Bergman shift operators for Jordan domains

Nikos Stylianopoulos
University of Cyprus

Num An 2012
Fifth Conference in Numerical Analysis University of loannina

September 2012

Bergman polynomials $\left\{p_{n}\right\}$ on an Jordan domain G

$$
\Gamma:=\partial G \quad \Omega:=\overline{\mathbb{C}} \backslash \bar{G}
$$

$$
\langle f, g\rangle:=\int_{G} f(z) \overline{g(z)} d A(z), \quad\|f\|_{L^{2}(G)}:=\langle f, f\rangle^{1 / 2}
$$

The Bergman polynomials $\left\{p_{n}\right\}_{n=0}^{\infty}$ of G are the orthonormal polynomials w.r.t. the area measure on G :

$$
\left\langle p_{m}, p_{n}\right\rangle=\int_{G} p_{m}(z) \overline{p_{n}(z)} d A(z)=\delta_{m, n}
$$

with

$$
p_{n}(z)=\lambda_{n} z^{n}+\cdots, \quad \lambda_{n}>0, \quad n=0,1,2, \ldots
$$

Shift Operator

Let $L_{a}^{2}(G)$ denote the Bergman space of square integrable and analytic functions in G and consider the Bergman shift operator on $L_{a}^{2}(G)$. That is,

$$
S_{z}: L_{a}^{2}(G) \rightarrow L_{a}^{2}(G) \quad \text { with } \quad S_{z} f=z f
$$

Properties of S_{z}

(i) S_{z} defines a subnormal operator on $L_{a}^{2}(G)$.
(ii) $\sigma\left(S_{z}\right)=\bar{G}$ and $\sigma_{\text {ess }}\left(S_{z}\right)=\partial G$ (Axler, Conway \& McDonald, Can. J. Math., 1982).
(iii) $S_{z}^{*}(f)=P_{G}(\bar{z} f)$, where P_{G} denotes the orthogonal projection from $L^{2}(G)$ to $L_{a}^{2}(G)$.

Proof of (iii): For any $f, g \in L_{a}^{2}(G)$ it holds that

$$
\left\langle S_{z}^{*} f, g\right\rangle=\left\langle f, S_{z} g\right\rangle=\langle f, z g\rangle=\langle\bar{z} f, g\rangle=\left\langle P_{G}(\bar{z} f), g\right\rangle .
$$

Short-term recurrences for Bergman polynomials $\left\{p_{n}\right\}$

In general it holds that

$$
z p_{n}(z)=\sum_{k=0}^{n+1} b_{k, n} p_{k}(z), \quad \text { where } \quad b_{k, n}:=\left\langle z p_{n}, p_{k}\right\rangle
$$

Definition

We say that the polynomials $\left\{p_{n}\right\}_{n=0}^{\infty}$ satisfy an $m+1$-term recurrence relation, if for any $n \geq m-1$,

$$
z p_{n}(z)=b_{n+1, n} p_{n+1}(z)+b_{n, n} p_{n}(z)+\ldots+b_{n-m+1, n} p_{n-m+1}(z)
$$

Lemma (Putinar \& St, CAOT, 2007)
If the Bergman polynomials $\left\{p_{n}\right\}$ satisfy an $m+1$-term recurrence relation, then for any $p \in \mathbb{P}_{d}$, it holds that $S_{z}^{*} p \in \mathbb{P}_{d+m-1}$.

Proof of Lemma

Using the short-term recurrence relation we have:

$$
\left\langle S_{z}^{*} p, p_{n}\right\rangle=\left\langle p, S_{z} p_{n}\right\rangle=\left\langle p, z p_{n}\right\rangle=\left\langle p, \sum_{k=0}^{n-m+1} b_{k, n} p_{k}\right\rangle=\sum_{k=0}^{n-m+1} b_{k, n}\left\langle p, p_{k}\right\rangle .
$$

Thus, $\left\langle S_{z}^{*} p, p_{n}\right\rangle=0$, for any $d<n-m+1$, i.e., for $n>d+m-1$.

Only ellipses carry 3-term recurrence relations

Theorem (Putinar \& St, CAOT, 2007)

If the Bergman polynomials $\left\{p_{n}\right\}$ satisfy a 3-term recurrence relation, then $\Gamma=\partial G$ is an ellipse.

Proof. We use Havin's Lemma: $L^{2}(G)=L_{a}^{2}(G) \oplus \partial W_{0}^{1,2}(G)$.

$$
\bar{z}=P_{G}(\bar{z})+\partial g=S_{z}^{*}(\bar{z})+\partial g=p+\partial g
$$

where $g \in W_{0}^{1,2}(G)$ and $\operatorname{deg}(p) \leq 1$. Hence, by integration we obtain

$$
z \bar{z}=Q(z)+g(z)+\overline{f(z)}, \quad Q^{\prime}=p, \quad f \in L_{a}^{2}(G)
$$

From uniqueness in $W_{0}^{1,2}(G)$ we further obtain $f=\bar{Q}+$ const. Hence, $|z|^{2}=Q(z)+\overline{Q(z)}+c+g(z)$, for $z \in G$, and from regularity of $G:$

$$
|z|^{2}=Q(z)+\overline{Q(z)}+c, \quad z \in \Gamma .
$$

Only ellipses carry short-term recurrences for p_{n}

In fact, a great deal more can be obtained:
Theorem (St, C. R. Acad. Sci. Paris, 2010)
Assume that:
(i) $\Gamma=\partial G$ is piecewise analytic without cusps.
(ii) The Bergman polynomials $\left\{p_{n}\right\}_{n=0}^{\infty}$ satisfy an $m+1$-term recurrence relation, with some $m \geq 2$.
Then $m=2$ and Γ is an ellipse.
The above theorem refines some deep results of Putinar \& St (CAOT, 2007) and Khavinson \& St (Springer, 2010).

Matrix representation for S_{z}

The Bergman operator S_{z} has the following upper Hessenberg matrix representation with respect to the Bergman polynomials $\left\{p_{n}\right\}_{n=0}^{\infty}$ of G :

$$
\mathcal{M}=\left[\begin{array}{ccccccc}
b_{00} & b_{01} & b_{02} & b_{03} & b_{04} & b_{05} & \cdots \\
b_{10} & b_{11} & b_{12} & b_{13} & b_{14} & b_{15} & \cdots \\
0 & b_{21} & b_{22} & b_{23} & b_{24} & b_{25} & \cdots \\
0 & 0 & b_{32} & b_{33} & b_{34} & b_{35} & \cdots \\
0 & 0 & 0 & b_{43} & b_{44} & b_{45} & \cdots \\
0 & 0 & 0 & 0 & b_{54} & b_{55} & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \ddots
\end{array}\right]
$$

where $b_{k, n}=\left\langle z p_{n}, p_{k}\right\rangle$ are the Fourier coefficients of $S_{z} p_{n}=z p_{n}$.

Note

The eigenvalues of the $n \times n$ principal submatrix \mathcal{M}_{n} of \mathcal{M} coincide with the zeros of p_{n}.

Banded Hessenberg matrices for OP's are Jacobi

In the Numerical Linear Algebra jargon the short-term recurrence theorem reads as follows:

Theorem

If the upper Hessenberg matrix \mathcal{M} is banded, with constant bandwidth ≥ 3, then it is tridiagonal, i.e., a Jacobi matrix.

This result should put an end to the long search in Numerical Linear Algebra, for practical semi-iterative methods (aka polynomial iteration methods) based on short-term recurrence relations of orthogonal polynomials.

Example: $G \equiv \mathbb{D}$

This example shows why modern text books on Functional Analysis or Operators Theory do not refer to matrices: Indeed, in this case we have:

$$
p_{n}(z)=\sqrt{\frac{n+1}{\pi}} z^{n}, \quad n=0,1, \ldots
$$

Therefore, in the matrix representation \mathcal{M} of S_{z} the only non-zero diagonals are the main subdiagonal, and hence for any $n \in \mathbb{N}, \mathcal{M}_{n}$ is a nilpotent matrix. As a result, the Caley-Hamilton theorem implies:

$$
\sigma\left(\mathcal{M}_{n}\right)=\{0\} .
$$

This is in sharp contrast to:

$$
\sigma_{e s s}(\mathcal{M})=\sigma_{e s s}\left(S_{z}\right)=\{w:|w|=1\}
$$

and

$$
\sigma(\mathcal{M})=\sigma\left(S_{z}\right)=\{w:|w| \leq 1\}
$$

The inverse conformal map ψ

Recall that

$$
\Phi(z)=\gamma z+\gamma_{0}+\frac{\gamma_{1}}{z}+\frac{\gamma_{2}}{z^{2}}+\cdots
$$

and let $\psi:=\Phi^{-1}:\{w:|w|>1\} \rightarrow \Omega$, denote the inverse conformal map. Then,

$$
\Psi(w)=b w+b_{0}+\frac{b_{1}}{w}+\frac{b_{2}}{w^{2}}+\cdots, \quad|w|<1
$$

where

$$
b=\operatorname{cap}(\Gamma)=1 / \gamma .
$$

The Toeplitz matrix with (continuous) symbol Ψ

$$
T_{\psi}=\left[\begin{array}{cccccccc}
b_{0} & b_{1} & b_{2} & b_{3} & b_{4} & b_{5} & b_{6} & \cdots \\
b & b_{0} & b_{1} & b_{2} & b_{3} & b_{4} & b_{5} & \cdots \\
0 & b & b_{0} & b_{1} & b_{2} & b_{3} & b_{4} & \cdots \\
0 & 0 & b & b_{0} & b_{1} & b_{2} & b_{3} & \cdots \\
0 & 0 & 0 & b & b_{0} & b_{1} & b_{2} & \cdots \\
0 & 0 & 0 & 0 & b & b_{0} & b_{1} & \cdots \\
0 & 0 & 0 & 0 & 0 & b & b_{0} & \ddots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \ddots & \ddots
\end{array}\right]
$$

Spectral properties

Theorem (St, Constr, Approx., to appear)
If Γ is piecewise analytic without cusps, then

$$
\begin{equation*}
\left|b_{n}\right| \leq c_{1}(\Gamma) \frac{1}{n^{1+\omega}}, \quad n \in \mathbb{N} \tag{1}
\end{equation*}
$$

where $\omega \pi(0<\omega<2)$ is the smallest exterior angle of Γ.
Therefore, in this case, the symbol ψ of the Toeplitz matrix T_{ψ} belongs to the Wiener algebra. Thus, T_{Ψ} defines a bounded linear operator on the Hilbert space $I^{2}(\mathbb{N})$ and

$$
\begin{equation*}
\sigma_{e s s}\left(T_{\Psi}\right)=\Gamma \tag{2}
\end{equation*}
$$

see e.g., Bottcher \& Grudsky, Toeplitz book, 2005.

Faber polynomials of G

The Faber polynomial of the 2nd kind $G_{n}(z)$, is the polynomial part of the expansion of the Laurent series expansion of $\Phi^{n}(z) \Phi^{\prime}(z)$ at ∞ :

$$
G_{n}(z)=\Phi^{n}(z) \Phi^{\prime}(z)+O\left(\frac{1}{z}\right), \quad z \rightarrow \infty
$$

These polynomials satisfy the recurrence relation:

$$
z G_{n}(z)=b G_{n+1}(z)+\sum_{k=0}^{n} b_{k} G_{n-k}(z), \quad n=0,1, \ldots
$$

Recall: $z p_{n}(z)=\sum_{k=0}^{n+1} b_{k, n} p_{k}(z)$.

Note

The eigenvalues of the $n \times n$ principal submatrix T_{n} of T_{ψ} coincide with the zeros of G_{n}.

Ratio asymptotics for λ_{n}

Theorem (St, C. R. Acad. Sci. Paris, 2010 \& Constr. Approx.)
Assume that Γ is piecewise analytic without cusps. Then, for $n \in \mathbb{N}$,

$$
\sqrt{\frac{n+2}{n+1}} \frac{\lambda_{n}}{\lambda_{n+1}}=\operatorname{cap}(\Gamma)+\xi_{n}, \quad \text { where } \quad\left|\xi_{n}\right| \leq c(\Gamma) \frac{1}{n}
$$

The above relation provides the means for computing approximations to the capacity of Γ, by using only the leading coefficients of the Bergman polynomials.

Some coincidence

Recall

$$
\sigma_{\text {ess }}(\mathcal{M})=\Gamma=\sigma_{\text {ess }}\left(T_{\psi}\right) .
$$

Consider the main subdiagonal $b_{n+1, n}$ of \mathcal{M}. Then:

$$
b_{n+1, n}=\left\langle z p_{n}, p_{n+1}\right\rangle=\left\langle\lambda_{n} z^{n+1}+\cdots, p_{n+1}\right\rangle=\left\langle\lambda_{n} z^{n+1}, p_{n+1}\right\rangle=\frac{\lambda_{n}}{\lambda_{n+1}} .
$$

Since $\operatorname{cap}(\Gamma)=b$, it follows from the ratio asymptotics for λ_{n}, that:

Corollary

$$
\sqrt{\frac{n+2}{n+1}} b_{n+1, n}=b+O\left(\frac{1}{n}\right), \quad n \in \mathbb{N} .
$$

That is, the main subdiagonal of the upper Hessenberg matrix \mathcal{M} tends to the main subdiagonal of the Toeplitz matrix T_{ψ}.

$\mathcal{M} \rightarrow T_{\psi}$ diagonally

The next series of theorems show that the connection between the two matrices \mathcal{M} and T_{ψ} is much more substantial.

Theorem (Saff \& St., CAOT, 2012)

Assume that Γ is piecewise analytic without cusps. Then, it holds as $n \rightarrow \infty$,

$$
\begin{equation*}
\sqrt{\frac{n+2}{n+1}} b_{n+1, n}=b+O\left(\frac{1}{n}\right) \tag{3}
\end{equation*}
$$

and for $k \geq 0$,

$$
\begin{equation*}
\sqrt{\frac{n-k+1}{n+1}} b_{n-k, n}=b_{k}+O\left(\frac{1}{\sqrt{n}}\right) \tag{4}
\end{equation*}
$$

where O depends on k but not on n.

$\mathcal{M} \rightarrow T_{\psi}$ diagonally: Smooth curve

Improvements in the order of convergence occur in cases when Γ is smooth.

Theorem (Saff \& St., CAOT, 2012)
Assume that $\Gamma \in C(p+1, \alpha)$, with $p+\alpha>1 / 2$. Then, it holds as $n \rightarrow \infty$,

$$
\begin{equation*}
\sqrt{\frac{n+2}{n+1}} b_{n+1, n}=b+O\left(\frac{1}{n^{2(p+\alpha)}}\right) \tag{5}
\end{equation*}
$$

and for $k \geq 0$,

$$
\begin{equation*}
\sqrt{\frac{n-k+1}{n+1}} b_{n-k, n}=b_{k}+O\left(\frac{1}{n^{p+\alpha}}\right) \tag{6}
\end{equation*}
$$

where O depends on k but not on n.

$\mathcal{M} \rightarrow T_{\psi}$ diagonally: Analytic curve

For the case of an analytic boundary Γ further improved asymptotic results can be obtained.

Theorem (Saff \& St., CAOT, 2012)

Assume that the boundary Γ is analytic and let $\rho<1$ be the smallest index for which Φ is conformal in the exterior of L_{ρ}. Then, it holds as $n \rightarrow \infty$,

$$
\begin{equation*}
\sqrt{\frac{n+2}{n+1}} b_{n+1, n}=b+O\left(\rho^{2 n}\right) \tag{7}
\end{equation*}
$$

and for $k \geq 0$,

$$
\begin{equation*}
\sqrt{\frac{n-k+1}{n+1}} b_{n-k, n}=b_{k}+O\left(\sqrt{n} \rho^{n}\right) \tag{8}
\end{equation*}
$$

where O depends on k but not on n.

Is $\mathcal{M}-T_{\psi}$ compact?

Corollary

If the upper Hessenberg matrix \mathcal{M} is banded, with constant bandwidth, then $\mathcal{M}-T_{\psi}$ defines a compact operator on $I^{2}(\mathbb{N})$.

Is the following true?
The adjoint operator $S_{z}^{*}: L_{a}^{2}(G) \rightarrow L_{a}^{2}(G)$ maps \mathbb{P} into itself if and only if $\Gamma:=\partial G$ is an ellipse.

The above is equivalent to:
Conjecture, Khavinson \& Shapiro, 1992
The Dirichlet problem for G has a nolynomial solution for any polynomial data on Γ if an only if $\Gamma=\partial G$ is an ellipse.

Is $\mathcal{M}-T_{\psi}$ compact?

Corollary

If the upper Hessenberg matrix \mathcal{M} is banded, with constant bandwidth, then $\mathcal{M}-T_{\psi}$ defines a compact operator on $I^{2}(\mathbb{N})$.

Is the following true?

The adjoint operator $S_{z}^{*}: L_{a}^{2}(G) \rightarrow L_{a}^{2}(G)$ maps \mathbb{P} into itself if and only if $\Gamma:=\partial G$ is an ellipse.

The above is equivalent to:
Conjecture, Khavinson \& Shapiro, 1992
The Dirichlet problem for G has a polynomial solution for any polynomial data on Γ if an only if $\Gamma=\partial G$ is an ellipse.

Example：G is a 3 －cusped hypocycloid

Assume that $\nu(P)$ denotes the normalized counting measure of zeros of the polynomial P ．Also let μ_{Γ} denote the equilibrium measure on Γ ， note that $\operatorname{supp}\left(\mu_{\Gamma}\right)=\Gamma$ and recall $\sigma_{\text {ess }}(\mathcal{M})=\Gamma=\sigma_{\text {ess }}\left(T_{\psi}\right)$ ．Then：
Levin，Saff \＆St．，Constr．Approx．（2003）：

$$
\nu\left(p_{n}\right) \xrightarrow{*} \mu_{\Gamma}, \quad n \rightarrow \infty, n \in \mathcal{N}, \quad \mathcal{N} \subset \mathbb{N} .
$$

He \＆Saff，JAT（1994）：

$$
\sigma\left(T_{n}\right) \subset[0,1.5] \cup\left[0,1.5 e^{i 2 \pi / 3}\right] \cup\left[0,1.5 e^{i 4 \pi / 3}\right] .
$$

Example: G is the square

Recall: $\sigma_{\text {ess }}(\mathcal{M})=\Gamma=\sigma_{\text {ess }}\left(T_{\psi}\right)$.
Maymeskul \& Saff, JAT (2003):

$$
\sigma\left(M_{n}\right) \subset \text { the two diagonals }
$$

Kuijlaars \& Saff, Math. Proc. Cambrigde Phil. Soc. (1995):

$$
\nu\left(G_{n}\right) \xrightarrow{*} \mu_{\Gamma}, \quad n \rightarrow \infty, n \in \mathcal{N}, \quad \mathcal{N} \subset \mathbb{N}
$$

Example: G is the canonical pentagon

Recall: $\sigma_{\text {ess }}(\mathcal{M})=\Gamma=\sigma_{\text {ess }}\left(T_{\psi}\right)$.
Levin, Saff \& St., Constr. Approx. (2003):

$$
\nu\left(p_{n}\right) \xrightarrow{*} \mu_{\Gamma}, \quad n \rightarrow \infty, n \in \mathcal{N}, \quad \mathcal{N} \subset \mathbb{N}
$$

Kuijlaars \& Saff, Math. Proc. Cambrigde Phil. Soc. (1995):

$$
\nu\left(G_{n}\right) \xrightarrow{*} \mu_{\Gamma}, \quad n \rightarrow \infty, n \in \mathcal{N}, \quad \mathcal{N} \subset \mathbb{N}
$$

Asymptotics

$$
\begin{array}{r}
\Omega:=\overline{\mathbb{C}} \backslash \bar{G} \\
\Phi(z)=\gamma z+\gamma_{0}+\frac{\gamma_{1}}{z}+\frac{\gamma_{2}}{z^{2}}+\cdots . \quad \operatorname{cap}(\Gamma)=1 / \gamma \\
\hline
\end{array}
$$

The Bergman polynomials of G :

$$
p_{n}(z)=\lambda_{n} z^{n}+\cdots, \quad \lambda_{n}>0, \quad n=0,1,2, \ldots
$$

Strong asymptotics when Γ is analytic

T. Carleman, Ark. Mat. Astr. Fys. (1922)

If $\rho<1$ is the smallest index for which Φ is conformal in $\operatorname{ext}\left(L_{\rho}\right)$, then

$$
\begin{aligned}
& \frac{n+1}{\pi} \frac{\gamma^{2(n+1)}}{\lambda_{n}^{2}}=1-\alpha_{n}, \text { where } 0 \leq \alpha_{n} \leq c_{1}(\Gamma) \rho^{2 n}, \\
& p_{n}(z)=\sqrt{\frac{n+1}{\pi}} \Phi^{n}(z) \Phi^{\prime}(z)\left\{1+A_{n}(z)\right\}, \quad n \in \mathbb{N},
\end{aligned}
$$

where

$$
\left|A_{n}(z)\right| \leq c_{2}(\Gamma) \sqrt{n} \rho^{n}, \quad z \in \bar{\Omega} .
$$

Strong asymptotics when Γ is smooth

We say that $\Gamma \in C(p, \alpha)$, for some $p \in \mathbb{N}$ and $0<\alpha<1$, if Γ is given by $z=g(s)$, where s is the arclength, with $g^{(p)} \in \operatorname{Lip} \alpha$. Then both Φ and $\psi:=\Phi^{-1}$ are p times continuously differentiable in $\bar{\Omega} \backslash\{\infty\}$ and $\bar{\Delta} \backslash\{\infty\}$ respectively, with $\Phi^{(p)}$ and $\Psi^{(p)} \in \operatorname{Lip} \alpha$.
P.K. Suetin, Proc. Steklov Inst. Math. AMS (1974)

Assume that $\Gamma \in C(p+1, \alpha)$, with $p+\alpha>1 / 2$. Then, for $n \in \mathbb{N}$,

$$
\frac{n+1}{\pi} \frac{\gamma^{2(n+1)}}{\lambda_{n}^{2}}=1-\alpha_{n}, \quad \text { where } 0 \leq \alpha_{n} \leq c_{1}(\Gamma) \frac{1}{n^{2(p+\alpha)}},
$$

$$
p_{n}(z)=\sqrt{\frac{n+1}{\pi}} \Phi^{n}(z) \Phi^{\prime}(z)\left\{1+A_{n}(z)\right\}
$$

where

$$
\left|A_{n}(z)\right| \leq c_{2}(\Gamma) \frac{\log n}{n^{p+\alpha}}, \quad z \in \bar{\Omega}
$$

Strong asymptotics for Γ non-smooth

Theorem (St, C. R. Acad. Sci. Paris, 2010)
Assume that Γ is piecewise analytic without cusps. Then, for $n \in \mathbb{N}$,

$$
\frac{n+1}{\pi} \frac{\gamma^{2(n+1)}}{\lambda_{n}^{2}}=1-\alpha_{n}, \quad \text { where } \quad 0 \leq \alpha_{n} \leq c(\Gamma) \frac{1}{n},
$$

and for any $z \in \Omega$,

$$
p_{n}(z)=\sqrt{\frac{n+1}{\pi}} \Phi^{n}(z) \Phi^{\prime}(z)\left\{1+A_{n}(z)\right\}
$$

where

$$
\left|A_{n}(z)\right| \leq \frac{c_{1}(\Gamma)}{\operatorname{dist}(z, \Gamma)\left|\Phi^{\prime}(z)\right|} \frac{1}{\sqrt{n}}+c_{2}(\Gamma) \frac{1}{n}
$$

Ratio asymptotics for $p_{n}(z)$

Corollary (St, C. R. Acad. Sci. Paris, 2010)
For any $z \in \Omega$, and sufficiently large $n \in \mathbb{N}$,

$$
\sqrt{\frac{n}{n+1}} \frac{p_{n}(z)}{p_{n-1}(z)}=\Phi(z)\left\{1+B_{n}(z)\right\}
$$

where

$$
\left|B_{n}(z)\right| \leq \frac{c_{1}(\Gamma)}{\sqrt{\operatorname{dist}(z, \Gamma)\left|\Phi^{\prime}(z)\right|}} \frac{1}{\sqrt{n}}+c_{2}(\Gamma) \frac{1}{n}
$$

The above relation provides the means for computing approximations to the conformal map Φ. This leads to an efficient algorithm for recovering the shape of G, from a finite collection of its power moments $\left\langle z^{m}, z^{k}\right\rangle_{m, k=0}^{n}$. This method was actually commented as unsuitable by P. Henrici, in Computational Complex Analysis, Vol. III (1986), because of the instability of the Conventional GS.

