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Bergman polynomials {pn} on an archipelago G

G1

G2
Γ1

GN

Γ2

ΓN

Γj , j = 1, . . . ,N, a system of disjoint and mutually exterior Jordan

curves in C, Gj := int(Γj ) , Γ := ∪N
j=1Γj , G := ∪N

j=1Gj .

〈f ,g〉 :=

∫
G

f (z)g(z)dA(z), ‖f‖L2(G) := 〈f , f 〉1/2.

The Bergman polynomials {pn}∞n=0 of G are the orthonormal
polynomials w.r.t. the area measure on G:

〈pm,pn〉 =

∫
G

pm(z)pn(z)dA(z) = δm,n,

with
pn(z) = λnzn + · · · , λn > 0, n = 0,1,2, . . . .
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Construction of pn’s

Algorithm: Conventional Gram-Schmidt (GS)

Apply the Gram-Schmidt process to the monomials

1, z, z2, z3, . . .

Main ingredient: the moments

µm,k := 〈zm, zk 〉 =

∫
G

zm zk dA(z), m, k = 0,1, . . . .

The above algorithm has been been suggested by pioneers of
Numerical Conformal Mapping (like P. Davis and D. Gaier and P.
Henrici) in the 1960’s as the standard procedure for constructing
Bergman polynomials. It was subsequently used by researchers in
this area in the 1980’s. It has been even employed in the numerical
conformal mapping FORTRAN package BKMPACK of Warby.
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Instability Indicator

The GS method is notorious for its instability. For measuring it, when
orthonormalizing a system Sn := {u0, u1, . . . , un} of functions, the
following instability indicator has been proposed by J.M. Taylor, (Proc.
R.S. Edin., 1978):

In :=
‖un‖2

L2(G)

minu∈span(Sn−1) ‖un − u‖2
L2(G)

, n ∈ N.

Note that, when Sn is an orthonormal system, then In = 1 . When Sn

is linearly dependent then In =∞ . Also, if Gn := [〈um,uk 〉]nm,k=0,
denotes the Gram matrix associated with Sn then,

κ2(Gn) ≥ In ,

where κ2(Gn) := ‖Gn‖2‖G−1
n ‖2 is the spectral condition number of Gn.
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Instability of the Conventional GS process
In the single-component case N = 1, consider the monomial basis
Sn = {1, z, z2, . . . , zn}. Then, for the conventional GS process we
have the following result:

Theorem (Papamichael & Warby, Numer. Math., 1986)

Assume that the curve Γ is piecewise-analytic without cusps and let

L := ‖z‖L∞(Γ)/cap(Γ) (≥ 1),

where cap(Γ) denotes the logarithmic capacity of Γ. Then,

c1(Γ) L2n ≤ In ≤ c2(Γ) L2n .

Note that L = 1, iff G ≡ Dr and that In is sensitive to the relative
position of G w.r.t. the origin. When G is the 8× 2 rectangle centered
at the origin, then L = 3/

√
2 ≈ 2.12. In this case, I25 � 1016 and the

method breaks down in MATLAB or FORTRAN, for n = 25.
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The Arnoldi algorithm in Numerical Linear Algebra

Let A ∈ Cm,m, b ∈ Cm and consider the Krylov subspace

Kk := span{b,Ab,A2b . . . ,Ak−1b}.

The Arnoldi algorithm produces an orthonormal basis {v1, v2, . . . , vk}
of Kk as follows:

W. Arnoldi (Quart. Appl. Math., 1951)

At the n-th step, apply GS to orthonormalize the vector Avn−1 (instead
of An−1b) against the (already computed) orthonormal vectors
{v1, v2, . . . , vn−1}.
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The Arnoldi algorithm for OP’s
Let µ be a (non-trivial) finite Borel measure with compact support
supp(µ) on C and consider the series of orthonormal polynomials

pn(z, µ) := λn(µ)zn + · · · , λn(µ) > 0, n = 0,1,2, . . . ,

generated by the inner product

〈f ,g〉µ =

∫
f (z)g(z)dµ(z).

Arnoldi GS for Orthonormal Polynomials

At the n-th step, apply GS to orthonormalize the polynomial zpn−1
(instead of zn) against the (already computed) orthonormal
polynomials {p0,p1, . . . ,pn−1}.

Used by Gragg & Reichel, in Linear Algebra Appl. (1987), for the
construction of Szegö polynomials.
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Stability of the Arnoldi GS
In the case of the Arnoldi GS, the instability indicator is given by:

In =
‖zpn−1‖2

L2(G)

minp∈Pn−1 ‖zpn−1 − p‖2
L2(G)

, n ∈ N.

Theorem
It holds,

1 ≤ In ≤ ‖z‖L∞(supp(µ))

λ2
n−1(µ)

λ2
n(µ)

, n ∈ N.

Typically: When dµ ≡ |dz| (Szegö polynomials), or dµ ≡ dA
(Bergman polynomials), then

c1(Γ) ≤ λn−1(µ)

λn(µ)
≤ c2(Γ) , n ∈ N.

When dµ ≡ w(x)dx on [a,b] ⊂ R, this ratio tends to a constant.
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Half-disk and rectangle

Zeros of the Bergman polynomial p200.

Theory (left) in: Levin, Saff & St, Constr. Approx., 2003.
Theory (right) in: Mina-Diaz, Saff & St, CMFT, 2005.
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Weighted Bergman polys: dµ(z) = |z − 1
2|

2dA(z)

Zeros of the weighted Bergman polynomials p100, p150 and p200.

Theory in: Mina-Diaz, Saff & St, CMFT, 2005.
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Three-disk archipelago

Zeros of the Bergman polynomials p140, p150 p160.

2

1

0

-1

3210-1

Theory in: Gustafsson, Putinar, Saff & St, Adv. Math., 2009.
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Asymptotics: Single-component case N = 1

Δ

D

Ω Φ

0

Γ
Ψ

G

Ω := C \G

Φ(z) = γz + γ0 +
γ1

z
+
γ2

z2 + · · · . cap(Γ) = 1/γ

The Bergman polynomials of G:

pn(z) = λnzn + · · · , λn > 0, n = 0,1,2, . . . .
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Strong asymptotics when Γ is analytic

D

Φ Δ

0

Ω

G

Lρ Γ

1ρ

T. Carleman, Ark. Mat. Astr. Fys. (1922)

If ρ < 1 is the smallest index for which Φ is conformal in ext(Lρ), then

n + 1
π

γ2(n+1)

λ2
n

= 1− αn , where 0 ≤ αn ≤ c1(Γ) ρ2n,

pn(z) =

√
n + 1
π

Φn(z)Φ′(z){1 + An(z)} , n ∈ N,

where
|An(z)| ≤ c2(Γ)

√
n ρn, z ∈ Ω.
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Strong asymptotics when Γ is smooth
We say that Γ ∈ C(p, α), for some p ∈ N and 0 < α < 1, if Γ is given
by z = g(s), where s is the arclength, with g(p) ∈ Lipα. Then both Φ
and Ψ := Φ−1 are p times continuously differentiable in Ω \ {∞} and
∆ \ {∞} respectively, with Φ(p) and Ψ(p) ∈ Lipα.

P.K. Suetin, Proc. Steklov Inst. Math. AMS (1974)

Assume that Γ ∈ C(p + 1, α), with p + α > 1/2. Then, for n ∈ N,

n + 1
π

γ2(n+1)

λ2
n

= 1− αn, where 0 ≤ αn ≤ c1(Γ)
1

n2(p+α)
,

pn(z) =

√
n + 1
π

Φn(z)Φ′(z){1 + An(z)} ,

where
|An(z)| ≤ c2(Γ)

log n
np+α

, z ∈ Ω.
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Strong asymptotics for Γ non-smooth

Theorem (St, C. R. Acad. Sci. Paris, 2010)

Assume that Γ is piecewise analytic without cusps.Then, for n ∈ N,

n + 1
π

γ2(n+1)

λ2
n

= 1− αn , where 0 ≤ αn ≤ c(Γ)
1
n
,

and for any z ∈ Ω,

pn(z) =

√
n + 1
π

Φn(z)Φ′(z) {1 + An(z)} ,

where
|An(z)| ≤ c1(Γ)

dist(z, Γ) |Φ′(z)|
1√
n

+ c2(Γ)
1
n
.
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Numerical example: Half-disk

γ =
1

cap(Γ)
=

3
√

3
4

We compute, by using the Arnoldi GS process (in finite precision), the
Bergman polynomials pn(z) for the unit half-disk, for n up to 60 and
test the hypothesis

αn := 1− n + 1
π

γ2(n+1)

λ2
n
≈ C

1
ns .
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Numerical example: Half-disk

n αn s
51 0.003 263 458 678 -
52 0.003 200 769 764 0.998 887
53 0.003 140 444 435 0.998 899
54 0.003 082 351 464 0.998 911
55 0.003 026 369 160 0.998 923
56 0.002 972 384 524 0.998 934
57 0.002 920 292 482 0.998 946
58 0.002 869 952 027 0.998 957
59 0.002 821 401 485 0.998 968
60 0.002 774 426 207 0.998 979

The numbers indicate clearly that αn ≈ C
1
n
. Accordingly, we have

made conjectures regarding strong asymptotics in Oberwolfach
Reports (2004) and ETNA (2006).
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A lower bound for αn - Coefficient estimates
Δ

D

Ω Φ

0

Γ
Ψ

G

Let Ψ denote the inverse map Ψ := Φ[−1] : {w : |w | > 1} → Ω, i.e.,

Ψ(z) = bw + b0 +
b1

w
+

b2

w2 + · · · . b = cap(Γ)

Theorem (St, arXiv, Sep 2009)

Assume that Γ is quasiconformal and rectifiable. Then, for any n ∈ N,

αn ≥
π (1− k2)

A(G)
(n + 1) |bn+1|2.

This provides a connection with the problem of estimating coefficients
in Univalent Functions Theory. In particular, it implies that if {αn}
decays geometrically, then the curve Γ is analytic.
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Ratio asymptotics for λn

Corollary (St, C. R. Acad. Sci. Paris, 2010)

√
n + 1

n
λn−1

λn
= cap(Γ) + ξn , where |ξn| ≤ c(Γ)

1
n
, n ∈ N.

The above relation provides the means for computing approximations
to the capacity of Γ, by using only the leading coefficients of the
Bergman polynomials. In addition, it implies:

Corollary

c1(Γ) ≤ In ≤ c2(Γ) , n ∈ N.

Hence, the Arnoldi GS for Bergman polynomials, in the single
component case, is stable.
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Ratio asymptotics for pn(z)

Corollary (St, C. R. Acad. Sci. Paris, 2010)

For any z ∈ Ω, and sufficiently large n ∈ N,√
n

n + 1
pn(z)

pn−1(z)
= Φ(z){1 + Bn(z)} ,

where
|Bn(z)| ≤ c1(Γ)√

dist(z, Γ) |Φ′(z)|
1√
n

+ c2(Γ)
1
n
.

The above relation provides the means for computing approximations
to the conformal map Φ. This leads to an efficient algorithm for
recovering the shape of G, from a finite collection of its power
moments 〈zm, zk 〉nm,k=0. This method was actually commented as
unsuitable by P. Henrici, in Computational Complex Analysis, Vol. III
(1986), because of the instability of the Conventional GS.
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Leading coefficients in archipelago

G1

G2
Γ1

GN

Γ2

ΓN

Theorem (Gustafsson, Putinar, Saff & St, Adv. Math., 2009)

Assume that every Γj is analytic, j = 1,2, . . . ,N. Then, for n ∈ N,

c1(Γ)

√
n + 1
π

1
cap(Γ)n+1 ≤ λn ≤ c2(Γ)

√
n + 1
π

1
cap(Γ)n+1 .

Corollary

c3(Γ) ≤ In ≤ c4(Γ) , n ∈ N.

Hence, the Arnoldi GS, for Bergman polynomials on an archipelago,
is stable.
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Bergman polynomials in archipelago

Ω

G2

G1

GN

Γ2

ΓN
Γ1

Let gΩ(z,∞) denote the Green function of Ω := C \G with pole at∞.

Theorem (Gustafsson, Putinar, Saff & St, Adv. Math., 2009)

Assume that every Γj is analytic. Then, for n ∈ N:
(i) There exists a positive constant C, so that

|pn(z)| ≤ C
dist(z, Γ)

√
n exp{n gΩ(z,∞)}, z /∈ G.

(ii) For every ε > 0 there exist a constant Cε > 0, such that

|pn(z)| ≥ Cε
√

n exp{n gΩ(z,∞)}, dist(z,Co(G)) ≥ ε.
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Discovery of a single island (case N = 1)

Truncated Moments Problem
Given the finite n + 1× n + 1 section

[µm,k ]nm,k=0, µm,k :=

∫
G

zmzk dA(z),

of the infinite complex moment matrix [µm,k ]∞m,k=0 associated with a
bounded Jordan domain G, compute a good approximation to its
boundary Γ.

Theorem (Davis & Pollak, Trans. AMS, 1956)

The infinite matrix [µm,k ]∞m,k=0 defines uniquely Γ.
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Discovery of a single island

Island Recovery Algorithm

(I) Use the Arnoldi GS to compute p0,p1, . . . ,pn.

(II) Compute the coefficients of the Laurent series of the ratio√
n

n + 1
pn(z)

pn−1(z)
= γ(n)z + γ

(n)
0 +

γ
(n)
1
z

+
γ

(n)
2
z2 +

γ
(n)
3

z3 + · · · . (1)

(III) Revert (1) and truncate to obtain

Ψn(w) := b(n)w + b(n)
0 +

b(n)
1
w

+
b(n)

2
w2 +

b(n)
3

w3 + · · ·+ b(n)
n

wn .

(IV) Approximate Γ by Γ̃ := {z : z = Ψn(eit ), t ∈ [0,2π] }.
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Numerical Examples

Recovery of the canonical ellipse, with n = 3.

1

0,5

0

-0,5

-1

1,510,50-0,5-1-1,5
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Recovery of the square, with n = 16.

0,6

0,4

0,2

0

-0,2

-0,4

-0,6

0,60,40,20-0,2-0,4-0,6

Reconstructing planar domains from their moments 1067
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–1

1
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Figure 2. Left: N = 4; right: N = 8.

–1

1

y

–1 1x

–1

1

y

–1 1x

Figure 3. Left: N = 12; right: N = 16.

following the proof of proposition 4.6, we see that an upper bound for the error is, up to a
constant,

supu∈K |pn(u)|
|pn(z)| ,

where pn is a monic polynomial of degree n (chosen in this case to be the complex orthogonal
polynomial with respect to the area measure of the square �) and the point z is far from the
set K .

Since the logarithmic capacity of the union of diagonals K is c(K) =
√

2
22/4 = 1, cf, for

instance, [27], we infer that, properly choosing the polynomials pn, the process converges
exponentially in the region

{z ∈ C; d(z,K) > 1},
which is closest to the midpoints of the four sides of �, but relatively far from the vertices.

Comparison: The exponential transform algorithm of Gustafsson, He,
Milanfar & Putinar, Inverse Problems (2000).
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Recovery of the 3-cusped hypocycloid, with n = 10 and n = 20.
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Discovery of an archipelago

Ω

G2

G1

GN

Γ2

ΓN
Γ1

Gj := int(Γj ) , Γ := ∪N
j=1Γj , G := ∪N

j=1Gj .

Truncated moments problem

Starting with the finite n + 1× n + 1 section

[µm,k ]nm,k=0, µm,k :=

∫
G

zmzk dA(z),

of the associated infinite complex moment matrix [µm,k ]∞m,k=0,
compute a good approximation to G.
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Discovery of an archipelago

Ω

G2

G1

GN

Γ2

ΓN
Γ1

Archipelago Recovery Algorithm
Gustafsson, Putinar, Saff & St, Adv. Math., 2009.

(I) Use the Arnoldi GS to compute p0,p1, . . . ,pn.

(II) Form the square root of the Christoffel function

Λn(z) :=
1√∑n

k=0 |pk (z)|2
.

(III) Plot the zeros of pj , j = 1,2, . . . ,n.

(IV) Plot the level curves of the function Λn(x + iy), on a suitable
rectangular frame for (x , y) that surrounds the plotted zero set.
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Theoretical support of the recovery algorithm

Ω

G2

G1

GN

Γ2

ΓN
Γ1

Theorem (Gustafsson, Putinar, Saff & St, Adv. Math., 2009)

Assume that every Γj is analytic and let Ω := C \G. Then,

Λn(z) � dist(z, Γ), z ∈ G, n→∞

Λn(z) � 1
n
, z ∈ Γ, n→∞

Λn(z) � 1√
n

exp{−n gΩ(z,∞)}, z ∈ Ω, n→∞.

where gΩ(z,∞) denotes the Green function of Ω with pole at infinity.

Note: gΩ(z,∞) > 0, z ∈ Ω .
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Recovery of three disks

30
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Level lines of Λn(x + iy) on {(x , y) : −1 ≤ x ≤ 4,−2 ≤ y ≤ 2}, for
n = 25, 50, 75, 100.
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Recovery of pentagon and disk
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Level lines of Λn(x + iy) on {(x , y) : −2 ≤ x ≤ 5,−2 ≤ y ≤ 2}, for
n = 25, 50.
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Only ellipses carry finite-term recurrences for pn

Definition

We say that the polynomials {pn}∞n=0 satisfy an m + 1-term
recurrence relation, if for any n ≥ m − 1,

zpn(z) = an+1,npn+1(z) + an,npn(z) + . . .+ an−m+1,npn−m+1(z).

Theorem (St, C. R. Acad. Sci. Paris, 2010)

Assume that:
(i) Γ = ∂G is piecewise analytic without cusps.
(ii) The Bergman polynomials {pn}∞n=0 satisfy an m + 1-term

recurrence relation, with some m ≥ 2.
Then m = 2 and Γ is an ellipse.

The above theorem refines some deep results of Putinar & St (CAOT,
2007) and Khavinson & St (Springer, 2010).
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Connection with Operator Theory

For the rest we assume now that G is a bounded Jordan domain with
Γ := ∂G.

L2
a(G): the Bergman space of

square integrable and analytic functions in G.

The Bergman (Shift) Operator Mz : L2
a(G)→ L2

a(G)

Mz f = zf .

Quiz
How many times did the Bergman Operator appear above?
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The upper Hessenberg matrixM
The Bergman operator Mz has the following upper Hessenberg matrix
representation with respect to the Bergman polynomials {pn}∞n=0 of G:

M =



a00 a01 a02 a03 a04 a05 · · ·
a10 a11 a12 a13 a14 a15 · · ·
0 a21 a22 a23 a24 a25 · · ·
0 0 a32 a33 a34 a35 · · ·
0 0 0 a43 a44 a45 · · ·
0 0 0 0 a54 a55 · · ·
...

...
...

...
...

. . . . . .


,

where ak,n = 〈zpn,pk 〉 are the Fourier coefficients of Mzpn = zpn.

Note
The eigenvalues of the n × n principal submatrixMn ofM coincide
with the zeros of pn.
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Banded Hessenberg matrices for OP’s are Jacobi

In the Numerical Linear Algebra jargon the finite-term recurrence
theorem reads as follows:

Theorem
If the upper Hessenberg matrixM is banded, with constant
bandwidth ≥ 3, then it is tridiagonal, i.e., a Jacobi matrix.

This result should put an end to the long search in Numerical Linear
Algebra, for practical semi-iterative methods (aka polynomial iteration
methods) based on short-term recurrence relations of orthogonal
polynomials.
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The inverse conformal map Ψ

Δ

D

Ω Φ

0

Γ
Ψ

G

Recall that
Φ(z) = γz + γ0 +

γ1

z
+
γ2

z2 + · · · ,

and let Ψ := Φ−1 : {w : |w | > 1} → Ω, denote the inverse conformal
map. Then,

Ψ(w) = bw + b0 +
b1

w
+

b2

w2 + · · · , |w | ≥ 1,

where
b = cap(Γ) = 1/γ.
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The Toeplitz matrix with (continuous) symbol ψ

T (ψ) =



b0 b1 b2 b3 b4 b5 b6 · · ·
b b0 b1 b2 b3 b4 b5 · · ·
0 b b0 b1 b2 b3 b4 · · ·
0 0 b b0 b1 b2 b3 · · ·
0 0 0 b b0 b1 b2 · · ·
0 0 0 0 b b0 b1 · · ·

0 0 0 0 0 b b0
. . .

...
...

...
...

...
. . . . . . . . .


.

Note

The eigenvalues of the n × n principal submatrix Tn of T (ψ) coincide
with the zeros of Gn, the 2nd kind Faber polynomial of degree n of G.
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Comparison of spectra

For the upper Hessenberg matrixM we have σess(M) = σess(Mz) .
Furthermore:

Theorem (Axler, Conway & McDonald, 1982)

σess(Mz) = Γ.

Regarding the Toeplitz matrix T (ψ) we have:

Theorem (Bottcher & Grudsky, Toeplitz book, 2005)

σess(T (ψ)) = ψ(T) ( = Γ ).

Hence,
σess(T (ψ)) = σess(M).
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More coincidence: Main subdiagonal

Consider the main subdiagonal an+1,n ofM. Then:

an+1,n = 〈zpn,pn+1〉 = 〈λnzn+1 + · · · ,pn+1〉 = 〈λnzn+1,pn+1〉 =
λn

λn+1
.

Since cap(Γ) = b, it follows from the ratio asymptotics for λn, that:

Lemma √
n + 2
n + 1

an+1,n = b + O
(

1
n

)
, n ∈ N.

That is, the main subdiagonal of the upper Hessenberg matrixM
tends to the main subdiagonal of the Toeplitz matrix T (ψ).
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Eventually: M→ T (ψ), diagonally!

Using the theory on strong asymptotics for non-smooth curves we
have:

Theorem (Saff & St)

Assume that Γ is piecewise analytic without cusps. Then for any fixed
k ∈ N ∪ {0},√

n + 1
n + k + 1

an,n+k = bk + O
(

1√
n

)
, n→∞.

That is, the k -th diagonal of the upper Hessenberg matrixM tends to
the k -th diagonal of the Toeplitz matrix T (ψ).
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Faber polynomials of G

The Faber polynomial Fn(z) (n ∈ N) of G, is the polynomial part of the
Laurent series expansion of Φn(z) at∞:

Fn(z) = Φn(z) + O
(

1
z

)
, z →∞.

The Faber polynomial of the 2nd kind Gn(z), is the polynomial part of
the expansion of the Laurent series expansion of Φn(z)Φ′(z) at∞:

Gn(z) = Φn(z)Φ′(z) + O
(

1
z

)
, z →∞.

Note:

Gn(z) =
F ′n+1(z)

n + 1
.
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Recurrence relation for Gn

The Faber polynomials of the 2nd kind satisfy the recurrence relation,

zGn(z) = bGn+1(z) +
n∑

k=0

bk Gn−k (z) , n = 0,1, . . . ,
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