

Potential theory on orthogonal polynomials arising from subnormal and hyponormal operators

Nikos Stylianopoulos University of Cyprus

OPSFA 2019, Hagenberg, Austria July 2019

Let μ be a finite positive Borel measure having compact and infinite support $S := \text{supp}(\mu)$ in the complex plane \mathbb{C} . Then, the measure μ yields the Lebesgue spaces $L^2(\mu)$ with inner product

$$\langle f,g
angle_{\mu}=\int f(z)\overline{g(z)}d\mu(z)$$

and norm

$$\|f\|_{L^2(\mu)}:=\langle f,g\rangle_{\mu}^{1/2}.$$

Let $\{p_n(\mu, z)\}_{n=0}^{\infty}$ denote the sequence of orthonormal polynomials associated with μ . That is, the unique sequence of the form

$$p_n(\mu, z) = \kappa_n(\mu) z^n + \cdots, \quad \kappa_n(\mu) > 0, \quad n = 0, 1, 2, \dots,$$

satisfying $\langle p_m(\mu, \cdot), p_n(\mu, \cdot) \rangle_{\mu} = \delta_{m,n}$.

The recovery from moments problem

The (inverse) moment problem

Given the infinite sequence of complex moments

$$\mu_{m,n} := \int z^m \overline{z}^n d\mu(z), \quad m,n=0,1,2,\ldots,$$

where μ is a (non-trivial) finite positive Borel measure with compact support on \mathbb{C} , find the support $S := \text{supp}(\mu)$ of μ .

In many applications we are interested in a truncated version of the above:

Given a finite section of the infinite sequence of complex moments $\{\mu_{m.n}\}$ compute an approximation to S.

Existence - A partial result

Theorem (Atzmon, Pacific J. Math., 1975)

Let $\{a_{m,n}\}_{m,n=0}^{\infty}$ be an infinite matrix of complex numbers. Then, $a_{m,n} := \int z^m \overline{z}^n d\mu(z), m, n = 0, 1, 2, ...,$ holds for some positive Borel measure μ on the closed unit disc, if and only if for any matrix $\{c_{j,k}\}_{j,k=0}^{\infty}$ with only finitely many nonzero entries:

$$\sum_{n,n,j,k=0}^{\infty} a_{m+j,n+k} c_{n,j} \overline{c}_{m,k} \ge 0,$$

and for any sequence $\{w_n\}_{n=0}^{\infty}$ with only finitely many nonzero terms:

$$\sum_{m,n}^{\infty} (a_{m,n} - a_{m+1,n+1}) w_m \overline{w}_n \ge 0,$$

The recovery from moments problem

Uniqueness

The infinite sequence of complex moments

$$\mu_{m,n} := \int z^m \overline{z}^n d\mu(z), \quad m,n=0,1,2,\ldots,$$

defines the measure μ uniquly.

This is a simple consequence of:

- The Riesz representation theorem.
- The complex form of the Stone-Weierstrass theorem.

Question

Are there cases where the analytic moments $\int z^m d\mu(z)$, m = 0, 1, 2, ..., alone, suffice to define μ uniquely?

The case of Jordan arcs and curves

Theorem (Walsh, 1926)

Assume that Γ is a bounded Jordan arc and let $f \in C(\Gamma)$. Then, for every $\varepsilon > 0$, there exists a $p \in \mathbb{P}[z]$, such that

 $\|f(z) - p(z)\|_{L^{\infty}(\Gamma)} \leq \varepsilon.$

Similarly, by using conformal mapping it is easy to see that

Theorem (Gaier's book on Approximation, 1987)

Assume that Γ is a bounded Jordan curve and let $f \in C(\Gamma)$. Then, for every $\varepsilon > 0$, there exist p and q in $\mathbb{P}[z]$, such that

 $\|f(z)-\{p(z)+\overline{q(z)}\}\|_{L^{\infty}(\Gamma)}\leq \varepsilon.$

Hence, the analytic moments suffice to determine uniquely any positive Borel measure supported on $\Gamma,$ in both cases.

A counterexample?

Theorem (Sakai, Proc. AMS, 1978)

There exists two distinct Jordan domains G_1 and G_2 , such that

$$\int_{G_1} z^m dA(z) = \int_{G_2} z^m dA(z), \quad m = 0, 1, 2, \dots$$

where A denotes the area measure.

Note: The area measure is supported on the closure of the domain of definition!

An unicity theorem for measures on outer boundaries

Theorem

Let K be a compact set in the complex plane of positive logarithmic capacity and denote by Ω the component of $\overline{\mathbb{C}} \setminus K$ that contains infinity. Let μ and ν be two positive Borel measures, supported on $\partial\Omega$, such that

$$\int z^m d\mu(z) = \int z^m d\nu(z), \quad m = 0, 1, 2, \dots,$$

Then $\mu = \nu$.

This is a consequence of Carleson's unicity theorem for measures: (Carleson, Math. Scand.,1964 & Saff and Totik, Logarithmic Potentials, Springer, 1997)

An open problem

Does it hold?

Let *K* be a compact set in the complex plane of positive logarithmic capacity and denote by Ω the component of $\overline{\mathbb{C}} \setminus K$ that contains infinity, let $f \in C(\partial \Omega)$. Then, for every $\varepsilon > 0$, there exist *p* and *q* in $\mathbb{P}[z]$, such that

 $\|f(z)-\{p(z)+\overline{q(z)}\}\|_{L^{\infty}(\Gamma)}\leq \varepsilon.$

Recovery of the equilibrium measure: An example

G bounded simply-connected, $\Gamma := \partial G$, $\Omega := \overline{\mathbb{C}} \setminus \overline{G}$

$$\Phi(z) = \gamma z + \gamma_0 + \frac{\gamma_1}{z} + \frac{\gamma_2}{z^2} + \cdots \qquad \text{cap}(\Gamma) = 1/\gamma$$

$$\Psi(w) = bw + b_0 + \frac{b_1}{w} + \frac{b_2}{w^2} + \cdots \qquad \text{cap}(\Gamma) = b$$

Theorem (Hille, Analytic Function Theory II, Chelsea, 1962)

Assume that

$$rac{\Phi'(z)}{\Phi(z)} = \sum_{k=0}^{\infty} rac{M_k}{z^{k+1}}.$$
 Then, $M_k = \int \zeta^k d\mu_{\Gamma},$

where μ_{Γ} is the equilibrium measure of Γ .

Recovery of open sets from complex area moments

Theorem (Davis & Pollak, Trans. AMS, 1956)

Let T be a bounded open set which posses exterior points in any neighborhood of any boundary point. Then, the infinite complex moments matrix $[\mu_{m,k}]_{m,k=0}^{\infty}$, with respect to the area measure, defines uniquely T.

This leads to applications in 2D geometric tomography, through the Radon transform.

The Arnoldi algorithm for OP's

Let μ be a (non-trivial) finite positive Borel measure with compact support supp(μ) on \mathbb{C} and consider the associated series of orthonormal polynomials

 $p_n(\mu, z) := \kappa_n(\mu) z^n + \cdots, \quad \kappa_n(\mu) > 0, \quad n = 0, 1, 2, \dots,$

generated by the inner product

$$\langle f,g\rangle_{\mu}=\int f(z)\overline{g(z)}d\mu(z), \quad \|f\|_{L^{2}(\mu)}:=\langle f,g\rangle_{\mu}^{1/2}.$$

Arnoldi Gram-Schmidt (GS) for Orthonormal Polynomials

At the *n*-th step, apply GS to orthonormalize the polynomial zp_{n-1} (instead of z^n) against the (already computed) orthonormal polynomials $\{p_0, p_1, \ldots, p_{n-1}\}$.

Used by Gragg & Reichel, in Linear Algebra Appl. (1987), for the construction of Szegö polynomials.

Bergman polynomials

$$\langle f,g\rangle := \int_G f(z)\overline{g(z)}dA(z), \quad \|f\|_{L^2(G)} := \langle f,f\rangle^{1/2}.$$

The Bergman polynomials $\{p_n\}_{n=0}^{\infty}$ of *G* are the orthonormal polynomials w.r.t. the area measure on *G*:

$$\langle p_m, p_n \rangle = \int_G p_m(z) \overline{p_n(z)} dA(z) = \delta_{m,n},$$

with

$$p_n(z) = \kappa_n z^n + \cdots, \quad \kappa_n > 0, \quad n = 0, 1, 2, \ldots$$

Ratio asymptotics for $p_n(z)$

Theorem (St, Constr. Approx. 2013)

Assume that Γ is piecewise analytic without cusps. Then, for any $z \in \Omega$, and sufficiently large $n \in \mathbb{N}$,

$$\sqrt{\frac{n}{n+1}}\frac{p_n(z)}{p_{n-1}(z)} = \Phi(z)\{1+B_n(z)\}$$

where

$$|B_n(z)| \leq \frac{c_1(\Gamma)}{\sqrt{\operatorname{dist}(z,\Gamma)} |\Phi'(z)|} \frac{1}{\sqrt{n}} + c_2(\Gamma) \frac{1}{n}.$$

Ratio asymptotics for $p_n(z)$

On compact subsets of $\boldsymbol{\Omega}$ we have

Theorem (Beckermann & St, Constr. Approx. 2018)

Assume that Γ is piecewise analytic without cusps. Then,

$$\sqrt{\frac{n}{n+1}}\frac{p_n(z)}{p_{n-1}(z)} = \Phi(z)\{1 + O(1/n)\}$$

locally uniformly in Ω .

Discovery of a single island

Recovery Algorithm: St, Constr. Approx. 2013

- (I) Use the Arnoldi GS to compute p_0, p_1, \ldots, p_n .
- (II) Compute the coefficients of the Laurent series of the ratio

$$\sqrt{\frac{n}{n+1}}\frac{p_n(z)}{p_{n-1}(z)} = \gamma^{(n)}z + \gamma_0^{(n)} + \frac{\gamma_1^{(n)}}{z} + \frac{\gamma_2^{(n)}}{z^2} + \frac{\gamma_3^{(n)}}{z^3} + \cdots$$
 (1)

(III) Revert (1) and truncate to obtain

$$\begin{split} \Psi_n(w) &:= b^{(n)}w + b_0^{(n)} + \frac{b_1^{(n)}}{w} + \frac{b_2^{(n)}}{w^2} + \frac{b_3^{(n)}}{w^3} + \dots + \frac{b_n^{(n)}}{w^n}. \end{split}$$
Approximate Γ by $\widetilde{\Gamma} := \{z : z = \Psi_n(e^{it}), t \in [0, 2\pi] \}. \end{split}$

(IV)

[17] nace

University of Cyprus

Numerical Examples

Potential Theory Operator Theory

Moments Recovery

Comparison: The exponential transform algorithm of Gustafsson, He, Milanfar & Putinar, Inverse Problems (2000).

Potential Theory Operator Theory

Moments Recovery

Discovery of an archipelago

Archipelago Recovery Algorithm (Gustafsson, Putinar, Saff & St, Adv. Math., 2009.)

- (I) Use the Arnoldi GS to compute p_0, p_1, \ldots, p_n , from $[\mu_{m,k}]_{m,k=0}^n$.
- (II) Form the recovery functional

$$\Lambda_n(z) := [K_n(z,z)]^{-1/2} = \left[\sum_{k=0}^n |p_k(z)|^2\right]^{-1/2}$$

- (III) Plot the zeros of p_j , for some $1 \le j \le n$. (Fejer's Theorem!)
- (IV) Plot the level curves of the function $\Lambda_n(x + iy)$, on a suitable rectangular frame for (x, y) that surrounds the plotted zero set.

Recovery of three disks

Level lines of $\Lambda_n(x + iy)$ on $\{(x, y) : -3 \le x \le 4, -2 \le y \le 3\}$, for n = 25, 50, 75, 100.

Shift Operator

Let $\mathcal{P}^2(\mu)$ denote the closure of the polynomials in $L^2(\mu)$ and consider the shift operator on $\mathcal{P}^2(\mu)$. That is,

$$S_z: \mathcal{P}^2(\mu) \to \mathcal{P}^2(\mu)$$
 with $S_z f = zf$.

Properties of Sz

- (i) S_z defines a subnormal operator on $\mathcal{P}^2(\mu)$.
- (ii) $\sigma(S_z) = ?$

(iii) $S_{\overline{z}}^*(f) = P(\overline{z}f)$, where *P* denotes the orthogonal projection from $L^2(\mu)$ to $\mathcal{P}^2(\mu)$.

Proof of (iii): For any $f, g \in \mathcal{P}^2(\mu)$ it holds that

$$\langle S_z^*f,g\rangle = \langle f,S_zg\rangle = \langle f,zg\rangle = \langle \overline{z}f,g\rangle = \langle P(\overline{z}f),g\rangle.$$

Matrix representation for S_z

The shift operator S_z has the following upper Hessenberg matrix representation with respect to the orthonormal polynomials $\{p_n\}_{n=0}^{\infty}$:

$$\mathcal{M} = \begin{bmatrix} b_{00} & b_{01} & b_{02} & b_{03} & b_{04} & b_{05} & \cdots \\ b_{10} & b_{11} & b_{12} & b_{13} & b_{14} & b_{15} & \cdots \\ 0 & b_{21} & b_{22} & b_{23} & b_{24} & b_{25} & \cdots \\ 0 & 0 & b_{32} & b_{33} & b_{34} & b_{35} & \cdots \\ 0 & 0 & 0 & b_{43} & b_{44} & b_{45} & \cdots \\ 0 & 0 & 0 & 0 & b_{54} & b_{55} & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots & \ddots \end{bmatrix},$$

where $b_{k,n} = \langle zp_n, p_k \rangle$ are the Fourier coefficients of $S_z p_n = zp_n$.

Note

The eigenvalues of the $n \times n$ principal submatrix \mathcal{M}_n of \mathcal{M} coincide with the zeros of p_n .

Example: $\mu = dA|_{\mathbb{D}}$

This example shows why modern text books on Functional Analysis or Operators Theory do not refer to infinite matrices: Indeed, in this case we have:

$$p_n(z) = \sqrt{\frac{n+1}{\pi}} z^n, \quad n = 0, 1, \ldots.$$

Therefore, in the matrix representation \mathcal{M} of S_z the only non-zero diagonals are the main subdiagonal, and hence for any $n \in \mathbb{N}$, \mathcal{M}_n is a nilpotent matrix. As a result, the Caley-Hamilton theorem implies:

$$\sigma(\mathcal{M}_n) = \{\mathbf{0}\}.$$

This is in sharp contrast to:

$$\sigma_{ess}(\mathcal{M}) = \sigma_{ess}(\mathcal{S}_z) = \{ w : |w| = 1 \}$$

and

$$\sigma(\mathcal{M}) = \sigma(\mathcal{S}_z) = \{ w : |w| \le 1 \}.$$

Shift Operator on $L^2(\mu)$

Let N_z denote the shift operator on $L^2(\mu)$. That is,

$$N_z: L^2(\mu) \to L^2(\mu)$$
 with $N_z f = zf$.

Then, N_z defines a normal operator on $L^2(\mu)$. Furthermore,

$$p_n(\mu, z) = \kappa_n(\mu) \det(z - \pi_n N_z \pi_n),$$

where π_n is the projection onto onto \mathbb{P}_{n-1} .

Theorem (B. Simon, Duke Math. J., 2009)

Let

 $N(\mu) := \sup\{|z| : z \in S_{\mu}\}.$

Then, for any $k \in \mathbb{N}$,

$$\pi_n N_z^k \pi_n - (\pi_n N_z \pi_n)^k,$$

is an operator of rank at most k and norm at most $2N(\mu)^k$.

Shift Operator on $L^2(\mu)$

Let ν_n denote the normalized counting measure of zeros of p_n and let μ_n be defined by $d\mu_n := \frac{1}{n} \sum_{j=0}^{n-1} |p_n(\mu, z)|^2 d\mu(z)$.

Theorem (B. Simon, Duke Math. J., 2009)

$$\frac{1}{n}\operatorname{Tr}(\pi_n N_z \pi_n)^k = \int z^k d\nu_n.$$
$$\frac{1}{n}\operatorname{Tr}(\pi_n N_z^k \pi_n) = \int z^k d\mu_n.$$

Thus, from the previous theorem, for any k = 0, 1, 2, ...,

$$\left|\int z^k d\nu_{p_n} - \int z^k d\mu_n\right| \leq \frac{2kN^k(\mu)}{n}$$

Furthermore, if *K* is a compact set containing the supports of all ν_n and μ , such that $\{z_k\}_{k=0}^{\infty} \cup \{\overline{z}_k\}_{k=0}^{\infty}$ are $\|\cdot\|_{\infty}$ -total in C(K), then for any subsequence $\{n_j\}, \nu_{n_j} \xrightarrow{*} \nu$ if and only if $\mu_{n_j} \xrightarrow{*} \nu$. Potential Theory Operator Theory Matrix Shift Krylov

Krylov subspaces

Let $A \in \mathcal{L}(H)$ be a linear bounded operator acting on the complex Hilbert space H and let $\xi \in H$ be a non-zero vector. We denote by $H_n(A,\xi)$ the linear span of the vectors $\xi, A\xi, ..., A^{n-1}\xi$ and let π_n be the orthogonal projection of H onto $H_n(A,\xi)$. Let a_n denote the counting measure of the spectra of the *finite central truncation* $A_n = \pi_n A \pi_n$. Note that for any complex polynomial p(z) it holds that

$$\int p(z) da_n(z) = \frac{\operatorname{Tr}(p(A_n))}{n}$$

The orthogonal monic polynomials P_n in this case are defined as minimizers of the functional (semi-norm):

$$\|q\|_{A,\xi}^2 = \|q(A)\xi\|^2, \ q \in \mathbb{C}[z],$$

and the zeros of P_n (whenever P_n exists) coincide with the spectrum of A_n .

Theorem (Gustafsson & Putinar, Hyponormal Quantization of Planar Domains, Springer 2017)

Let $A, B \in \mathcal{L}(H)$ with A - B of finite trace. Then, for every polynomial $p \in \mathbb{P}[z]$, we have

$$\lim_{n\to\infty}\frac{\mathrm{Tr}(\rho(A_n))-\mathrm{Tr}(\rho(B_n))}{n}=0.$$

Corollary

Let a_n , b_n denote the counting measures of the spectra of A_n and B_n , respectively. Then,

$$\lim_{n\to\infty} \left[\int \frac{da_n(\zeta)}{\zeta-z} - \int \frac{db_n(\zeta)}{\zeta-z}\right] = 0,$$

uniformly on compact subsets which are disjoint of the convex hull of $\sigma(A) \cup \sigma(B)$.

Conclusion

All the results in this section yield information about the analytic moments:

$$\lim_{n\to\infty}\int z^kd\nu_n=\int z^kd\nu,\quad k=0,1,2,\ldots,$$

where ν is a known positive measure and $\{\nu_n\}$ are a sequence of positive measures (all supported on the same compact set *K*) we want to describe its limit points. Note that the measures being positive implies the same information for the anti-analytic moments:

$$\lim_{n\to\infty}\int \overline{z}^k d\nu_n = \int \overline{z}^k d\nu, \quad k = 1, 2, \dots.$$

Conclusion

However, according to the complex Stone-Weierstrass theorem, in order to establish

$$\nu_n \xrightarrow{*} \nu,$$

we need the limits of all the complex moments

$$\lim_{n\to\infty}\int z^k\overline{z}^jd\nu_n=\int z^k\overline{z}^jd\nu,\quad k,j=0,1,2,\ldots,$$

unless K is of a special form, where the analytic moments constitute sufficient information.