll,lg)) = + 13 +0.5, (3.6)
. I+2-1+%=2 ifo<a<t
) = z ? - 3.7
B.2)) {l—z+&& if 1<z<l, (3.7)
and,forlzlénd0<z§1,
4(1 — z)

iz =1 -1+ = .

m(S(l,:c)) +z + 1732 (3 8)
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(It is of interest to note that the approximation (3.6) is equivalent to taking
ﬁz‘(Lh,lz)) = Th(TlH'l) + m(ﬂz‘i-l)' )

To determine the error in (3.6) we decompose the L-shape into the two
trapezia Ty, +1 and Ti,+1, as illustrated in Figure 11, and let

h:= min{m(Ti;+1),m(T1,+1)} and !:=min{l;,l2}.
Then, for h > 0.5, (2.7) gives that
0 < Mgy in) = (T r) +m(Tipan)} < e
Hence, by using (3.3), (3.4) and the known exact values for m(1z), m(T3) and
m(Ty), we get that
m(Ly 1)) =l + 2 +0.558 728 799 + &, (3.9)

where

—2.06 x 107% < & < 5.07 x 1074, if 1<1<2,
—384x1077 < & <947 x 1077, if 2<1<3, (3.10)
0<&<251x107°, if 1>3.

Thus, for the approximation (3.6),

m(L, 1)) = M(L(t2)) + 6
where, for all I := min{ly,l} > 1,

58x 1072 < e<6.0x 1072

If 1 is “small” (so that there are no crowding difficulties), then the modules
m(R,z)) and m(S(1,z)) can be determined exactly for specific values of z in
terms of elliptic functions and integrals (see e.g. [2]). For example, the exact
values of m(R(2.5,1)), m(R(s.o,l)), m(R(4.0,1)) and m(S(l.S,O.S)); m(5(2.0,0.5))5
m(S(s.0,0.5)) are given to twelve decimal places respectively by

m(R(s.0.1.0)) = 2-469 393 831 816, (3.11)
m(Rs.0.1.0)) = 3.469 394 159 886,

and

m(S(1.5,0.5)) = 1.720 609 913 476,
m(S(2.0,0.5)) = 2.220 634 490 099, (3.12)
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Regarding the errors in (3.7) and (3.8), these can be determined for specific
values of z by using exact values of m(R(; ;)) and m(Sq,z)), such as those given
in (3.11) and (3.12), and applying the estimate of Result 6, in conjunction with
inequality (2.6), to the decompositions illustrated in Figure 12(b) and Figure
13(b). We illustrate this error estimation technique by applying it to the cases
z = 1.0 of (3.7) and z = 0.5 of (3.8), i.e. to the approximations

m(Ru1.0)) =1-0.5, (3.13)
and
l [
P
1 Q 97 Qs
| z
22
Z3 Z4 ll l2
(a) (b)
Figure 12.

Let z = 1 and consider the decomposition illustrated in Figure 12(b). Then,
the error estimate of Result 6 (used, if necessary, in conjunction with inequality
(2.6) of Result 7) implies that

0 <m(Rq,1.0)) — {li + m(R,,1.0))} < 11.37¢2m(2=1),

provided I3 > 2.5. Hence, by using the exact values given in (3.11), we can
conclude that

m(R,1.0)) =1 —0.530 605 840 1 + &, (3.15)

where

~761x107°% < £ < 9.10 x 1074, if 25<1<3,
—329x 1077 < £ < 3.94x 1073, if 3<1<4, (3.16)
0< & <741 %1078, if 1> 4.

Thus, for the approximation (3.13),

m(R,1.0)) = m(Ru1.0)) — 6
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te
24
1 Q T Q0 0y
lZQ zZ3
ll lg >
(a) (b)
Figure 13.

where, for all I > 2.5,
20x1072<e<3.1x1072

Similarly, by applying the error estimate of Result 6, in conjunction with
inequality (2.6), to the case z = 0.5 of the decomposition illustrated in Figure
13(b), and using the exact values given in (3.12) we find that

m(S(i,0.5)) = | +0.220 635 598 1 + &, (3.17)

where

—257%x 1075 < £ < 8.92x 1074, if 1.5<1<2,
~1.11x107% < £ < 3.86 x 107%, if 2<1<3, (3.18)
0< & <741 %1078, if 1>3.

That is, for the approximation (3.14),
m(Su,05)) = M(Su0.5)) — €

where
78x1072 < e < 80x 1072

Apart from [11], the other references that we have come across in the VLSI
literature are concerned mainly with the problem of estimating the modules of
meander shaped quadrilaterals involving only right-angle bends ([6], [7], [14]).
The associated heuristic methods of these references may be regarded as domain
decomposition techniques where all the components are L-shaped quadrilaterals
L, 1) of the form illustrated in Figure 11 and where, in each case, the modules
m(L, 1,)) are approximated by

ML, 1)) =h + 1+, (3.19)
with
(i) c=2/3 in[14], (ii) c=0.55 in[6] and (i) c=0.559 in[7]. (3.20)
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For example, for the spiral quadrilateral Q := {Q, 2, 2y, 23, z4}, illustrated in
Figure 7, the methodologies given in each of [14], [6] and [7] are equivalent to
approximating m(Q) by

m(Q) = m(Larss)) +m(Lsss)) +m(Lsry) + m(L(7,6.5))
+m(Ls.5,5.5)) + M(L(5.5,5)) + M(Ls,4)) + m(L(4,3.5))
+m(L(z.5,2.5)) + Tﬁ(L(2.5,2)) +m(L21)) + M(L,2),

i.e. , from (3.19), by
M(Q) = 126 + 12¢, (3.21)

where c is as shown in (3.20). Similarly, the methodology of [11] leads to an
approximation of the form (3.21) with ¢ = 0.5; see (3.6). Therefore, for the
spiral quadrilateral @ of Figure 7 the heuristic methods of [14], [6], [7] and [11]
lead respectively to the following approximations

() ™m(Q) =134, (s41) Mm(Q)=132.708, 599
@) ™mQ)=1326, (v) m(Q)=132. (3.22)
This should be compared with the true value which, according to (2.8), is given
to five decimal places by

m(Q) = 132.704 54.

We note the following in connection with the approximations (3.19), (3.20)
and (3.22):

e As can be seen from (3.9) and (3.10), the most accurate of (3.19) and
(3.20) is the approximation

Th(L(ll,lz)) ~ ll + 12 + 0.559, (3.23)
which is used in [7]. Thus, the best of (3.22) is the approximation
Q) = 132.708,

which was obtained by the method of [7].

e The approximation (3.23) is not based on heuristic arguments. It was
obtained, together with several other similar and interesting results by
Hall [9], using conformal transformation techniques (see also [1] and [8]).
In fact, [9] contains several asymptotic formulae that lead to remarkably
accurate approximations. For example, four such formulae give the fol-
lowing approximations to the modules of the quadrilaterals T}, L, 1,),
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R,1.0) and S(1,0.5), t-€. to the modules associated with the results (3.3),
(3.4), (3.9), (3.10), (3.15), (3.16), (3.17) and (3.18):

m(T}) =~ 1—0.720 635 600, [9], Eq. (23),
m(Lay 1)) ~ b+l +0.558 728 800,  [9], Fig. 39,
m(Ru10) =~ |—0.530 605 840, 9], Eq. (12),
m(Suos) =~ 1+ 0.220 635 600, 9], Eq. (39).

We end this section by applying the heuristic algorithm of Horowitz and
Dutton [11] to the estimation of the modules of the last two quadrilaterals of
Section 2.

24 23

Q3

Q, 0 1

Z1 22

Figure 14.

For the quadrilateral Q := {Q;z1, 22, 23,24} illustrated in Figure & the
methodology described in [11] is equivalent to decomposing & as shown in Figure
14 and approximating the modules of the component quadrilaterals Rs.0,1.0),
R(g.2,0.2) and S(1.0,0.1) by means of (3.7) and (3.8). That is, the resulting ap-
proximation to m(Q) is

m(Q) = m(Rs.0,1.0) + M(Bs.2,0.2)) + 35+ Mm(Sa.0,01)),
where, from (3.7) and (3.8),
Th(R(S.O,l.O)) = 5.5, T‘h(R(sAQ,Q.Q)) = 7.3, and 'ﬁ'L(S(l.O’OA]‘)) =2.86923....
Thus, to three decimal places,

m(Q) = 50.669,
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while, according to (2.12), the true value is given correct to three decimal places
by

m(Q) = 49.659.
5
Qs
Q)
_54
z3
(g
24
Q3
22
W
1y
21
Figure 15.

Finally, for the quadrilateral @ := {Q; z1, 22, 23, 24} of Figure 9 the method-
ology of [11] is equivalent to decomposing @ as shown in Figure 15 and ap-
proximating the modules of the component quadrilaterals S(4/3,1/3), F(4.5,0.5),

Rs.0,1.0), R(7.0,1.0) and R(4/3,1/3) by means of (3.7), (3.8) and of Tzl by means
of (3.1). Here, T2' denotes the reciprocal of the trapezium quadrilateral T3, i.e.

m(T3) = 1/m(T2).
Therefore, the resulting approximation to m(Q) is
m(Q) = m(S(s 1)) + 6 + M(Ry505)) + 1/M(T2)
+1(R(s.0,1.0)) + 10 + m(R(7.0,1.0)) + M(B(1 1))
That is, to three decimal places,
m(Q) = 36.183, (3.24)
while, according to (2.14), the correct value is given to three decimal places by

m(Q) = 36.169.
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