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Zero Distributions for Polynomials
Orthogonal with Weights over Certain Planar Regions
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Abstract. Let G be a bounded Jordan domain in C and let w 6≡ 0 be an ana-
lytic function on G such that

∫
G
|w|2dm < ∞, where dm is the area measure.

We investigate the zero distribution of the sequence of polynomials that are
orthogonal on G with respect to |w|2dm. We find that such a distribution de-
pends on the location of the singularities of the reproducing kernel Kw(z, ζ) of
the space L2

w(G) :=
{
f analytic on G :

∫
G
|f |2|w|2 dm < ∞

}
. A fundamental

theorem is given for the case when Kw(·, ζ) has a singularity on ∂G for at least
some ζ ∈ G. To investigate the opposite case, we consider two examples in
detail: first when G is the unit disk and w is meromorphic, and second when G
is a lens-shaped domain and w is entire. Our analysis can also be applied for
w ≡ 1 in the case when G is a rectangle or a special triangle. We also provide
formulas for Kw(·, ζ) that are of help for the determination of its singularities.

Keywords. Orthogonal polynomials, zeros of polynomials, kernel function,
logarithmic potential, equilibrium measure.
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1. Introduction

Let G be the interior of a closed Jordan curve L = ∂G in the complex plane, and
let dm = dxdy denote the two-dimensional Lebesgue measure. For a function
w : C → C, analytic and not identically zero on G that satisfies the integrability
condition

(1)

∫
G

|w(z)|2 dm(z) <∞ ,

we consider the space

(2) L2
w(G) :=

{
f analytic on G :

∫
G

|f(z)|2|w(z)|2 dm(z) <∞
}
,
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endowed with the inner product and corresponding norm

(3) 〈f |g〉w :=

∫
G

f(z) g(z) |w(z)|2 dm(z) , ‖f‖L2
w(G) :=

√
〈f |f〉w .

Let {Pn(z;w)}∞n=0 be the sequence of orthonormal polynomials with respect to
the measure |w|2dm|G. This is the sequence of polynomials,

Pn(z;w) = κwn z
n + · · · , κwn > 0, n = 0, 1, 2, . . . ,

that are orthonormal with respect to the inner product 〈·|·〉w. When w ≡ 1,
these polynomials are often called Carleman or Bergman polynomials for G.

The aim of this paper is to investigate the zero distribution of the sequence of
weighted Bergman polynomials {Pn(z;w)}∞n=0. Namely, we address the following
question: given a domain G and a function w as described above, where do the
zeros of the Pn’s accumulate as n→∞?

This question has been studied to some extent for the Bergman polynomials of
G (see for e.g. [6], [5]). In [5], the authors found that the zero distribution of
the polynomials Pn(z; 1) is related to the analytic continuation properties of a
conformal mapping ϕ of G onto the unit disk D. Some of their main results are
particular cases of ours.

A key role in our investigation is played by the reproducing kernel of the space
L2
w(G), which is the unique function

(4) Kw(z, ζ) : G×G→ C
such that

(5) Kw(·, ζ) ∈ L2
w(G), ∀ ζ ∈ G, and f(ζ) = 〈f |Kw(·, ζ)〉w, ∀ f ∈ L2

w(G).

When w is a function as described above, we find that the zero distribution of
the Pn(· ;w)’s depends on the analytic continuation properties of the family of
functions {Kw(·, ζ) : ζ ∈ G}. For example, Theorem 2.1 of Section 2 below,
which extends [5, Thm. 2.1], can be roughly stated as follows.

If w is such that the polynomials are dense in L2
w(G), and if for some ζ ∈ G,

Kw(·, ζ) has a singularity on the boundary ∂G of G, then every point of ∂G
attracts zeros of the Pn’s (a converse of this statement is valid in some sense as
well).

The relevance of this result is strengthened by the fact that we have formulas
that express Kw(z, ζ) in terms of the weight w and a conformal mapping ϕ of G
onto the unit disk D, which help us to determine the singularities of Kw(·, ζ), and
in particular, whether or not this kernel has a singularity on ∂G. For instance,
it is well-known that if w(z) 6= 0 for all z ∈ G, then (see [16, p. 37])

Kw(z, ζ) =
ϕ′(z)ϕ′(ζ)

π w(z)w(ζ)
[
1− ϕ(z)ϕ(ζ)

]2 .
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It is clear from this formula that certain properties of ϕ and w will guarantee
that Kw(·, ζ) has a singularity on ∂G. Possibly the simplest is that w has a zero
at a point z0 ∈ ∂G in a neighborhood of which |ϕ′| is bounded below.

Much more interesting is the situation when w has zeros in G. In this paper
we derive formulas for Kw(z, ζ) when the number of these zeros is finite. In
particular, in Proposition 2.3 of Section 2 we describe an iterative procedure
that, given a zero a ∈ G of w, allows one to construct Kw(z, ζ) from the kernel
corresponding to the weight w(z)/(z − a). Applying this procedure we derive
Lemma 3.5 of Section 3, which gives a representation of the kernel in terms
of w and ϕ. If the zeros of w inside G are simple, then a simple determinant
representation for Kw(z, ζ) is also valid (see Proposition 3.4).

To gain insight into what can happen in the less transparent situation where
Kw(·, ζ) can be analytically continued across ∂G for every ζ ∈ G, we analyze
in detail two specific cases. First, we let G be the unit disk, and take w to
be meromorphic with no poles in G. We prove that the zeros of the Pn(· ;w)
accumulate on a disk of radius r ≤ 1, and each point of the boundary of this
disk attracts zeros of the polynomials. The radius r is determined by the zeros
and the poles of w.

In the second case, G is a domain bounded by two circular arcs that meet at −i
and i with opening angle π/N , N ∈ N, N ≥ 2. The weight w is taken to be an
entire function. This case was studied in [5] for N = 2, w ≡ 1, and it was shown
that the zeros of Bergman polynomials for these lens-shaped domains accumulate
on an arc Γ that connects the vertices −i, i (see Figure 1(a)). The same result
is true for N > 2. For a general entire function w, we find that the zeros of the

i

-i

G

i

-i

(a) (b)

Figure 1. (a) Zeros accumulate on Γ in unweighted case and (b)
on bubble with subarcs of Γ in weighted case for w entire.

Pn(· ;w)’s accumulate on a compact set consisting of two subarcs of the same
curve Γ and a “bubble” connecting these two subarcs (see Figure 1(b)). This
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bubble is determined by the zeros of w, and each boundary point of it, as well
as each point of the two subarcs, attracts zeros of the polynomials.

We remark that in both of the above cases one can consider more general func-
tions w. As long as we are able to determine the singularity of Kw(·, ζ) that
is closest (in some sense) to G, our method of proof will yield similar results.
For example, the same phenomenon is observed in the case of a lens if one con-
siders meromorphic weights. However, we restrict ourselves to the case of w
entire for the sake of simplicity. We also state, without proof, some results that
can be obtained by applying the same ideas and methods of the present paper
to Bergman polynomials for rectangles as well as for special triangles G whose
interior conformal mapping ϕ has no singularities on ∂G.

The rest of this paper is organized as follows. In Section 2 we introduce some
notation and present the main results. In Section 3 we establish the existence of
the kernel function as well as some of its properties and formulas. In Section 4
we derive a basic relation between the orthogonal polynomials and the kernel
function (Corollary 4.2), and give (in Lemma 4.3) the general argument that is
employed in Section 5 to prove the zero distribution results.

2. Main results

Throughout this paper, (G,w) will denote a pair formed by a bounded Jordan
domain G and a function w : C → C that is analytic and not identically zero
on G, and that satisfies (1). In each theorem, it will be clearly stated whether
any other property of G or w is assumed, and Pn(z) := Pn(z;w) will denote the
n-orthonormal polynomial with respect to the measure |w|2dm|G corresponding
to the domain G and weight w so specified. The letter D will stand for the open
unit disk and Dr for the open disk {z : |z| < r}.
For any G under consideration,

(6) Φ: C \G→ C \ D

will denote the exterior conformal map from C \ G onto C \ D, normalized so
that Φ(∞) = ∞ and Φ′(∞) > 0. This map Φ can be naturally extended to
a homeomorphism (also denoted by Φ) between L := ∂G and the unit circle
T := ∂D. Then, the equilibrium measure µL of the compact set L can be defined
as the preimage by Φ of the normalized arclength measure |dz|/2π on T, that is,

µL(A) :=
1

2π

∫
Φ(A)

|dz|

for any Borel set A ⊂ L. We refer the reader to [12] or [14] for the definition of
the equilibrium measure of more general compact sets and also for the related
notion of logarithmic capacity of a set E, which we denote by cap(E).
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If Q is a polynomial of degree n with zeros z1, z2, . . . , zn (listed according to
multiplicity), the normalized counting measure of the zeros of Q is denoted by νQ
and defined by

νQ :=
1

n

n∑
k=1

δzk
,

where δz denotes the unit mass at the point z.

We say that the sequence of Borel measures {σn} converges in the weak*-sense

to a measure σ, symbolically σn
∗−→ σ, if

lim
n→∞

∫
C
f dσn =

∫
C
f dσ ,

for every function f continuous on the extended complex plane C.

Recall that Kw(z, ζ), defined by (4) and (5), is the reproducing kernel of the
space L2

w(G) introduced in (2). The existence of this kernel, as well as some of
its properties, will be established in Section 3. With this notation, we have the
following basic theorem:

Theorem 2.1. For any (G,w) as above, if

(a) there exists a subsequence N ⊂ N such that

νPn

∗−→ µL as n→∞ , n ∈ N ,

then

(b) there exists a point ζ ∈ G for which Kw(·, ζ) has a singularity on the boundary
L of G.

Moreover, if w is such that the polynomials are dense in L2
w(G), then (b)⇒(a);

that is, (a) and (b) are equivalent.

Remark 2.2. There are several results giving conditions that ensure the com-
pleteness of the system of polynomials in Banach spaces of analytic functions on
a domain G whose norm is given by an integral over G with respect to a weight
function. For example, see the survey [7] and the papers [2], [3], as well as the
references therein. Here, we just mention that when w is analytic in G (which is
the case in Theorems 2.5 and 2.9 below), the polynomials are dense in L2

w(G).
This assertion is easy to verify with the help of [2, Thm. 2].

We drop the subscript w and write K(z, ζ) for the kernel corresponding to w ≡ 1,
which is the so-called Bergman kernel function ofG. Notice that the possibility of
continuing K(·, ζ) analytically across L is independent of ζ since, as easily follows
from (22), K(·, ζ) has a singularity on L if and only if an interior conformal map ϕ
has a singularity on L.

For the practical determination of the singularities of Kw(·, ζ), one can use for-
mula (22) of Section 3 for a weight w 6= 0. When w has finitely many zeros



190 E. Miña-Dı́az, E. Saff and N. Stylianopoulos CMFT

on G, the iterative procedure given in Proposition 2.3 below can be used to
find Kw(z, ζ) in terms of the weight w and a conformal map ϕ of G onto D (see
Lemma 3.5 of Section 3). Such iterative representation for Kw(z, ζ) follows along
the same lines as the formulas in [10, ex. 11, p. 262] and [4, p. 58]. As usual, any
empty product of the form

∏0
i=1 · · · is understood to equal 1.

Proposition 2.3. Let (G,w) be such that w has exactly n ≥ 0 zeros in G, count-
ing multiplicity. Write w as w(z) = h(z)

∏n
i=1(z− ai), with {a1, a2, . . . , an} ⊂ G

and h(z) 6= 0 for z ∈ G (the ai’s not necessarily distinct). Then

(7) Kw(z, ζ) =
Hn(z, ζ)

h(z)h(ζ)
,

where Hn(z, ζ) is constructed from the sequence {a1, a2, . . . , an} by using the fol-
lowing iterative procedure:

H0(z, ζ) := K(z, ζ) ;

if Hi(z, ζ) is already defined for all z, ζ ∈ G, put

Hi+1(z, ζ) :=

Hi(z, ζ)−
Hi(ai+1, ζ)Hi(z, ai+1)

Hi(ai+1, ai+1)

(z − ai+1)(ζ − ai+1)
, ∀ z, ζ ∈ G \ {ai+1} ,

and

Hi+1(ai+1, ζ) := lim
z→ai+1

Hi+1(z, ζ) , ∀ ζ ∈ G \ {ai+1} ,

Hi+1(z, ai+1) := lim
ζ→ai+1

Hi+1(z, ζ) , ∀ z ∈ G .

We shall see that when Kw(·, ζ) can be analytically continued across L = ∂G
for every ζ ∈ G, very different situations may arise. A simple application of
Carleman’s strong asymptotic formula (see [1, Thm. 2, p. 12]) together with
Lemma 4.3 yield the following proposition, which shows that in the case when
w ≡ 1 and G is bounded by an analytic Jordan curve, the zeros of the Bergman
polynomials for G can accumulate deeply inside G, on rather arbitrary compact
sets.

Proposition 2.4. Suppose that E ⊂ C is a continuum, not a single point, and
let Ω be the unbounded component of C\E. Let ΦE be the conformal map from Ω
onto C \ D such that ΦE(∞) = ∞ and Φ′

E(∞) > 0. For a fixed number r > 1,
define

lr := {z : |ΦE(z)| = r} and G := int(lr),

and let Pn be the n-th Bergman polynomial for G. Then for any closed set K ⊂ Ω,
there exists n0 ∈ N such that for all n > n0, the zeros of Pn lie outside K.
Moreover, if E has empty interior and does not separate the plane, then

νPn

∗−→ µE as n→∞ ,

where µE is the equilibrium measure of the compact set E.
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In the simplest case of Proposition 2.4, when E = {z : |z| ≤ 1/r} and G is the

unit disk, the Bergman polynomials for G are Pn(z) =
√

(n+ 1)/π zn, so that
all their zeros coincide with 0. For w 6≡ 1, we have the following result:

Theorem 2.5. Let w 6≡ 0 be a meromorphic function in C which is analytic
in D. Let

{a1, . . . , a`} = set of zeros of w in D ,

{b1, b2, . . .} = set of zeros of w in C \ D ,

{c1, c2, . . .} = set of poles of w ;

and let

A := {|ai| : 1/ai = cj for some j and mult(cj) ≥ mult(ai) + 1} ,

where mult(cj) and mult(ai) denote the respective orders of the pole cj and the
zero ai. Set

r := max
({

0, |a1|, . . . , |a`|, |b1|−1, |b2|−1, . . .
}
\ A
)
.

Then, for all but countably many z ∈ D,

(8) lim sup
n→∞

|Pn(z)|1/n =

{
|z| if |z| > r

r if |z| ≤ r
,

which implies that

(a) if r = 0, then

νPn

∗−→ δ0 as n→∞ ,

where δ0 denotes the unit point mass at 0;
(b) if r > 0, then any measure that is a weak*-limit point of the sequence {νPn}

is supported in Dr := {z : |z| ≤ r}. Let N ⊂ N be a subsequence (which
indeed exists) such that the lim sup in (8) is realized for some z ∈ Dr. Then

νPn

∗−→ µr as n→∞ , n ∈ N ,

where µr := |dz|/2πr is the normalized arclength measure on the circle
Tr := {z : |z| = r}.

Example 2.6. Let w(z) := (z − a)v/(1 − za)λ, where 0 < |a| < 1 and v ≥ 1,
λ ≥ 0 are integers. Then, according to Theorem 2.5, when λ < v + 1, {νPn}
has at least a subsequence converging weakly* to µ|a|. However, if λ ≥ v + 1,
the entire sequence {νPn} converges weakly* to δ0. Figure 2 illustrates the case
λ = 0, v = 1. Figure 3 illustrates the case λ = 2, v = 1. Another example is
discussed after the proof of Theorem 2.5 in Section 5.
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Figure 2. Zeros of Pn, n = 40(�), 50(+), 60(◦), for G = D and
(a) w(z) = z − 1/2, (b) w(z) = z − 3/2, (c) w(z) = z − 1.

Remark 2.7. The ideas involved in the proof of Theorem 2.5 can be applied to
other functions w not necessarily meromorphic. For example, the function

w(z) =
∏̀
i=1

(z − ai)
m∏
j=1

e1/(z−dj) , ai ∈ D , dj ∈ C \ D ,

has essential singularities at each dj, and for this function the conclusions of
Theorem 2.5 hold with

r := max
({

0, |a1|, . . . , |a`|, |d1|−1, . . . , |dm|−1
})
.

Remark 2.8. We note that a result similar to Theorem 2.5 is known for orthogo-
nal polynomials on the unit circle T. Let ψn be the n-th orthonormal polynomial
with respect to a measure σ in the Szegő class of T, and let 0 ≤ ρ ≤ 1 be the
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Figure 3. Zeros of Pn, n = 10, 15, 20, for w(z) = (z− 1
2
)/(2−z)2

and G = D.

smallest number such that the reciprocal of the interior Szegő function for σ′

D(σ′, z)−1 := exp

{
− 1

4π

∫ 2π

0

log σ′(θ)
eiθ + z

eiθ − z
dθ

}
is analytic in D1/ρ := {z : |z| < 1/ρ}. In [8] it was shown that for some subse-
quence N ⊂ N,

νψn

∗−→ µρ , as n→∞ , n ∈ N ,

where µρ is the arc-measure |dz|/2πρ on Tρ if ρ > 0, or µρ = δ0 if ρ = 0. Hence,
if w(z) is as in Theorem 2.5 then

D(|w|2, z)−1 =
h(0)

|h(0)|h(z)(1− za1)v1 · · · (1− za`)v`
,

where

vi = mult(ai) and h(z) = w(z)/[(z − a1)
v1 · · · (z − a`)

v` ].

Thus

ρ = max
({

0, |a1|, . . . , |a`|, |b1|−1, |b2|−1, . . .
}
\ A∗) ,

where

A∗ := {|ai| : 1/ai = cj for some j and mult(cj) ≥ mult(ai)} .
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So, if w is as in Theorem 2.5, the zeros of the ψn’s and the zeros of the Pn’s
accumulate on the same circle, except possibly when A 6= A∗. Indeed, for
w(z) = (z − 1/2)/(2− z) the Szegő polynomials have all zeros at the origin (since
|w(z)| ≡ 2 for |z| = 1), while the weighted Bergman polynomials have zeros ac-
cumulating on |z| = 1/2.

We now consider a special class of domains bounded by a piecewise analytic
Jordan curve. Let N ≥ 2 be a natural number and let G be a lens-shaped
domain whose boundary L consists of two circular arcs Lα and Lβ (Lα being to
the left of Lβ) meeting at i and −i with opening angle π/N . Let α and β be the
angles formed by Lα and Lβ with the segment [−i, i], respectively. Notice that Lα
and Lβ are arcs of circles centered, respectively, at a := cotα, b := − cot β, with
corresponding radii ρα := 1/ sinα, ρβ := 1/ sin β. In the limit case when either α
or β = 0, one of these circles becomes the imaginary axis.

For any point z ∈ G, let

(9) zα =
a z + 1

z − a
, zβ =

b z + 1

z − b

be the reflections of z with respect to Lα and Lβ, respectively. The following
facts are stated without proof, since they can be obtained by using the method
employed for N = 2 in [5, Section 4].

The set

(10) Γ :=
{
z ∈ G : |Φ(zα)| = |Φ(zβ)|

}
.

is an analytic Jordan arc that lies on G, except for its two endpoints i, −i. Define

Gα := int(Lα ∪ Γ) , Gβ := int(Lβ ∪ Γ) .

Then, by the reflection principle, the function

(11) Φ̂(z) :=


Φ(z) if z ∈ C \G

1
/
Φ(zα) if z ∈ Gα ∪ Γ

1
/
Φ(zβ) if z ∈ Gβ

is analytic in C \ Γ, and |Φ̂| is continuous in C. If pΓ := Γ ∩ {Im z = 0} is the
midpoint of Γ, then

(12) 0 < RΓ := |Φ̂(pΓ)| < |Φ̂(z)|, ∀ z 6= pΓ .

For any RΓ ≤ r <∞, consider the level set

(13) γr := {z : |Φ̂(z)| = r} .
When RΓ < r < 1, γr is a Jordan curve that intersects Γ at two conjugate points,
and it is such that γr\Γ consists of two analytic simple arcs, one contained in Gα,
the other in Gβ. Notice that γRΓ

= {pΓ}, γ1 = L, and that for r > 1, γr is a
standard level curve of the exterior mapping Φ (see Figure 4).
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i

-i

G

Γr

i

-i

G

Figure 4. Curves Γ and γr for N = 2, α = π/8, r = 5/7. Here,
RΓ ≈ 0.58731.

Theorem 2.9. Let G be a lens-shaped domain with opening angle π/N , and let
w 6≡ 0 be an entire function. Let {a1, . . . , a`} and {b1, b2, . . .} be the sets of zeros
of w in G and C \G, respectively, and define r as the largest number of the set{
RΓ, |Φ̂(a1)|, . . . , |Φ̂(a`)|

}
∪
{
|Φ̂(bk)|−1 : bk 6∈ {−i, i} or mult(bk) > N − 1

}
.

Then, for all but countably many z ∈ G,

(14) lim sup
n→∞

|Pn(z)|1/n =

{
|Φ̂(z)| if z ∈ ext(γr)

r if z ∈ γr ∪ int(γr)
,

which implies that any weak*-limit point σ of the measures νPn is supported in
Γ ∪ γr ∪ int(γr), and every point of Γ \ int(γr) belongs to supp(σ). Moreover,
there is a measure µr whose support coincides with (Γ ∪ γr) \ int(γr) such that

(a) if r = RΓ (i.e. if γr = {pΓ}), then νPn

∗−→ µr as n→∞;
(b) if r > RΓ and for some z ∈ int(γr) the lim sup in (14) is realized through a

subsequence N ⊂ N, then

νPn

∗−→ µr as n→∞ , n ∈ N .

It is of help to discuss Theorem 2.9 for the simplest case when w(z) = (z − a)v,
v ∈ N, has a zero in a single point. If a ∈ L\{−i, i}, or a ∈ {−i, i} and v > N−1,
we see that γr coincides with the boundary L of G, and every point of L attracts
zeros of the Pn’s (see Figure 5). If a ∈ {−i, i} but v ≤ N − 1, or a ∈ C \ G is
sufficiently far from the lens (in the sense |Φ(a)| ≥ 1/RΓ), or a coincides with
the midpoint pΓ of Γ, then γr shrinks to the point pΓ and the zeros of the Pn’s
accumulate on the whole of Γ (see Figure 6). If none of these things happen,
then a “proper” bubble bounded by γr and joining two subarcs of Γ is formed,
and every point of γr, as well as of the subarcs, attracts zeros of the polynomials
(see Figure 7).
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Figure 5. Zeros of Pn, n = 40, 50, 60, for lens parameters N = 2,
α = 0, and (a) w(z) = z − 1, (b) w(z) = (z − i)2.
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Figure 6. Zeros of Pn, n = 40, 50, 60, for lens parameters N = 2,
α = 0, and (a) w(z) = z − 4, (b) w(z) = z − i.

From the proof of Theorem 2.9 one can see that the measure µr in that theorem
can be characterized in different ways. For example, if µRΓ

is the limiting measure
corresponding to the value r = RΓ, which is supported on Γ, then for any other
RΓ < r ≤ 1, µr is the measure supported on (Γ ∪ γr) \ int(γr) that coincides
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Figure 7. Zeros of Pn, n = 40, 50, 60, for lens parameters N = 2,
α = 0, and (a) w(z) = (z − 1.2)2, (b) w(z) = z − 0.4.

with µRΓ
on the two subarcs Γ \ int(γr), and that equals the balayage of the

restriction of µRΓ
to Γ∩int(γr) onto γr. Alternatively, µr can also be characterized

as the unique measure whose logarithmic potential Uµr is

(15) Uµr(z) =

{
− log | cap(L)Φ̂(z)| if z ∈ ext(γr)

− log[cap(L)r] if z ∈ γr ∪ int(γr)
.

In fact, we can recover µr from its potential (15) by using [14, Thm. II.1.5]. As
an example we present the following result, but we omit its proof since it relies
upon tedious computations (for details see [9]).

Proposition 2.10. Suppose G is the symmetric lens-shaped domain with param-
eters N = 2 and α = β = π/4. Let µRΓ

be the limiting measure in Theorem 2.9
corresponding to the value r = RΓ, whose support is Γ = [−i, i]. Then for any
Lebesgue measurable set E ⊂ [−1, 1],

µRΓ
(iE) =

∫
E

4
√

3

3π(1− y2)1/3
· (1 + y)8/3 − (1− y)8/3

(1 + y)4 − (1− y)4
dy .

Suppose now that G is a convex polygon with m sides having the property
that an interior conformal map ϕ of G onto D (or equivalently, K(·, ζ)) can be
analytically continued across ∂G. Then necessarily G is either an equilateral
triangle, or an isosceles right triangle, or a triangle with angles π/2, π/3, π/6,
or G is a rectangle. When G is either an equilateral triangle or a square, it has
been shown in [6] that the zeros of the Bergman polynomials lie on the segments
joining the center of G with its vertices, and every point of these segments is an
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accumulation point of the zeros. We now state (without proof) a result for the
other three cases and w ≡ 1, which can be obtained by applying the analysis of
the present paper. Further results of this type will appear in a future paper.

Suppose that G is either an isosceles right triangle or a triangle with angles
π/2, π/3, π/6 (m = 3) or that G is a rectangle (m = 4). Let v1, . . . , vm and
l1, . . . , lm be, respectively, the vertices and sides of G. For any z ∈ G, let zi
denote the reflection of z with respect to li. Then, for every 1 ≤ i ≤ m, we can
extend the exterior conformal map Φ to all of C by reflection across the side li,
so that the function

Φ̂i(z) :=

{
Φ(z) if z ∈ C \G

1
/
Φ(zi) if z ∈ G

is analytic in C \
(⋃m

j=1
j 6=i

lj

)
. Then, the set S ⊂ G defined by

(16)

S :=

{
z ∈ G : |Φ̂i(z)| = |Φ̂j(z)| ≥ max

1≤k≤m
|Φ̂k(z)| for some 1 ≤ i < j ≤ m

}
consists of a finite union of analytic and simple Jordan arcs with the following
properties:

1. ∂G ∩ S = {v1, . . . , vm};
2. G \ S = G1 ∪ · · · ∪ Gm, Gi ∩ Gj = ∅, 1 ≤ i 6= j ≤ m, where the Gi’s are

connected open sets such that ∂Gi ∩ ∂G = li for all 1 ≤ i ≤ m;
3. the function

Φ̂(z) :=

{
Φ(z) if z ∈ C \G

1
/
Φ(zi) if z ∈ Gi , 1 ≤ i ≤ m

is analytic in C \ S, and |Φ̂| can be extended continuously to C.

Then, with this notation, we have the following result.

Proposition 2.11. If G is a rectangle or one of the two triangles described above
and w ≡ 1, then

lim sup
n→∞

|Pn(z)|1/n = |Φ̂(z)|, ∀ z ∈ C ,

and there exists a positive unit measure µS whose support coincides with S and
such that

νPn

∗−→ µS as n→∞ .

(See Figure 8.)
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Figure 8. Zeros of Bergman polynomials for (a) G an isosceles
right triangle, n = 40, 45, 50, (b)G a 2×1-rectangle, n=50, 55, 60.

3. The reproducing kernel Kw(z, ζ)

For any (G,w), we have introduced in (2) and (3) the space L2
w(G) together with

its inner product 〈·|·〉w and norm ‖·‖L2
w(G). When w ≡ 1, we simply write L2(G).

Although the notation (G,w) assumes that L = ∂G is a Jordan curve, all the
results stated in this section are also valid for any bounded simply-connected
domain G. Here, we establish the existence of the kernel function Kw(z, ζ), state
some of its basic properties, and give some formulas for it.

Lemma 3.1. Let z ∈ G be such that w(z) 6= 0. Then, for every f ∈ L2
w(G) we

have

(17) |f(z)| ≤
‖f‖L2

w(G)√
π |w(z)| dz

,

where

dz := dist(z, L) = inf
ζ∈L

|ζ − z| .

Consequently, for any compact set K ⊂ G, we can find a constant CK such that

(18) |f(z)| ≤ CK‖f‖L2
w(G), ∀ f ∈ L2

w(G) , z ∈ K .

Proof. Inequality (17) follows at once by applying [1, Lemma 1, p. 4] to fw.
Now, given any compact set K ⊂ G, one can find a Jordan curve ΓK ⊂ G
surrounding K on which w has no zeros. Then from (17) we get that (18) holds
for all f ∈ L2

w(G) and z ∈ ΓK , where

C−1
K =

√
π ×min{|w| on ΓK} ×min{dz : z ∈ ΓK} > 0 .

Then, by the maximum modulus principle for analytic functions, the same esti-
mate holds for all z ∈ K.
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With the help of (18) one can easily extend some results that are already known
to be valid for the Bergman case w ≡ 1. For example, paraphrasing the proof of
[1, Thm. 1, p. 5], we get

Lemma 3.2. The space L2
w(G) is a Hilbert space with respect to the inner product

〈·|·〉w. Moreover, if {fn}∞n=0 ⊂ L2
w(G) and limn→∞ ‖fn − f‖L2

w(G) = 0 for some
f ∈ L2

w(G), then fn(z) → f(z) uniformly on compact subsets of G.

Inequality (18) shows that for every ζ ∈ G, the linear functional that assigns
to each f ∈ L2

w(G) the value f(ζ) is bounded. Therefore, by the Riesz rep-
resentation theorem, there is a unique function Kw(·, ζ) ∈ L2

w(G) having the
reproducing property

(19) f(ζ) =

∫
G

Kw(z, ζ) f(z) |w(z)|2 dm(z) = 〈f |Kw(·, ζ)〉w , ∀ f ∈ L2
w(G) .

That is, Kw(z, ζ) is the kernel function for the space L2
w(G) . For w ≡ 1, we write

K(z, ζ), which is the so-called Bergman kernel function for G. The following
basic properties of Kw(z, ζ), which we state without proof, are consequences of
its reproducing property (19).

Lemma 3.3. (i) For all z, ζ, a ∈ G,

Kw(z, ζ) = Kw(ζ, z) and Kw(a, a) = ‖Kw(·, a)‖2
L2

w(G) > 0 ;

(ii) If {Sn}∞n=1 is an orthonormal system of functions in the space L2
w(G), then

{Sn}∞n=1 is complete if and only if for every ζ ∈ G,

Kw(·, ζ) =
∞∑
n=1

Sn(ζ)Sn(·)

in the L2
w(G)-norm.

Let ϕ(z) be any conformal mapping of G onto the unit disk D. Then it is well-
known (see [1, p. 33]) that the Bergman kernel function for the space L2(G) is
given by

(20) K(z, ζ) =
ϕ′(z)ϕ′(ζ)

π[1− ϕ(z)ϕ(ζ)]2
.

It is straightforward to check that if h(z) is analytic and never zero in G, and
such that h(z)w(z)|G ∈ L2(G), then

(21) Kwh(z, ζ) =
Kw(z, ζ)

h(z)h(ζ)
.

In particular, if w(z) 6= 0 ∀ z ∈ G, then

(22) Kw(z, ζ) =
K(z, ζ)

w(z)w(ζ)
=

ϕ′(z)ϕ′(ζ)

π w(z)w(ζ)
[
1− ϕ(z)ϕ(ζ)

]2 .
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Now, if for h : C → C with h|G ∈ L2(G) and a ∈ G, we put ha(z) := (z− a)h(z),
then it is straightforward to check that (compare with [10, ex. 11, p. 262])

(23) Kha(z, ζ) =

Kh(z, ζ)−
Kh(a, ζ)Kh(z, a)

Kh(a, a)

(z − a)(ζ − a)
.

As mentioned in Section 2, by reiterating this formula as similarly done in [4, p.
58], we arrive at Proposition 2.3. For completeness, we provide a brief proof.

Proof of Proposition 2.3. In light of (21), it suffices to show that

(24) KQn(z, ζ) = Hn(z, ζ),

with Qn(z) =
∏n

i=1(z − ai). For n = 0, relation (24) is exactly the defini-
tion of H0(z, ζ). Suppose (24) holds for some n. By Lemma 3.3(i) we have
Hn(an+1, an+1) = KQn(an+1, an+1) > 0, so that

Hn+1(z, ζ) :=

Hn(z, ζ)−
Hn(an+1, ζ)Hn(z, an+1)

Hn(an+1, an+1)

(z − an+1)(ζ − an+1)

is an analytic function of z on G, for any fixed ζ ∈ G \ {an+1}.

Fix ζ ∈ G \ {an+1}. Observe that Hn+1(·, ζ) ∈ L2
Qn+1

(G) since Hn(·, ζ) and

Hn(·, an+1) belong to L2
Qn

(G). If f ∈ L2
Qn+1

(G), then f(z)(z − an+1) ∈ L2
Qn

(G),
and so∫

G

Hn+1(z, ζ) f(z)|Qn+1(z)|2 dm(z)

=

∫
G

(
Hn(z, ζ)−

Hn(an+1, ζ)Hn(z, an+1)

Hn(an+1, an+1)

)
f(z)(z − an+1)|Qn(z)|2dm(z)

(ζ − an+1)

=
f(ζ)(ζ − an+1)

(ζ − an+1)
− Hn(an+1, ζ)

Hn(an+1, an+1)

f(an+1)(an+1 − an+1)

(ζ − an+1)
= f(ζ).

This shows that Hn+1(z, ζ) = KQn+1(z, ζ) if ζ 6= an+1. But then by continuity,
the same is true for all ζ ∈ G.

When the zeros ai’s of w are simple we have the following determinant represen-
tation.
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Proposition 3.4. If in Proposition 2.3, the ai’s are all distinct, then the kernel
function Kw(z, ζ) for the space L2

w(G) is given by

(25) Kw(z, ζ) =

∣∣∣∣∣∣∣∣∣∣

K(a1, a1) K(a2, a1) · · · K(an, a1) K(z, a1)
K(a1, a2) K(a2, a2) · · · K(an, a2) K(z, a2)

...
...

...
...

K(a1, an) K(a2, an) · · · K(an, an) K(z, an)
K(a1, ζ) K(a2, ζ) · · · K(an, ζ) K(z, ζ)

∣∣∣∣∣∣∣∣∣∣
h(z)h(ζ)Qn(z)Qn(ζ)An

where Qn(z) =
∏n

i=1(z − ai) and An > 0 is the n × n principal minor of the
determinant above.

Proof. The proposition can be derived by using Proposition 2.3 and Silvester’s
determinant identity. However, here we give a more straightforward proof. Again
by (21), it suffices to prove the proposition for the case h(z) ≡ 1, that is, when
w(z) = Qn(z) =

∏n
i=1(z − ai). It is easy to see that the system of functions

{K(z, a1), . . . , K(z, an)} is linearly independent. The Grammian of this system
is precisely An. Hence An > 0.

Let us denote by DQn(z, ζ) the right-hand side of (25) and let ζ 6∈ {ai}ni=1 be
fixed. Then DQn(z, ζ) is well defined for all z ∈ G. Moreover, if we develop the
determinant in (25) by its last column, we see that DQn(·, ζ) ∈ L2

Qn
(G) and, for

certain constants Ci,∫
G

DQn(z, ζ)f(z)|Qn(z)|2dm(z)

=

∫
G

(
K(z, ζ) +

∑n
i=1CiK(z, ai)

Qn(z)Qn(ζ)

)
f(z)|Qn(z)|2dm(z)

=
f(ζ)Qn(ζ)

Qn(ζ)
+

n∑
i=1

Ci
f(ai)Qn(ai)

Qn(ζ)
= f(ζ) .

Therefore, for ζ 6∈ {ai}ni=1, DQn(z, ζ) = KQn(z, ζ). But then for 1 ≤ i ≤ n,

DQn(z, ai) := lim
ζ→ai

KQn(z, ζ) = KQn(z, ai) .

In order to find the singularities of Kw(·, ζ) we need a description of these formu-
las that reflects the dependence of the kernel on the conformal mapping ϕ and
the weight w. For this purpose we provide a useful lemma. Suppose that

(26) K(z, ζ) =
f(z)g(ζ)

π
[
1− t(z)s(ζ)

]2 , z, ζ ∈ G ,

where f, t, g, s are analytic functions in G, and moreover, that t and s are one-
to-one in G and

(27) 1− t(z)s(ζ) 6= 0 , ∀ z, ζ ∈ G .
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In view of (20), a representation like (26) is always possible. Notice that, from

Lemma 3.3(i), f(z)g(ζ) 6= 0 for all z, ζ ∈ G.

Lemma 3.5. With the above notation we have

(a) for w(z) = ωva(z) := (z − a)v, v ∈ N ∪ {0},

(28)

Kw(z, ζ) = K(z, ζ)×
[t(z)− t(a)]v

[
s(ζ)− s(a)

]v
(z − a)v(ζ − a)v

×

[
1−t(a)s(ζ)

] [
1−t(z)s(a)

]
+v
[
1−t(a)s(a)

] [
1−t(z)s(ζ)

]
[
1−t(a)s(ζ)

]v+1 [
1−t(z)s(a)

]v+1 ;

(b) for w(z) = (z− a1)
v1(z− a2)

v2 · · · (z− an)vn, vi ∈ N, 1 ≤ i ≤ n, ai’s distinct,

(29)

Kw(z, ζ) = K(z, ζ)×

∏n
i=1 [t(z)− t(ai)]

vi

[
s(ζ)− s(ai)

]vi∏n
i=1(z − ai)vi(ζ − ai)vi

×
Qw

(
t(z), s(ζ)

)
∏n

i=1

[
1− t(ai)s(ζ)

]vi+1 [
1− t(z)s(ai)

]vi+1 ,

where Qw(τ, ξ) is a polynomial in the two variables τ and ξ (of degree at
most n in each independent variable) satisfying:

(i) Qw

(
t(a), s(a)

)
6= 0 ∀ a ∈ G;

(ii) if ξ 6= 0, then

Qw (1/ξ, ξ) 6= 0 ⇔ ξ 6∈
{

1/t(a1), . . . , 1/t(an), s(a1), . . . , s(an)
}

;

(iii) for every 1 ≤ i ≤ n,

Qw(1/s(ai) , ·) 6≡ 0 if s(ai) 6= 0 ,

Qw (· , 1/t(ai)) 6≡ 0 if t(ai) 6= 0;

(iv) for every 1 ≤ i ≤ n,

Qw(τ, s(ai)) =
[
1− τs(ai)

]
Swi (τ)

and
Qw(t(ai), ξ) = [1− t(ai)ξ] T

w
i (ξ),

with
Swi (1/s(ai)) 6= 0 if s(ai) 6= 0

and
Twi (1/t(ai)) 6= 0 if t(ai) 6= 0.

Consequently, from (i), Swi (t(ai)) = Twi (s(ai)) 6= 0 for all 1 ≤ i ≤ n.
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Proof. Given a point a, let us define the iteration Ia by

(30) Ia (H(z, ζ)) := H(z, ζ)− H(a, ζ)H(z, a)

H(a, a)
,

which applies to any function H(z, ζ) for which (30) makes sense. Then, (a)
follows without major complications by induction on the number v, since by
Proposition 2.3,

Kωv+1
a

(z, ζ) =
Ia
(
Kωv

a
(z, ζ)

)
(z − a)(ζ − a)

.

The computations involved can be simplified by observing the following fact: if
H(z, ζ) = r(z)l(ζ)H1(z, ζ) with r(a)l(a) 6= 0, then

(31) Ia(H(z, ζ)) := r(z)l(ζ)Ia(H1(z, ζ)) .

We now prove (b). If w(z) = ωv1a1
(z) = (z − a1)

v1 , v1 ≥ 1, then Kw(z, ζ) is given
by formula (28), so that in this case

Qw(τ, ξ) = Qω
v1
a1

(τ, ξ) = [1− t(a1)ξ]
[
1− τs(a1)

]
+ v1

[
1− t(a1)s(a1)

]
[1− τξ]

and properties (i)-(iv) are trivially satisfied (property (i) is a consequence of
Lemma 3.3(i)). Thus, we only need prove (b) for a w that has zeros in n ≥ 2
points. We proceed by induction. Let w(z) = (z − a1)

v1(z − a2)
v2 · · · (z − an)

vn

be such that n ≥ 2, and let m := v1 + · · · + vn. Assume that (b) holds for any
other w such that the sum of the multiplicities of its zeros is ≤ m − 1. For all
1 ≤ i ≤ n, define

wi(z) := (z − ai)
vi−1

∏
1≤j≤n
j 6=i

(z − aj)
vj ,

so that by the induction hypothesis Kwi
(z, ζ) has the following form:

f(z)g(ζ) [t(z)−t(ai)]vi−1
[
s(ζ)−s(ai)

]vi−1∏n
j 6=i [t(z)−t(aj)]

vj

[
s(ζ)−s(aj)

]vj

π
[
1− t(z)s(ζ)

]2
(z − ai)vi−1(ζ − ai)vi−1

∏n
j 6=i(z − aj)vj(ζ − aj)vj

×
Q̂wi

(
t(z), s(ζ)

)
[
1−t(ai)s(ζ)

]vi
[
1−t(z)s(ai)

]vi ∏n
j 6=i

[
1−t(aj)s(ζ)

]vj+1 [
1−t(z)s(aj)

]vj+1 ,

where

Q̂wi
(τ, ξ) =

Qwi
(τ, ξ) if vi ≥ 2

Qwi
(τ, ξ) [1− t(ai)ξ]

[
1− τs(ai)

]
if vi = 1

is a polynomial in the two variables τ and ξ (of degree at most n in each inde-
pendent variable) that satisfies
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(i’) Q̂wi

(
t(a), s(a)

)
6= 0 for all a ∈ G;

(ii’) if ξ 6= 0, then

Q̂wi
(1/ξ, ξ) 6= 0 ⇔ ξ 6∈

{
1/t(a1), . . . , 1/t(an), s(a1), . . . , s(an)

}
;

(iv’) for every 1 ≤ j ≤ n,

Q̂wi

(
τ, s(aj)

)
=
[
1− τs(aj)

]
Ŝwi
j (τ)

and

Q̂wi
(t(aj), ξ) = [1− t(aj)ξ] T̂

wi
j (ξ),

with Ŝwi
j

(
1/s(aj)

)
6= 0 if s(aj) 6= 0, and T̂wi

j (1/t(ai)) 6= 0 if t(aj) 6= 0. (It

then follows from (i’) that Ŝwi
j (t(aj)) = T̂wi

j

(
s(aj)

)
6= 0 for all 1 ≤ i ≤ n.)

Properties (i’) and (ii’) are obvious. As for (iv’), notice that if vi = 1 then

Ŝwi
j (τ) =


[
1− t(ai)s(aj)

] [
1− τs(ai)

]
Swi
j (τ) if j 6= i[

1− t(ai)s(ai)
]
Qwi

(
τ, s(ai)

)
if j = i

,

and

T̂wi
j (ξ) =


[
1− t(aj)s(ai)

]
[1− t(ai)ξ]T

wi
j (ξ) if j 6= i[

1− t(ai)s(ai)
]
Qwi

(t(ai), ξ) if j = i
,

so that Ŝwi
j

(
1/s(aj)

)
6= 0 and T̂wi

j (1/t(aj)) 6= 0 for all s(aj), t(aj) 6= 0,

1 ≤ j ≤ n, since t(z) and s(ζ) are one-to-one and Qwi
(τ, ξ) satisfies (ii) and (iv).

Observe that the degrees of Ŝwi
j (·) and T̂wi

j (·) are ≤ n− 1.

Thus, according to Proposition 2.3 and taking (31) into account, we have that,
for all 1 ≤ i ≤ n,

Kw(z, ζ) =
Iai

(Kwi
(z, ζ))

(z − ai)
(
ζ − ai

)
=
f(z)g(ζ)

∏n
j=1[t(z)− t(aj)]

vj

[
s(ζ)− s(aj)

]vj

π
[
1− t(z)s(ζ)

]2∏n
j=1(z − aj)vj(ζ − aj)vj

(32)

×
Qw

(
t(z), s(ζ)

)
∏n

j=1

[
1− t(aj)s(ζ)

]vj+1 [
1− t(z)s(aj)

]vj+1 ,



206 E. Miña-Dı́az, E. Saff and N. Stylianopoulos CMFT

where

Qw

(
t(z), s(ζ)

)
:=

[
1− t(z)s(ζ)

]2 [
1− t(ai)s(ζ)

] [
1− t(z)s(ai)

]
[t(z)− t(ai)]

[
s(ζ)− s(ai)

]
×Iai

(
Q̂wi

(
t(z), s(ζ)

) [
1− t(z)s(ζ)

]−2
)
.

On expanding the last term and replacing t(z) by τ and s(ζ) by ξ, we get

(33)

Qw(τ, ξ) Q̂wi

(
t(ai), s(ai)

)
[τ − t(ai)]

[
ξ − s(ai)

]
= [1− t(ai)ξ]

[
1− τs(ai)

]
Q̂wi

(
t(ai), s(ai)

)
Q̂wi

(τ, ξ)

− [1− τξ]2
[
1− t(ai)s(ai)

]2
Ŝwi
i (τ)T̂wi

i (ξ).

This shows that Qw(τ, ξ) is a polynomial with the degree in each independent
variable no greater than n, and so we see from (32) that Kw(z, ζ) has the
form (29). Notice that the representation for Qw(τ, ξ) given by (33) is valid
for every 1 ≤ i ≤ n. Also, since Kw(a, a) > 0 for all a ∈ G (see Lemma 3.3(i)),

we must have Qw

(
t(a), s(a)

)
6= 0 for all a ∈ G. Hence, property (i) holds.

Further, it follows from (33) that for every ξ 6= 0

Qw (1/ξ, ξ) =
Q̂wi

(1/ξ, ξ) [1− t(ai)ξ]
[
1− s(ai)/ξ

]
[1/ξ − t(ai)]

[
ξ − s(ai)

] = Q̂wi
(1/ξ, ξ) .

Thus, in view of (ii’), property (ii) also holds.

To prove (iii), suppose that 1 ≤ i ≤ n is such that s(ai) 6= 0. Then by (33)
and (iv’),

lim
ξ→s(ai)

Qw

(
1/s(ai), ξ

)
ξ − s(ai)

= lim
ξ→s(ai)

−
[
1− ξ/s(ai)

]2 [
1− t(ai)s(ai)

]2
Ŝwi
i

(
1/s(ai)

)
T̂wi
i (ξ)

Q̂wi

(
t(ai), s(ai)

) [
1/s(ai)− t(ai)

] [
ξ − s(ai)

]2
=
−Ŝwi

i

(
1/s(ai)

)
s(ai)

6= 0 .

Similarly, we find for t(ai) 6= 0 ,

lim
τ→t(ai)

Qw (τ, 1/t(ai))

τ − t(ai)
=
−T̂wi

i (1/t(ai))

t(ai)
6= 0 ,
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from which (iii) follows.

Finally, we prove (iv). For any 1 ≤ j ≤ n, choose ai 6= aj (this is possible because
n ≥ 2). Then, with the notation of (iv’), we have

Q̂wi

(
τ, s(aj)

)
=
[
1− τs(aj)

]
Ŝwi
j (τ),

and therefore we get from (33)

Qw

(
τ, s(aj)

)
=
[
1− τs(aj)

]
Swj (τ),

where

Swj (τ) Q̂wi

(
t(ai), s(ai)

)
[τ − t(ai)]

[
s(aj)− s(ai)

]
=
[
1− t(ai)s(aj)

] [
1− τs(ai)

]
Q̂wi

(
t(ai), s(ai)

)
Ŝwi
j (τ)

−
[
1− τs(aj)

] [
1− t(ai)s(ai)

]2
Ŝwi
i (τ)T̂wi

i

(
s(aj)

)
.

Hence, if s(aj) 6= 0,

Swj

(
1/s(aj)

)
=

[
1− t(ai)s(aj)

] [
1− s(ai)/s(aj)

]
Ŝwi
j

(
1/s(aj)

)
[
1/s(aj)− t(ai)

] [
s(aj)− s(ai)

]
= Ŝwi

j

(
1/s(aj)

)
6= 0,

by (iv’). Similarly, we find that

Twj (1/t(aj)) = T̂wi
j

(
1/s(aj)

)
6= 0.

4. Orthogonal polynomials and the kernel function

Recall that for any (G,w), Pn(z) := Pn(z;w) = κwn z
n + · · · denotes the poly-

nomial of degree n and positive leading coefficient κwn that is orthonormal with
respect to the measure |w|2dm|G. It is well-known that the logarithmic capacity
cap(L) of L = ∂G is given by

(34) cap(L) = 1/Φ′(∞) ,

where, as before,

(35) Φ: C \G→ C \ D

is the exterior conformal map associated with G, normalized so that Φ(∞) = ∞
and Φ′(∞) > 0.
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In the sense of [15, Definition 3.1.2], the measure |w|2dm|G belongs to the Reg
class, that is,

(36) lim
n→∞

(κwn )1/n = [cap(L)]−1 .

To see that this is true, first notice that since L is a regular set with respect to
the Dirichlet problem in C \G, (36) is equivalent to (see [15, Thm. 3.2.3])

(37) lim
n→∞

‖Pn‖1/n

L∞(G)
= 1 .

To show that (37) holds, one can proceed as in the proof of the corresponding
result [11, Lemma 4.3] for the case w ≡ 1, using (18) instead of inequality (4.4)
of [11].

We say that a property P holds for quasi-every z ∈ Ω, or that P holds quasi-
everywhere on Ω (briefly, P q.e. z ∈ Ω), if

cap({z ∈ Ω : P does not hold for z}) = 0.

Another relation that is equivalent to (36) and that will be used in this paper is
the following (see [15, Thm. 3.1.1]):

(38) lim sup
n→∞

|Pn(z)|1/n = 1 q.e. z ∈ L.

For each r > 1, set

(39) lr := {z : |Φ(z)| = r}

and l1 := L = ∂G. If g is an analytic function on G, define

(40) ρ(g) := sup {r : g is analytic on int(lr)} .

Then 1 ≤ ρ(g) ≤ ∞, and if P2
w(G) denotes the closure of the set of polynomials

in L2
w(G), we have

Lemma 4.1. Let g ∈ L2
w(G) and let an := 〈g|Pn(· ;w)〉w, n = 0, 1, . . .. Then

(41) lim sup
n→∞

|an|1/n ≤
1

ρ(g)
.

Moreover, if g ∈ P2
w(G), then equality holds in (41) and

g(z) =
∞∑
n=0

anPn(z)

locally uniformly on int
(
lρ(g)

)
.

With Lemma 3.2 and (37) at hand, the proof of Lemma 4.1 is essentially the
same as that given by J. L. Walsh in [17, pp. 130–131] (see also [11, p. 336]).
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We can apply the above lemma to estimate |Pn(ζ)| for ζ ∈ G. Indeed, since

by (19), Pn(ζ) = 〈Kw(·, ζ)|Pn〉w, it follows that for each ζ ∈ G fixed,
∞∑
n=1

Pn(ζ)Pn(·) =: Lw(·, ζ)

represents a function of the space L2
w(G). By Lemma 3.3(ii), P2

w(G) = L2
w(G) if

and only if
Lw(·, ζ) = Kw(·, ζ) , ∀ ζ ∈ G .

Of course, we also have Pn(ζ) = 〈Lw(·, ζ)|Pn〉w, so that by applying Lemma 4.1
to g = Lw(·, ζ) and g = Kw(·, ζ) we get

Corollary 4.2. For every ζ ∈ G,

(42) lim sup
n→∞

|Pn(ζ)|1/n =
1

ρ (Lw(·, ζ))
≤ 1

ρ (Kw(·, ζ))
.

Furthermore, if P2
w(G) = L2

w(G), then equality holds in (42) and, therefore,

lim sup
n→∞

|Pn(ζ)|1/n = 1

if and only if Kw(·, ζ) has a singularity on L = ∂G.

Corollary 4.2 describes a basic relationship between the orthogonal polynomials
and the kernel function which will play an essential role in deriving our zero
distribution results. We shall also apply the next lemma which involves the
logarithmic potential of a measure, as well as the notion of harmonic majorant.
While somewhat more general, it is similar to results of Walsh (see Remark 4.5
below).

For any finite, positive Borel measure σ with compact support supp(σ) ⊂ C, we
denote by Uσ its logarithmic potential defined by

Uσ(z) :=

∫
C

log
1

|z − t|
dσ(t) , z ∈ C .

Notice that if qn is a monic polynomial of degree n, then the logarithmic potential
of the counting measure νqn is

U νqn (z) = n−1 log |qn(z)|−1.

Lemma 4.3. Let E 6= ∅ be a compact subset of C such that both C \ E and
◦

E := int(E) are connected (see Figure 9). Let g : C \
◦

E → C be such that g is

analytic in C \ E, |g| is continuous and never zero in C \
◦

E, g(∞) = ∞ and
g′(∞) = 1. Let {qn}∞n=1 be a sequence of monic polynomials of respective degrees
n = 1, 2, . . ., such that ∞ is not an accumulation point of the set of zeros of the
qn’s. Further, assume that

(43) lim sup
n→∞

|qn(z)|1/n ≤ |g(z)| q.e. z ∈ ∂E .
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Then, any measure σ that is a weak*-limit point of the sequence {νqn}∞n=1 is
supported on E and

(44) Uσ(z) = log |g(z)|−1, ∀ z ∈ C \
◦

E .

Moreover, there is a unique measure µg supported on ∂E such that (44) holds
with σ = µg. For such a measure, we have

(45) lim sup
n→∞

|qn(z)|1/n ≤ e−U
µg (z), ∀ z ∈ C ,

and

(a) if
◦

E = ∅, then νqn
∗−→ µg as n→∞;

(b) if
◦

E 6= ∅ and for some z0 ∈
◦

E and a subsequence N ⊂ N

(46) lim
n→∞
n∈N

|qn(z0)|1/n = e−U
µg (z0),

then

(47) νqn
∗−→ µg as n→∞, n ∈ N .

Conversely, if µg is a weak*-star limit point of the sequence {νqn}, then
equality holds in (45) for quasi-every z ∈ C.

Figure 9. A set E satisfying the hypotheses of Lemma 4.3.

Proof. Observe that (43) is equivalent to

(48) lim inf
n→∞

U νqn (z) ≥ log |g(z)|−1 q.e. z ∈ ∂E .

Let σ be a weak*-limit point of the sequence {νqn}∞n=1, so that for some subse-
quence N ⊂ N

νqn
∗−→ σ as n→∞ , n ∈ N .

Then σ is a probability measure and, by (48) and the Lower Envelope Theorem
(see [14, Thm. I.6.9]), we have

(49) Uσ(z) = lim inf
n→∞
n∈N

U νqn (z) ≥ lim inf
n→∞

U νqn (z) ≥ log |g(z)|−1 q.e. z ∈ ∂E .

By the assumptions on g, the function

F σ(z) := Uσ(z)− log |g(z)|−1 , z ∈ C \ E ,



5 (2005), No. 1 Zero Distributions for Orthogonal Polynomials 211

is superharmonic and lower bounded in C\E, harmonic and equal to zero at ∞,
and in view of (49) and the lower semicontinuity of Uσ, it also satisfies for quasi-
every z′ ∈ ∂E

lim inf
z→z′

z∈C\E

F σ(z) ≥ lim inf
z→z′

Uσ(z)− lim
z→z′

z∈C\E

log |g(z)|−1 ≥ Uσ(z′)− log |g(z′)|−1 ≥ 0 .

Then, by the generalized minimum principle for superharmonic functions (see
[14, Thm. I.2.4]) we conclude that F σ ≡ 0, which implies that (44) holds in
C \E. It also implies that Uσ is harmonic in C \E and therefore, in view of the
unicity theorem (see for e.g. [14, Thm. II.2.1]), supp(σ) must be contained in E.
Since the boundary of the domain C \ E in the fine topology (i.e. the coarsest
topology that makes every logarithmic potential continuous) coincides with its
boundary in the Euclidean topology (see [14, Cor. I.5.6]), we see that (44) is also

valid in C \
◦

E.

It is a direct consequence of Carleson’s Unicity Theorem (see [14, Thm. II.4.13])
that there can be at most one measure µg supported on ∂E that satisfies (44)
with σ = µg. To see that such a µg actually exists, choose any measure σ that
is a weak*-star limit point of the sequence {νqn}∞n=1. (This is possible in view of
Helly’s Theorem ([14, Thm. 0.1.3]) because, by assumption, all the zeros of the

qn’s lie in a fixed compact subset of C.) Let σ1 be the restriction of σ to
◦

E, and

let σ̂1 be the balayage of σ1 onto ∂
◦

E. Then, µg := σ− σ1 + σ̂1 is the measure we
are looking for, since it easily follows from the properties of balayage measures
(see [14, Thm. II.4.1]) that this µg satisfies

(50) Uµg(z) = Uσ(z), ∀ z ∈ C \ E, Uσ(z) ≥ Uµg(z), ∀ z ∈ C .

Accordingly, when
◦

E = ∅, the measure µg is the unique weak*-limit point of
{νqn}, so that (a) takes place.

Now, for any z ∈ C fixed, choose a subsequence N ⊂ N through which the

lim sup in (45) is realized. We can assume that also νqn
∗−→ σ as n→∞, n ∈ N .

Then, by the principle of descent (see [14, Thm. I.6.8]) and (50),

lim inf
n→∞

U νqn (z) = lim
n→∞
n∈N

U νqn (z) ≥ Uσ(z) ≥ Uµg(z) ,

which proves (45).

Let us now prove (b). Suppose (46) holds, and let σ0 be an arbitrary weak*-

limit point of {νqn}n∈N . Because Uµg is harmonic in
◦

E, we get from (50) and
the minimum principle for superharmonic functions that Uσ0(z) > Uµg(z) for all

z ∈
◦

E, unless Uσ0 ≡ Uµg on
◦

E. But from (46) and the principle of descent, we
have that

Uµg(z0) = lim
n→∞
n∈N

U νqn (z0) = lim inf
n→∞
n∈N

U νqn (z0) ≥ Uσ0(z0) .
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Therefore, Uσ0 ≡ Uµg is harmonic in
◦

E, and consequently supp(σ0) ⊂ ∂E. By
the uniqueness of µg, σ0 = µg, and since σ0 is arbitrary, (47) must hold.

Finally, suppose that conversely, (47) takes place for some subsequence N ⊂ N.
Then, by the Lower Envelope Theorem, we have for quasi-every z ∈ C

Uµg(z) = lim inf
n→∞
n∈N

U νqn (z) ≥ lim inf
n→∞

U νqn (z) ≥ Uµg(z);

that is, we have equality in (45) quasi-everywhere on C.

Remark 4.4. (i) By arguing as in the proof of Lemma 4.3, one readily sees
that if the inequality in (43) is satisfied quasi-everywhere on C \ E, then the
conclusions of that lemma remain true, even if g has zeros on ∂E. One can also
verify that if z0 ∈ C \E has a neighborhood on which qn has no zeros for n large
enough, then

(51) lim
n→∞

|qn(z0)|1/n = |g(z0)| .

Hence, equality holds in (43) quasi-everywhere on C \ E.

(ii) A well-known result by Fejér asserts that the zeros of orthogonal polynomials
with respect to a compactly supported measure σ are contained in the closed
convex hull of supp(σ) (see for e.g. [13]). Thus, if the qn’s in Lemma 4.3 are
orthogonal, it is already guaranteed that all their zeros are uniformly bounded
in C. We will be using this fact in all the applications of Lemma 4.3.

Remark 4.5. The fact that a condition like (43) has consequences on the zero
distribution of the sequence {qn}∞n=1 is well-known. For example, from (51) (see
[19, Thm. 1]) it follows that for every continuum Q ⊂ C \ E containing more
that one point

(52) lim sup
n→∞

‖qn‖1/n
L∞(Q) = ‖g‖L∞(Q).

In the terminology of [19] (see also [18, p. 635]), this is expressed by saying that

log |g(z)| is an exact harmonic majorant of the sequence {q1/n
n }∞n=1 in C \E. We

refer the reader to [19] for earlier results on the behavior of zeros of functions
having an exact harmonic majorant. More recent results of a similar nature to
that of Lemma 4.3 can be found in [14, Section III.4].

5. Proofs of the zero distribution results

Proof of Theorem 2.1. Define E := G, qn(z) := Pn(z)/κ
w
n and

g(z) := cap(L)Φ(z), z ∈ C \G .
With the help of (34), (36) and (38), it is easily seen that E, g and {qn}∞n=1 so
defined satisfy the hypotheses of Lemma 4.3. Then, with the notation of that
lemma, we have µg = µL (the equilibrium measure of L), since it is well-known
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that µL is supported on L and satisfies (44). Hence, Theorem 2.1 is a direct
consequence of (45), Lemma 4.3(b), and Corollary 4.2.

Proof of Proposition 2.4. The exterior mapping of G = int(lr) is Φ = ΦE/r,
so that Carleman’s formula applied to this situation yields (see [1, Thm. 2, p. 12])

(53) lim
n→∞

Pn(z)√
n+ 1 [ΦE(z)/r]n

=
Φ′
E(z)

r
√
π
,

locally uniformly on C \ E. Hence,

lim
n→∞

|Pn(z)|1/n =
|ΦE(z)|

r
, z ∈ C \ E.

The first assertion of the proposition is a direct consequence of Hurwitz’s Theo-
rem and (53). The second assertion follows by applying Lemma 4.3(a) (see also
Remark 4.4(i)) with qn := Pn/κn, g := cap(E)ΦE, since by (34) and (36)

lim
n→∞

(κn)
1/n = [cap(lr)]

−1 = Φ′
E(∞)/r = [cap(E)r]−1 ,

and (44) is satisfied for this g with σ = µE the equilibrium measure of E.

Proof of Theorem 2.5. Suppose for the moment that (8) holds. To prove (b),
define E := Dr, qn := Pn/κ

w
n and g(z) := z for all |z| ≥ r. Since the capacity

of the unit circle is 1, it follows from (36) and (8) that E, qn and g so chosen
satisfy the hypotheses of Lemma 4.3. It is well-known that µr := |dz|/2πr is the
equilibrium measure of the circle Tr, and that its potential is given by

Uµr(z) =

{
log (1/|z|) if |z| > r

log (1/r) if |z| ≤ r
.

This implies, with the notations of Lemma 4.3, that µg = µr, and hence The-
orem 2.5(b) is just a consequence of statement (b) of that lemma (cf. also the
paragraph preceding (44)).

Similarly, we prove (a). Define E := Dρ, 1 > ρ > 0, with qn and g as above.
Then (8) implies that (43) holds on Tρ, and so by Lemma 4.3 any weak*-limit of

νqn = νPn is supported on Dρ. Letting ρ go to zero we deduce Theorem 2.5(a).

Thus, it remains to establish (8). Let us write the function w as

w(z) = h(z)
∏̀
i=1

(z − ai)
vi ,

where vi = mult(ai). The exterior conformal mapping for D is simply Φ(z) = z,
so that in view of (20), Lemma 3.5(b) with f ≡ g ≡ 1, t(z) := z, s(ζ) := ζ, and
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(21), the kernel function Kw(z, ζ) for the space L2
w(D) has the form

(54) Kw(z, ζ) =
Qw

(
z, ζ
)

π
(
1− zζ

)2 [∏`
i=1

(
1− aiζ

)vi+1
(1− zai)

vi+1
]
h(z)h(ζ)

,

where Qw(·, ·) is a polynomial in two variables satisfying

(ii) if ξ 6= 0, then Qw (1/ξ, ξ) 6= 0 ⇔ ξ 6∈ {1/a1, . . . , 1/a`, a1, . . . , a`} ;
(iii) for every 1 ≤ i ≤ `, Qw (1/ai, ·) 6≡ 0 if ai 6= 0.

It follows from (54) that for all ζ ∈ D, Kw(·, ζ) is a meromorphic function in C
whose possible poles are the elements of the set

(55)
{
1/ζ, 1/a1, . . . , 1/a`, b1, b2, . . .

}
\ A−1,

where (notice that each cj is now a zero of Kw(·, ζ))
A−1 := {1/ai : 1/ai = cj for some j and mult(cj) ≥ mult(ai) + 1} .

We shall show that for every ζ ∈ D (except possibly countably many), the finite
elements of the set (55) are, in fact, poles of Kw(·, ζ).
First, we see from (ii) that if ζ ∈ D and

ζ 6∈ {a1, . . . , a`, 0} ∪ {1/cj : mult(cj) ≥ 2, j ≥ 1} ,
thenKw(·, ζ) has a pole at z = 1

/
ζ. Second, it is a consequence of (iii) that for all

but finitely many ζ ∈ D, Kw(·, ζ) has a pole at 1/ai if ai 6= 0 and 1/ai 6∈ A−1. And
finally, if bk 6∈ {1/ai : ai 6= 0, 1 ≤ i ≤ `}, then again by (ii), Qw (bk, 1/bk) 6= 0,
so that Qw (bk, ξ) is a polynomial in ξ not identically zero, and consequently, for
all but finitely many ζ ∈ D, Kw(·, ζ) has a pole at bk.

Thus, according to (39) and (40), for all but countably many ζ ∈ D,

ρ(Kw(·, ζ)) = min
(
|z| : z ∈

{
1/ζ, 1/a1, . . . , 1/a`, b1, b2, . . .

}
\ A−1

)
;

whence, by Corollary 4.2 (recall Remark 2.2), for all but countably many ζ ∈ D,

lim sup
n→∞

|Pn(ζ)|1/n = max
({

0, |ζ|, |a1|, . . . , |a`|, |b1|−1, |b2|−1, . . .
}
\ A
)

= max {|ζ|, r} =

{
|ζ| if r < |ζ| < 1

r if |ζ| ≤ r

where

A = {|z|−1 : z ∈ A−1},
r = max

({
0, |a1|, . . . , |a`|, |b1|−1, |b2|−1, . . .

}
\ A
)
.

Example 5.1. Let w be a meromorphic function on C, that does not vanish,
whose poles c1, c2, . . . all lie in C \ D and each of them has multiplicity no less
than 2. Since in this case the kernel function has the form

Kw(z, ζ) =
1

π
(
1− zζ

)2
w(z)w(ζ)

,
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we can see that Kw(·, 1/cj) is an entire function for all 1 ≤ j < ∞, and if
ζ 6∈ {1/c1, 1/c2, . . .}, then Kw(·, ζ) is a meromorphic function with a double pole
at 1/ζ. Consequently, we have for all ζ ∈ D

(56) lim sup
n→∞

|Pn(ζ)|1/n =

{
0 if ζ ∈ {1/c1, 1/c2, . . .}

|ζ| otherwise
,

and according to Theorem 2.5(a), this implies that νPn

∗−→ δ0 as n → ∞.
However, each point 1/cj is a limit point of the zeros of the Pn’s, because if, to
the contrary, there is a neighborhood V of 1/cj and a subsequence N ⊂ N such
that Pn has no zeros on V for n ∈ N , then by the continuity of log |t − 1/cj|−1

in C \ V , we would have

lim
n→∞
n∈N

U νPn (1/cj) = U δ0(1/cj) = log |cj| ,

contradicting (56).

Proof of Theorem 2.9. Recall that the lens-shaped domain G, as well as its

associated curves Γ, γr, and function Φ̂ have been introduced in the paragraph
preceding the statement of Theorem 2.9. Assume that (14) is true for some r

with RΓ ≤ r ≤ 1. Set E := Γ∪γr ∪ int(γr), qn = Pn/κ
w
n , and g(z) := cap(L)Φ̂(z)

for all z ∈ C \ int(γr). We see from (36) and (14) that E, qn and g so defined
satisfy the assumptions of Lemma 4.3, and hence, any weak*-limit point σ of
{νPn} = {νqn} is supported in Γ ∪ γr ∪ int(γr). Let µr := µg be the unique
measure supported on ∂E = (Γ ∪ γr) \ int(γr) that satisfies

Uµr(z) = log |g(z)|−1 = log | cap(L)Φ̂(z)|−1, ∀ z ∈ C \ int(γr) .

Now, from the definition of γr in (13), and the lower semicontinuity of Uµr , we
have that if int(γr) 6= ∅, then

(57) lim inf
z→z′

z∈int(γr)

Uµr(z) ≥ Uµr(z′) = log[cap(L)r]−1, ∀ z′ ∈ γr ,

and in view of (14) and (45), we have for some z0 ∈ int(γr)

(58) cap(L) r = lim sup
n→∞

|qn(z0)|1/n ≤ e−U
µr (z0) .

Since (57), (58) and the minimum principle for superharmonic functions imply
that

Uµr(z) = log [cap(L) r]−1 , ∀ z ∈ int(γr),

the statements (a) and (b) of Theorem 2.9 follow directly from their correspond-
ing ones in Lemma 4.3.

Let us now show that if σ is a weak*-limit point of the measures νPn , then neces-

sarily every point of Γ\ int(γr) belongs to supp(σ). Suppose that z0 ∈ Γ \ int(γr)

is not in supp(σ) and let us derive a contradiction. Let Dz0 ⊂ G \ int(γr) be a
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disk centered at z0 and of radius so small that supp(σ) ∩ Dz0 = ∅. Then Uσ is
harmonic in Dz0 and we have from (44) and (11)

(59) Uσ(z) =

{
log
∣∣Φ(zα)/ cap(L)

∣∣ z ∈ Gα ∩Dz0

log
∣∣Φ(zβ)/ cap(L)

∣∣ z ∈ Gβ ∩Dz0

.

But since the harmonic extension is unique, it follows that the first row of the
righthand side of (59) also represents Uσ in Gβ ∩Dz0 , contradicting the obvious
fact that

Gβ = {z ∈ G : |Φ(zα)| > |Φ(zβ)|} .

Analogously, one can show that supp(µr) = (Γ ∪ γr) \ int(γr).

We now turn to the proof of (14). Similar to the case of the unit disk, the
argument is based on Corollary 4.2. Therefore, our next task is to find the
singularities of the kernel function Kw(·, ζ) for the lens-shaped domain G and
an entire weight function w. It is not difficult to see that for every ζ ∈ G, the
function

(60) ϕζ(z) :=

(
z − i

z + i

)N
−
(
ζ − i

ζ + i

)N
(
z − i

z + i

)N
−
(
ζ + i

ζ − i

)N
· e−2Nαi

maps G conformally onto D in such a way that ϕζ(ζ) = 0. Then, choosing ϕ = ϕζ
in formula (20) for each particular ζ ∈ G, we obtain after some computation that

(61) K(z, ζ) = −4N2

π
·

[(
ζ − i

) (
ζ + i

)
(z − i)(z + i)

]N−1[
eNαi

(
ζ − i

)N
(z − i)N − e−Nαi

(
ζ + i

)N
(z + i)N

]2 .
Let {a1, . . . , a`} be the set of zeros of w lying on G, and let {b1, b2, . . .} be the
set of zeros of w lying on C \G. Write w as

w(z) := h(z)
∏̀
j=1

(z − ai)
vi ,

where vi = mult(ai), 1 ≤ i ≤ `, is the multiplicity of the zero ai. Then, by (21)
and Lemma 3.5(b), we have the following representation for Kw(z, ζ) in terms of
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any f , g, t, and s satisfying (26):

Kw(z, ζ) =
f(z)g(ζ)

π
[
1− t(z)s(ζ)

]2 ×
∏`

i=1 [t(z)− t(ai)]
vi

[
s(ζ)− s(ai)

]vi

h(z)h(ζ)
∏`

i=1(z − ai)vi(ζ − ai)vi

(62)

×
Qw

(
t(z), s(ζ)

)
∏`

i=1

[
1− t(ai)s(ζ)

]vi+1 [
1− t(z)s(ai)

]vi+1 ,

where Qw(τ, ξ) is a polynomial in two variables (that depends on the choice of t
and s) with the properties stated in Lemma 3.5(b)(i)–(iv).

We first prove that

(I) Kw(·, ζ) is a meromorphic function in C such that h(·)Kw(·, ζ) is analytic
in G and, for all but finitely many ζ ∈ G, i and −i are zeros of h(·)Kw(·, ζ)
of multiplicity N − 1.

Let ϕ be a conformal map of G onto D. By (20), we can set f(z) = ϕ′(z),
g(ζ) = ϕ′(ζ), t(z) = ϕ(z), and s(ζ) = ϕ(ζ). Then, since ϕ is a rational function
that has an analytic continuation (also denoted by ϕ) across ∂G, we see from
(62) with the above choice of f , g, t, and s, that for all ζ ∈ G, Kw(·, ζ) is a
meromorphic function in C. On the other hand, since |ϕ(±i)| = 1, we have

ϕ(±i)−1 6∈
{

1/ϕ(a1), . . . , 1/ϕ(a`), ϕ(a1), . . . , ϕ(a`)
}
,

so that by Lemma 3.5(b)(ii), Qw(ϕ(±i), ·) 6≡ 0. Thus, it follows from (62) that
for all but finitely many ζ ∈ G, ±i is a zero of Kw(·, ζ) if and only if ±i is a zero
of K(·, ζ), so that the rest of (I) follows from (61).

Now, we see from (61) that for all z 6= i, K(z, ζ) can be expressed in the form
of (26), this time with the choice of functions

f(z) =
(z + i)N−1

(z − i)N+1
, g(ζ) = −4N2e−2Nαi(ζ + i)N−1

(ζ − i)N+1
,

(63) t(z) =

(
z + i

z − i

)N
, s(ζ) =

(
ζ + i

ζ − i
· e−2αi

)N
.

Then, looking at the denominator of (62), we see that the possible poles of
Kw(·, ζ) are contained in the set

S := {b1, b2, . . .} ∪ S(ζ) ∪ S(a1) ∪ · · · ∪ S(a`) ,

where S(ζ), S(ai) denote, respectively, the solution sets of the equations in the
variable z

(64) 1− t(z)s(ζ) = 0, 1− t(z)s(ai) = 0, i = 1, . . . , `;

Next, we show that
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(II) for all but countably many ζ ∈ G, z ∈ S is not a pole of Kw(·, ζ) if and
only if there exists 1 ≤ k < ∞ such that z = bk and either one of the
following statements holds:

(II’) bk ∈ {−i, i} and mult(bk) ≤ N − 1;
(II”) bk = c for some c that is a zero of the rational function∏̀

i=1

[t(z)− t(ai)]
vi

with multiplicity at least mult(bk).

Suppose that z is a solution of any of the equations (64) that is not a pole of
Kw(·, ζ). Since obviously z 6= ±i, we have that at least one of the equations

(65) t(z)− t(ai) = 0, 1 ≤ i ≤ ` ,

(66) Qw

(
1/s(ζ), s(ζ)

)
= 0, Qw

(
1/s(ai), s(ζ)

)
= 0, 1 ≤ i ≤ ` ,

must be satisfied. But for all η, λ ∈ G, 1− t(η)s(λ) 6= 0, so that z cannot satisfy
any of the equations (65). Also, since Qw is a polynomial and s(ζ) is given
by (63), Lemma 3.5(b)(ii)(iii) implies that only a finite number of ζ ∈ G can be
a solution to one of the equations (66). Hence, for all but finitely many ζ ∈ G,
every element of S(ζ) ∪ S(a1) ∪ · · · ∪ S(a`) is a pole of Kw(·, ζ).
Now, it follows from (I) that for all but finitely many ζ ∈ G, bk ∈ {−i, i} is a
pole of Kw(·, ζ) if and only if mult(bk) > N − 1. On the other hand, for any
b ∈ C \ (G ∪ {i,−i}), the polynomial Qw(t(b), ·) is not identically zero (this is
guaranteed by Lemma 3.5(b)(i) if t(b) = t(ai) for some 1 ≤ i ≤ `, by (iii) if

t(b) = 1/s(ai) for some 1 ≤ i ≤ `, and by (ii) if t(b) is otherwise). Thus, for
all but finitely many ζ ∈ G, the zero bk ∈ C \ (G ∪ {i,−i}) of h(z) is a pole of
Kw(·, ζ) unless bk = c for some c that is a solution to∏̀

i=1

[t(z)− t(ai)]
vi = 0 ,

of multiplicity at least mult(bk). This completes the proof of (II).

Notice that according to the definition in (39) and (40),

(67) 1/ρ(Kw(·, ζ)) = max {|1/Φ(z)| : z is a pole of Kw(·, ζ)} .

Now, it easily follows from (11) and (10) that for any ζ ∈ G,

(68) max{|1/Φ(ζα)|, |1/Φ(ζβ)|} =

{
|1/Φ(ζα)| if ζ ∈ Gα ∪ Γ

|1/Φ(ζβ)| if ζ ∈ Gβ

= |Φ̂(ζ)|
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and it is not difficult to verify by using the explicit expressions of t and s in (63)
that

S(ζ) =

{
ζ cot(α− kπ/N) + 1

ζ − cot(α− kπ/N)
, 1 ≤ k ≤ N

}
.

In particular, ζα, ζβ ∈ S(ζ) (cases k = N and k = 1, respectively).

Suppose we have proven that

(69) max{|1/Φ(η)| : η ∈ S(ζ)} = max{|1/Φ(ζα)|, |1/Φ(ζβ)|} .
Then by (67), (II), (69) and (68), we get that for all but finitely many ζ ∈ G,

1/ρ(Kw(·, ζ)) = max
{
|Φ̂(ζ)|, |Φ̂(a1)|, . . . , |Φ̂(a`)|, |Φ(b1)|−1, |Φ(b2)|−1, · · ·

}
\ B,

where B := {|Φ(bk)|−1 : bk satisfies either (II’) or (II”)}. We will show, however,
that

(70) t(c)− t(ai) = 0 ⇒ |Φ(c)|−1 ≤ |Φ(ai)|−1 ,

and therefore (recall (12)), 1/ρ(Kw(·, ζ)) = max{|Φ̂(ζ)|, r}, where r is the largest
number of the set{

RΓ, |Φ̂(a1)|, . . . , |Φ̂(a`)|, |Φ(b1)|−1, |Φ(b2)|−1, · · ·
}

\
{
|Φ(bk)|−1 : bk ∈ {−i, i} and mult(bk) ≤ N − 1

}
.

Then, the validity of relation (14) follows as a consequence of Corollary 4.2 and
the definition of γr in (13).

The above argument assumes that (69) and (70) were true. Let us verify that
this is the case.

With G the lens-shaped domain described in the paragraph preceding Theo-
rem 2.9, the normalized exterior mapping w = Φ(z) is given by the composition
of the following three transformations:

(71) ξ(z) := e(π−β)i

(
z − i

z + i

)
,

(72) t(ξ) = ξN/(2N−1) , arg ξ ∈
(
− π
N
, (2N−1)π

N

)
,

(73) w(t) :=
1− λβt

t− λβ
, λβ := e

N(π−β)i
2N−1 .

Let us prove (69). If η ∈ S(ζ), then by definition, 1− t(η)s(ζ) = 0 where t and s
are given by (63). Hence, for some 1 ≤ k ≤ N ,

η − i

η + i
=
ζ + i

ζ − i
· e(2πk/N−2α)i ,
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so that (η − i)/(η + i) lies on the circular arc

Cζ :=

{∣∣∣∣ζ + i

ζ − i

∣∣∣∣ eiθ : arg

(
ζ + i

ζ − i

)
+ 2β ≤ θ ≤ arg

(
ζ + i

ζ − i

)
+ 2π − 2α

}
.

Notice that the endpoints of Cζ correspond to the values η = ζβ, η = ζα . By
(71), (72) and (73), {Φ(η) : η ∈ S(ζ)} is contained in the set

C∗ζ :=
{
(w ◦ t)(ξ) : |ξ| = |(ζ + i)/(ζ − i)|

}
,

which is obviously a circle intersecting the unit circle at two points. Indeed,
{Φ(η) : η ∈ S(ζ)} is contained in the subarc (w ◦ t)

(
e(π−β)iCζ

)
of C∗ζ , which

lies on {|w| > 1} and connects the points Φ(ζα), Φ(ζβ). Consequently, Φ(ζα)
and Φ(ζβ) are the nearest points of (w ◦ t)

(
e(π−β)iCζ

)
to the origin, whence (69)

follows.

Now, to prove (70), assume that t(c)− t(aj) = 0. Then for some 1 ≤ k ≤ N − 1,

c− i

c+ i
=

(
aj + i

aj − i

)
· e2kπi/N ,

so that (c− i)/(c+ i) lies on the circular arc{∣∣∣∣aj + i

aj − i

∣∣∣∣ eiθ : 2π−arg

(
aj + i

aj − i

)
+2π/N ≤ θ ≤ 4π−arg

(
aj + i

aj − i

)
−2π/N

}
.

By the argument given above to prove (69), it suffices to show that this arc is a
subset of Caj

. But this is a trivial fact since α+ β = π/N and

π − β < arg

(
aj + i

aj − i

)
< π + α .

The proof is complete.
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