

Bergman shift operators for Jordan domains

Nikos Stylianopoulos University of Cyprus

Num An 2012 Fifth Conference in Numerical Analysis University of Ioannina September 2012

[1]

5000

Bergman polynomials $\{p_n\}$ on an Jordan domain G

$$\langle f,g\rangle := \int_G f(z)\overline{g(z)}dA(z), \quad \|f\|_{L^2(G)} := \langle f,f\rangle^{1/2}.$$

The Bergman polynomials $\{p_n\}_{n=0}^{\infty}$ of *G* are the orthonormal polynomials w.r.t. the area measure on *G*:

$$\langle \boldsymbol{p}_m, \boldsymbol{p}_n \rangle = \int_G \boldsymbol{p}_m(z) \overline{\boldsymbol{p}_n(z)} d\boldsymbol{A}(z) = \delta_{m,n},$$

with

$$p_n(z) = \lambda_n z^n + \cdots, \quad \lambda_n > 0, \quad n = 0, 1, 2, \dots$$

Bergman Toeplitz Comparison

Polynomials Shift Short-term Matrix

Shift Operator

Let $L_a^2(G)$ denote the Bergman space of square integrable and analytic functions in *G* and consider the Bergman shift operator on $L_a^2(G)$. That is,

$$S_z: L^2_a(G) \to L^2_a(G)$$
 with $S_z f = zf$.

Properties of Sz

- (i) S_z defines a subnormal operator on $L^2_a(G)$.
- (ii) $\sigma(S_z) = \overline{G}$ and $\sigma_{ess}(S_z) = \partial G$ (Axler, Conway & McDonald, Can. J. Math., 1982).
- (iii) $S_z^*(f) = P_G(\overline{z}f)$, where P_G denotes the orthogonal projection from $L^2(G)$ to $L_a^2(G)$.

Proof of (iii): For any $f, g \in L^2_a(G)$ it holds that

$$\langle S_z^* f, g \rangle = \langle f, S_z g \rangle = \langle f, zg \rangle = \langle \overline{z} f, g \rangle = \langle \mathcal{P}_G(\overline{z} f), g \rangle.$$

Short-term recurrences for Bergman polynomials $\{p_n\}$

In general it holds that

$$zp_n(z) = \sum_{k=0}^{n+1} b_{k,n}p_k(z), \text{ where } b_{k,n} := \langle zp_n, p_k \rangle.$$

Definition

We say that the polynomials $\{p_n\}_{n=0}^{\infty}$ satisfy an m + 1-term recurrence relation, if for any $n \ge m - 1$,

$$zp_n(z) = b_{n+1,n}p_{n+1}(z) + b_{n,n}p_n(z) + \ldots + b_{n-m+1,n}p_{n-m+1}(z).$$

Lemma (Putinar & St, CAOT, 2007)

If the Bergman polynomials $\{p_n\}$ satisfy an m + 1-term recurrence relation, then for any $p \in \mathbb{P}_d$, it holds that $S_z^* p \in \mathbb{P}_{d+m-1}$.

Proof of Lemma

Using the short-term recurrence relation we have:

$$\langle S_z^* p, p_n \rangle = \langle p, S_z p_n \rangle = \langle p, z p_n \rangle = \langle p, \sum_{k=0}^{n-m+1} b_{k,n} p_k \rangle = \sum_{k=0}^{n-m+1} b_{k,n} \langle p, p_k \rangle.$$

Thus, $\langle S_z^* p, p_n \rangle = 0$, for any d < n - m + 1, i.e., for n > d + m - 1.

Only ellipses carry 3-term recurrence relations

Theorem (Putinar & St, CAOT, 2007)

If the Bergman polynomials $\{p_n\}$ satisfy a 3-term recurrence relation, then $\Gamma = \partial G$ is an ellipse.

Proof. We use Havin's Lemma: $L^2(G) = L^2_a(G) \oplus \partial W^{1,2}_0(G)$.

$$\overline{z} = P_G(\overline{z}) + \partial g = S_z^*(\overline{z}) + \partial g = p + \partial g,$$

where $g \in W_0^{1,2}(G)$ and deg $(p) \leq 1$. Hence, by integration we obtain

$$z\overline{z}=Q(z)+g(z)+\overline{f(z)}, \quad Q'=p, \quad f\in L^2_a(G).$$

From uniqueness in $W_0^{1,2}(G)$ we further obtain $f = \overline{Q} + const$. Hence, $|z|^2 = Q(z) + \overline{Q(z)} + c + g(z)$, for $z \in G$, and from regularity of *G*:

$$|z|^2 = Q(z) + \overline{Q(z)} + c, \quad z \in \Gamma.$$

Only ellipses carry short-term recurrences for p_n

In fact, a great deal more can be obtained:

Theorem (St, C. R. Acad. Sci. Paris, 2010)

Assume that:

- (i) $\Gamma = \partial G$ is piecewise analytic without cusps.
- (ii) The Bergman polynomials $\{p_n\}_{n=0}^{\infty}$ satisfy an m + 1-term recurrence relation, with some $m \ge 2$.

Then m = 2 and Γ is an ellipse.

The above theorem refines some deep results of Putinar & St (CAOT, 2007) and Khavinson & St (Springer, 2010).

Matrix representation for S_z

The Bergman operator S_z has the following upper Hessenberg matrix representation with respect to the Bergman polynomials $\{p_n\}_{n=0}^{\infty}$ of *G*:

$$\mathcal{M} = \begin{bmatrix} b_{00} & b_{01} & b_{02} & b_{03} & b_{04} & b_{05} & \cdots \\ b_{10} & b_{11} & b_{12} & b_{13} & b_{14} & b_{15} & \cdots \\ 0 & b_{21} & b_{22} & b_{23} & b_{24} & b_{25} & \cdots \\ 0 & 0 & b_{32} & b_{33} & b_{34} & b_{35} & \cdots \\ 0 & 0 & 0 & b_{43} & b_{44} & b_{45} & \cdots \\ 0 & 0 & 0 & 0 & b_{54} & b_{55} & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots & \ddots \end{bmatrix},$$

where $b_{k,n} = \langle zp_n, p_k \rangle$ are the Fourier coefficients of $S_z p_n = zp_n$.

Note

The eigenvalues of the $n \times n$ principal submatrix M_n of M coincide with the zeros of p_n .

Bergman Toeplitz Comparison

Polynomials Shift Short-term Matrix

Banded Hessenberg matrices for OP's are Jacobi

In the Numerical Linear Algebra jargon the short-term recurrence theorem reads as follows:

Theorem

If the upper Hessenberg matrix M is banded, with constant bandwidth \geq 3, then it is tridiagonal, i.e., a Jacobi matrix.

This result should put an end to the long search in Numerical Linear Algebra, for practical <u>semi-iterative methods</u> (aka polynomial iteration methods) based on short-term recurrence relations of orthogonal polynomials.

Example: $G \equiv \mathbb{D}$

This example shows why modern text books on Functional Analysis or Operators Theory do not refer to matrices: Indeed, in this case we have:

$$p_n(z) = \sqrt{\frac{n+1}{\pi}}z^n, \quad n = 0, 1, \ldots$$

Therefore, in the matrix representation \mathcal{M} of S_z the only non-zero diagonals are the main subdiagonal, and hence for any $n \in \mathbb{N}$, \mathcal{M}_n is a nilpotent matrix. As a result, the Caley-Hamilton theorem implies:

$$\sigma(\mathcal{M}_n) = \{\mathbf{0}\}.$$

This is in sharp contrast to:

$$\sigma_{ess}(\mathcal{M}) = \sigma_{ess}(\mathcal{S}_z) = \{ w : |w| = 1 \}$$

and

$$\sigma(\mathcal{M}) = \sigma(\mathcal{S}_z) = \{ \boldsymbol{w} : |\boldsymbol{w}| \leq 1 \}.$$

Bergman Toeplitz Comparison

Polynomials Shift Short-term Matrix

The inverse conformal map Ψ

Recall that

$$\Phi(z) = \gamma z + \gamma_0 + \frac{\gamma_1}{z} + \frac{\gamma_2}{z^2} + \cdots,$$

and let $\Psi := \Phi^{-1} : \{ w : |w| > 1 \} \to \Omega$, denote the inverse conformal map. Then,

$$\Psi(w) = bw + b_0 + \frac{b_1}{w} + \frac{b_2}{w^2} + \cdots, \quad |w| < 1,$$

where

$$b = \operatorname{cap}(\Gamma) = 1/\gamma.$$

٠

The Toeplitz matrix with (continuous) symbol Ψ

Spectral properties

Theorem (St, Constr, Approx., to appear)

If Γ is piecewise analytic without cusps, then

$$|b_n| \le c_1(\Gamma) \frac{1}{n^{1+\omega}}, \quad n \in \mathbb{N},$$
 (1)

where $\omega \pi$ (0 < ω < 2) is the smallest exterior angle of Γ .

Therefore, in this case, the symbol Ψ of the Toeplitz matrix T_{Ψ} belongs to the Wiener algebra. Thus, T_{Ψ} defines a bounded linear operator on the Hilbert space $l^2(\mathbb{N})$ and

$$\sigma_{ess}(T_{\Psi}) = \Gamma ; \qquad (2)$$

see e.g., Bottcher & Grudsky, Toeplitz book, 2005.

Faber polynomials of G

The Faber polynomial of the 2nd kind $G_n(z)$, is the polynomial part of the expansion of the Laurent series expansion of $\Phi^n(z)\Phi'(z)$ at ∞ :

$$G_n(z) = \Phi^n(z)\Phi'(z) + O\left(\frac{1}{z}\right), \quad z \to \infty.$$

These polynomials satisfy the recurrence relation:

$$zG_n(z) = bG_{n+1}(z) + \sum_{k=0}^n b_k G_{n-k}(z)$$
, $n = 0, 1, ...,$

Recall:
$$zp_n(z) = \sum_{k=0}^{n+1} b_{k,n} p_k(z).$$

Note

The eigenvalues of the $n \times n$ principal submatrix T_n of T_{ψ} coincide with the zeros of G_n .

Bergman Toeplitz Comparison

Matrix

Ratio asymptotics for λ_n

Theorem (St, C. R. Acad. Sci. Paris, 2010 & Constr. Approx.)

Assume that Γ is piecewise analytic without cusps. Then, for $n\in\mathbb{N},$

$$\sqrt{\frac{n+2}{n+1}}\frac{\lambda_n}{\lambda_{n+1}} = \operatorname{cap}(\Gamma) + \xi_n \,, \quad \textit{where} \quad |\xi_n| \leq c(\Gamma) \, \frac{1}{n}.$$

The above relation provides the means for computing approximations to the capacity of Γ , by using only the leading coefficients of the Bergman polynomials.

Some coincidence

Recall

$$\sigma_{ess}(\mathcal{M}) = \Gamma = \sigma_{ess}(T_{\Psi}).$$

Consider the main subdiagonal $b_{n+1,n}$ of \mathcal{M} . Then:

$$b_{n+1,n} = \langle zp_n, p_{n+1} \rangle = \langle \lambda_n z^{n+1} + \cdots, p_{n+1} \rangle = \langle \lambda_n z^{n+1}, p_{n+1} \rangle = \frac{\lambda_n}{\lambda_{n+1}}.$$

Since $cap(\Gamma) = b$, it follows from the ratio asymptotics for λ_n , that:

Corollary

$$\sqrt{rac{n+2}{n+1}} b_{n+1,n} = b + O\left(rac{1}{n}
ight), \quad n \in \mathbb{N}.$$

That is, the main subdiagonal of the upper Hessenberg matrix M tends to the main subdiagonal of the Toeplitz matrix T_{ψ} .

Bergman Toeplitz Comparison

$\mathcal{M} ightarrow \mathcal{T}_\psi$ diagonally

The next series of theorems show that the connection between the two matrices \mathcal{M} and \mathcal{T}_{Ψ} is much more substantial.

Theorem (Saff & St., CAOT, 2012)

Assume that Γ is piecewise analytic without cusps. Then, it holds as $n \to \infty,$

$$\sqrt{\frac{n+2}{n+1}}b_{n+1,n} = b + O\left(\frac{1}{n}\right),\tag{3}$$

and for $k \ge 0$,

$$\sqrt{\frac{n-k+1}{n+1}}b_{n-k,n} = b_k + O\left(\frac{1}{\sqrt{n}}\right),\tag{4}$$

where O depends on k but not on n.

$\mathcal{M} ightarrow \mathcal{T}_\psi$ diagonally: Smooth curve

Improvements in the order of convergence occur in cases when Γ is smooth.

Theorem (Saff & St., CAOT, 2012)

Assume that $\Gamma \in C(p + 1, \alpha)$, with $p + \alpha > 1/2$. Then, it holds as $n \to \infty$,

$$\sqrt{\frac{n+2}{n+1}}b_{n+1,n} = b + O\left(\frac{1}{n^{2(\rho+\alpha)}}\right),\tag{5}$$

and for $k \ge 0$,

$$\sqrt{\frac{n-k+1}{n+1}}b_{n-k,n} = b_k + O\left(\frac{1}{n^{p+\alpha}}\right),\tag{6}$$

where O depends on k but not on n.

$\mathcal{M} ightarrow \mathcal{T}_\psi$ diagonally: Analytic curve

For the case of an analytic boundary Γ further improved asymptotic results can be obtained.

Theorem (Saff & St., CAOT, 2012)

Assume that the boundary Γ is analytic and let $\rho < 1$ be the smallest index for which Φ is conformal in the exterior of L_{ρ} . Then, it holds as $n \to \infty$,

$$\sqrt{\frac{n+2}{n+1}}b_{n+1,n} = b + O(\rho^{2n}), \tag{7}$$

and for $k \ge 0$,

$$\sqrt{\frac{n-k+1}{n+1}}b_{n-k,n} = b_k + O(\sqrt{n}\rho^n), \tag{8}$$

where O depends on k but not on n.

Is $\mathcal{M} - T_{\psi}$ compact?

Corollary

If the upper Hessenberg matrix \mathcal{M} is banded, with constant bandwidth, then $\mathcal{M} - T_{\psi}$ defines a compact operator on $l^{2}(\mathbb{N})$.

Is the following true?

The adjoint operator $S_z^* : L^2_a(G) \to L^2_a(G)$ maps \mathbb{P} into itself if and only if $\Gamma := \partial G$ is an ellipse.

The above is equivalent to:

Conjecture, Khavinson & Shapiro, 1992

The Dirichlet problem for *G* has a polynomial solution for any polynomial data on Γ if an only if $\Gamma = \partial G$ is an ellipse.

Is $\mathcal{M} - T_{\psi}$ compact?

Corollary

If the upper Hessenberg matrix \mathcal{M} is banded, with constant bandwidth, then $\mathcal{M} - T_{\psi}$ defines a compact operator on $l^{2}(\mathbb{N})$.

Is the following true?

The adjoint operator $S_z^* : L^2_a(G) \to L^2_a(G)$ maps \mathbb{P} into itself if and only if $\Gamma := \partial G$ is an ellipse.

The above is equivalent to:

Conjecture, Khavinson & Shapiro, 1992

The Dirichlet problem for *G* has a polynomial solution for any polynomial data on Γ if an only if $\Gamma = \partial G$ is an ellipse.

Example: G is a 3-cusped hypocycloid

Assume that $\nu(P)$ denotes the *normalized counting measure of zeros* of the polynomial *P*. Also let μ_{Γ} denote the *equilibrium measure* on Γ , note that $\text{supp}(\mu_{\Gamma}) = \Gamma$ and recall $\sigma_{ess}(\mathcal{M}) = \Gamma = \sigma_{ess}(T_{\Psi})$. Then: Levin, Saff & St., Constr. Approx. (2003):

$$u(\boldsymbol{p}_n) \stackrel{*}{\longrightarrow} \mu_{\Gamma}, \quad \boldsymbol{n} \to \infty, \ \boldsymbol{n} \in \mathcal{N}, \quad \mathcal{N} \subset \mathbb{N}.$$

He & Saff, JAT (1994):

$$\sigma(T_n) \subset [0, 1.5] \cup [0, 1.5e^{i2\pi/3}] \cup [0, 1.5e^{i4\pi/3}]$$

Bergman Toeplitz Comparison

Example: G is the square

Recall:
$$\sigma_{ess}(\mathcal{M}) = \Gamma = \sigma_{ess}(T_{\Psi}).$$

Maymeskul & Saff, JAT (2003):

 $\sigma(M_n) \subset$ the two diagonals .

Kuijlaars & Saff, Math. Proc. Cambrigde Phil. Soc. (1995):

$$\left| \nu(G_n) \stackrel{*}{\longrightarrow} \mu_{\Gamma}, \quad n \to \infty, \ n \in \mathcal{N} \right|, \quad \mathcal{N} \subset \mathbb{N}$$

Bergman Toeplitz Comparison

Example: G is the canonical pentagon

Levin, Saff & St., Constr. Approx. (2003):

$$\boxed{
u(p_n) \stackrel{*}{\longrightarrow} \mu_{\Gamma}, \quad n \to \infty, \ n \in \mathcal{N}}, \quad \mathcal{N} \subset \mathbb{N}$$

Kuijlaars & Saff, Math. Proc. Cambrigde Phil. Soc. (1995):

$$\nu(G_n) \stackrel{*}{\longrightarrow} \mu_{\Gamma}, \quad n \to \infty, \ n \in \mathcal{N}, \quad \mathcal{N} \subset \mathbb{N}$$

Asymptotics

$$\boxed{\Omega := \overline{\mathbb{C}} \setminus \overline{G}}$$

$$\Phi(z) = \gamma z + \gamma_0 + \frac{\gamma_1}{z} + \frac{\gamma_2}{z^2} + \cdots \cdot \qquad \boxed{\operatorname{cap}(\Gamma) = 1/\gamma}$$

The Bergman polynomials of G:

$$p_n(z) = \lambda_n z^n + \cdots, \quad \lambda_n > 0, \quad n = 0, 1, 2, \ldots$$

Strong asymptotics when Γ is analytic

T. Carleman, Ark. Mat. Astr. Fys. (1922)

If $\rho < 1$ is the smallest index for which Φ is conformal in $ext(L_{\rho})$, then

$$\left|\frac{n+1}{\pi}\frac{\gamma^{2(n+1)}}{\lambda_n^2} = 1 - \alpha_n\right|, \text{ where } 0 \le \alpha_n \le c_1(\Gamma)\,\rho^{2n}$$

$$p_n(z) = \sqrt{rac{n+1}{\pi}} \Phi^n(z) \Phi'(z) \{1 + A_n(z)\}$$
, $n \in \mathbb{N}$,

where

$$|A_n(z)| \leq c_2(\Gamma)\sqrt{n}\,\rho^n, \quad z\in\overline{\Omega}.$$

Bergman Toeplitz Comparison

Strong asymptotics when Γ is smooth

We say that $\Gamma \in C(p, \alpha)$, for some $p \in \mathbb{N}$ and $0 < \alpha < 1$, if Γ is given by z = g(s), where *s* is the arclength, with $g^{(p)} \in \text{Lip}\alpha$. Then both Φ and $\Psi := \Phi^{-1}$ are p times continuously differentiable in $\overline{\Omega} \setminus \{\infty\}$ and $\overline{\Delta} \setminus \{\infty\}$ respectively, with $\Phi^{(p)}$ and $\Psi^{(p)} \in \text{Lip}\alpha$.

P.K. Suetin, Proc. Steklov Inst. Math. AMS (1974)

Assume that $\Gamma \in C(p + 1, \alpha)$, with $p + \alpha > 1/2$. Then, for $n \in \mathbb{N}$,

$$\frac{n+1}{\pi}\frac{\gamma^{2(n+1)}}{\lambda_n^2} = 1 - \alpha_n, \quad \text{where } 0 \le \alpha_n \le c_1(\Gamma) \, \frac{1}{n^{2(p+\alpha)}},$$

$$p_n(z) = \sqrt{\frac{n+1}{\pi}} \Phi^n(z) \Phi'(z) \{1 + A_n(z)\},$$

where

$$|A_n(z)| \leq c_2(\Gamma) \frac{\log n}{n^{\rho+lpha}}, \quad z\in\overline{\Omega}.$$

Bergman Toeplitz Comparison

Strong asymptotics for Γ non-smooth

Theorem (St, C. R. Acad. Sci. Paris, 2010)

Assume that Γ is piecewise analytic without cusps. Then, for $n \in \mathbb{N}$,

$$\frac{n+1}{\pi}\frac{\gamma^{2(n+1)}}{\lambda_n^2} = 1 - \alpha_n \,, \quad \textit{where} \quad 0 \le \alpha_n \le c(\Gamma) \, \frac{1}{n}$$

and for any $z \in \Omega$,

$$p_n(z) = \sqrt{\frac{n+1}{\pi}} \Phi^n(z) \Phi'(z) \{1 + A_n(z)\}$$

where

$$|A_n(z)| \leq \frac{c_1(\Gamma)}{\operatorname{dist}(z,\Gamma) |\Phi'(z)|} \frac{1}{\sqrt{n}} + c_2(\Gamma) \frac{1}{n}.$$

Bergman Toeplitz Comparison

Ratio asymptotics for $p_n(z)$

Corollary (St, C. R. Acad. Sci. Paris, 2010)

For any $z \in \Omega$, and sufficiently large $n \in \mathbb{N}$,

$$\sqrt{\frac{n}{n+1}}\frac{p_n(z)}{p_{n-1}(z)} = \Phi(z)\{1+B_n(z)\}$$

where

$$|B_n(z)| \leq \frac{c_1(\Gamma)}{\sqrt{\operatorname{dist}(z,\Gamma)} |\Phi'(z)|} \frac{1}{\sqrt{n}} + c_2(\Gamma) \frac{1}{n}.$$

The above relation provides the means for computing approximations to the conformal map Φ . This leads to an efficient algorithm for recovering the shape of *G*, from a finite collection of its power moments $\langle z^m, z^k \rangle_{m,k=0}^n$. This method was actually commented as unsuitable by P. Henrici, in *Computational Complex Analysis, Vol. III* (1986), because of the instability of the Conventional GS.

Bergman Toeplitz Comparison