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Definition: Bergman polynomials {p,}

e_N

M, j=1,...,N, asystem of disjoint and mutually exterior Jordan

curves in C, | Gy := int(T)) |, [T := UYL T, || G:= UX, G|

(f.g) = /G H(2)9@)0Az). [l = (F.0)2

The Bergman polynomials {p,} 2, of G are the orthonormal
polynomials w.r.t. the area measure on G:

(P Do) = /G Pl(2)Pa(2)0A(2) = G,

with
pn(z):Anzn‘i’"', )\n>0, n:0,1,2,....
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Construction of p,’s

Algorithm: Conventional Gram-Schmidt (GS)
Apply the Gram-Schmidt process to the monomials

1,2,22,2%, ...

Main ingredient: the moments

pmk = (2™, ZK) = / z'”?de(z), mk=0,1,....
G

The above algorithm has been been suggested by pioneers of
Numerical Conformal Mapping (like P. Davis and D. Gaier) as the
standard procedure for constructing Bergman polynomials. It was
subsequently used by researchers in this area (e.g. Kokkinos,
Papamichael, Sideridis and Warby). It has been even employed in the
numerical conformal FORTRAN package BKMPACK of Warby.
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Instability Indicator

The GS method is notorious for its instability. For measuring it, when
orthonormalizing a system S, := {uy, g, ..., un} of functions, the
following instability indicator has been proposed by J.M. Taylor, (Proc.
R.S. Edin., 1978):

Hun”iz(e)

Iy neN.

B minuespan(sn,1) ”Un - U”Ez(G)7

Note that, when S, is an orthonormal system, then . When S,

is linearly dependent then . Also, if Gp := [(Um, Ui)]T, k=1
denotes the Gram matrix associated with S, then,

HZ(Gn) > Iy s

where 2(Gjp) is the spectral condition number of G,.
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Instability of the Conventional GS

In the single-component case N = 1, consider the monomials
u:=2I"1,j=1,2,...,n. Then, for the conventional GS we have the
following result:

Theorem (N. Papamichael and M. Warby, Numer. Math., 1986.)
Assume that the curve I is piecewise-analytic without cusps and let

[L:=d(N)/cap(r)| (>1),

where d(I') := max{|z| : z € T'} and cap(I') denotes the capacity of .
Then,

or(N) 2" < [, < () L27].

Note that L = 1, iff G = D. Also, when G is the 8 x 2 rectangle
centered at the origin, then L = 3/v/2 ~ 2.12. In this case, ks =< 10'°

and the method breaks down in MATLAB, for | n = 25|,
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The Arnoldi algorithm in NLA

Let Ae C™™ b e C™ and consider the Krylov subspace
Ki := span{b,Ab, A%b ..., A*""p}.

The Arnoldi algorithm produces an orthonormal set of vectors
{vy, vo,..., v} as follows:

W. Arnoldi (Quart. Appl. Math., 1951)

At the n-th step, apply GS to orthonormalize the vector Av,,_; (instead
of A"~'b) against the (already computed) orthonormal vectors
{V1, Vo,..., Vn,1}.
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The Arnoldi algorithm for OP’s

Let 1 be an (non-trivial) finite Borel measure with compact support on
C and consider the series of orthonormal polynomials

pn(zvﬂ‘) = )‘n(ﬂ)zn+"'v )‘n(:u)>oa n=0,1,2,...,

generated by the inner product
/ f(2)g(2)du(z2).

Arnoldi GS for orthonormal polynomials

At the n-th step, apply GS to orthonormalize the polynomial zp,_ 1
(instead of z") against the (already computed) orthonormal
polynomials {po, p1, - -, Pn—1}-
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Stability of Arnoldi GS

In the case of Arnoldi GS, the instability indicator is given by:

| zPn—1 ||iz(G)

= — 5 , neN.
MiNpep,_, ||an—1 _pHLZ(G)

n+1 -

Theorem (l)
It holds,

)\2
1§ ln+1 S max n71(/‘)

, neN.
zesupp(u)  M3(n)

Typically: When du = |dz| (Szegd polynomials), or du = dA
(Bergman polynomials), then

An—1(p)
An(ﬂ)
Also, when dy = dx on [a, b] C R, this ratio tends to (b — a)/4.
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Zeros of Bergman polys: Three Disks

Zeros of the Bergman polynomials p,, n = 140, 150 and 160.

Theory in: Gustafsson, Putinar, Saff & St, Adv. Math., 2009.
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Single-component case N = 1

Q — & — A

5 0
oC P .
Q:=C\G
7o,
®(z2) = —+ S+ N=1
(2)=7z+0+ S +5+ cap(l) =1/vy
The Bergman polynomials of G:
pn(2)=X2"+--, Ap>0, n=0,1,2,....
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Strong asymptotics when I is analytic

Q b — A

9

T. Carleman, Ark. Mat. Astr. Fys. (1922)
If p < 1 is the smallest index for which ® is conformal in ext(L,), then

n+ 1 ~&n+1)
s A2

pr(2) = || T Len(2)0'(2)1 + An(2)),| neN,

An(2)| < ca(T)WAp", zE€T.

=1—ap,| where 0 < a, < ¢(IN) p*",

where
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Strong asymptotics when I is smooth

We say that T € C(p, «), forsome pe Nand 0 < a < 1,if [ is given
by z = g(s), where s is the arclength, with g() € Lipa. Then both ¢
and ¥ := o~ are p times continuously differentiable in Q \ {cc} and
A\ {oo} respectively, with ®(P) and W(P) ¢ Lipa.

P.K. Suetin, Proc. Steklov Inst. Math. AMS (1974)
Assume that € C(p+ 1, a), with p+ « > 1/2. Then

n—+1 72(n+1)
- 2 =1—ap, whereOgangg(r)W’
pn(2) = W(D”(z)d)’(z)ﬂ + Ax(2)},| neN,
where I
ogn _
An(2)] < ea(N) s, z€T
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Strong asymptotics for I' non-smooth

Theorem (St, C. R. Acad. Sci. Paris, 2010)
Assume that T is piecewise analytic without cusps. Then,

n+1 72(n+1)
T A2

=1—a,|, where Ogangc(l')%, néeN.

and for any z € Q,

pn(2) = |/ TEL0n(2)0/(2) (1 + An(2)} |
where
01(F) 1 1

‘An(Z)‘SWI‘FC‘z( )E, ne N.
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Numerical example: Half-disk

We compute, by using the Arnoldi GS process (in finite precision), the
Bergman polynomials p,(z) for the unit half-disk, for n up to 60 and
test the hypothesis

N2

71' A2 ns’

ap =1
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Numerical example: Half-disk

n Qp S
51 | 0.003263458678 -
52 | 0.003200769764 0.998887
53 | 0.003140444435 0.998899
54 | 0.003082351464 0.998911
55 | 0.003026369160 0.998923
56 | 0.002972384524 0.998934
57 | 0.002920292482 0.998946
58 | 0.002869952027 0.998957
59 | 0.002821401485 0.998968
60 | 0.002774426207 0.998979

. 1 .
The numbers indicate clearly that o, ~ C o Accordingly, we have

made conjectures regarding strong asymptotics in Oberwolfach
Reports (2004) and ETNA (2006).
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Ratio asymptotics for A\,

Corollary (St, C. R. Acad. Sci. Paris, 2010)

n+1X_q
n A

1
=cap(l) +&,|, where [&] <c(N) FURRLE N.

The above relation provides the means for computing approximations
to the capacity of I', by using only the leading coefficients of the
Bergman polynomials. In addition:

Corollary J

c(lN <h<cec(l), neN.

Hence, under the assumptions of the previous theorem, the Arnoldi
GS for Bergman polynomials, in the single component case, is stable.
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Ratio asymptotics for p,(z)

Corollary (St, C. R. Acad. Sci. Paris, 2010)
For any z € Q, and sufficiently large n € N,

Pn+1(2)
\/,,TZ o) = Y@+ B2}

1Bn(2) o) & (1)
! \/dlst N[o'(z f n

The above relation provides the means for computing approximations
to the conformal map @ in Q, by simply taking the ratio of two
consequent Bergman polynomials. This leads to an efficient
algorithm for recovering the shape of G, from a finite collection of its
power moments (2", z¥), m,k =0,1,...,n.

where
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Only ellipses carry finite-term recurrences for p,

Definition
We say that the polynomials {p,}°, satisfy a (M + 1)-term
recurrence relation, if forany n > M — 1,

Zpn(2) = a@nt1,0Pn+1(2) + @n,nPn(2) + - .. + @n—m+1,nPn—m+1(2)-

Theorem (St, C. R. Acad. Sci. Paris, 2010)
Assume that:
o [ = 0G is piecewise analytic without cusps;

e the Bergman polynomials {p,}:° , satisfy a (M + 1)-term
recurrence relation, with some M > 2.

Then M =2 andT is an ellipse.

The above theorem refines results of Putinar & St (CAOT, 2009) and
Khavinson & St (Springer, 2010).
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Leading coefficients in Archipelago

e_"N

2

Theorem (Gustafsson, Putinar, Saff & St, Adv. Math., 2009)
Assume that every I; is analytic, j=1,2,...,N. Then

n-+1 1 n-+1 1
* A < oo(N)y/ 15

< ————, neN.
7w cap(l)rtt — 7 — m  cap(l)n+1’ <

Cq (F)

Corollary

o3(lN) <hh < (), neN.

Hence, the Arnoldi GS, for Bergman polynomials on an archipelago,
is stable.
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Bergman polynomials in Archipelago

YR N

Let go(z, 00) denote the Green function of Q := C\ G with pole at cc.

Theorem (Gustafsson, Putinar, Saff & St, Adv. Math., 2009)
Assume that every I; is analytic. Then:
(i) There exists a positive constant C, so that

vnexp{nga(z,)}, z¢ G (1)

C
|pn(z)| < m

(ii) Forevery e > 0 there exist a constant C. > 0, such that

|pn(2)| > Cv/nexp{nga(z,o0)}, dist(z,Co(G)) > e.
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Recovery of Jordan domains (case N = 1)

Truncated Moments Problem
Given the finite n+1 x n+ 1 section

[amlma=o,  Hmk = /G Z"Z"dA(2),

of the infinite complex moment matrix [Mm,k]?nc,k:o associated with a
bounded Jordan domain G, compute a good approximation to its
boundary T

Theorem (Davis & Pollak, Trans. AMS, 1956)
The infinite matrix [pim k|5 k—o defines uniquely T.
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An algorithm based on ratio asymptotics

The Recovery Algorithm
(I) Use the Arnoldi GS to compute pg, p1, - - ., Pn-
(I Compute the coefficients of the Laurent series of the ratio

(n) (n) (n)

n  ps(2) () (n , & a, a,
= — R 2
‘/n+1p,,_1(z) avz+a +—+ s+ 5+, (2

(Il1) Revert (2) and truncate to obtain

() (n) () ()
— (b b, bs bn
\Un(w)*b(n)W‘l-bo +7+W‘|‘W++W”

(IV) Approximate I by I := {z: z = W,(e"), t € [0,2x] }.
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Convergence of the recovery algorithm

V.=l {w:|w| > 1} = Q, the inverse conformal map, where

b

b
W(z):bw+b0+w+ﬁ+..., b = cap(I')

Theorem
Let B,(z) denote the error function in the ratio asymptotics of the
Bergman polynomials. Then,

max |W(w) — V,(w)| < C(I') max|Bs(z)|, neN.

|w|=1 zel
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Numerical Examples

Recovery of the canonical ellipse, with n = 3
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Recovery of the square, with n =16

-0,6 -0,4 -0,2 ¢

Comparison: The exponential transform algorithm of Gustafsson, He,
Milanfar & Putinar, Inverse Problems (2000).
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Recovery of the cusped hypocycloid, with n = 10 and n = 20.
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Discovery of an Archipelago

YR N

G =int(;) | |M:=ul,l;L |G:=U),G|

Truncated moments problem
Starting with the finite n+ 1 x n+ 1 section

[milmk—os  Hmk = /G Zz"Z"dA(z2),

of the associated infinite complex moment matrix [1m k|7 ko
compute a good approximation to G.
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Discovery of an Archipelago

PR N

Archipelago Recovery Algorithm
(I) Use the Arnoldi-type GS to compute pg, p1, - - ., Pn-

(1) Form the square root of the Christoffel function

1

(1) Plot the zeros of p;, j=1,2,...,n.

An(2) =

(IV) Plot the level curves of the function A,(x + iy), on a suitable
rectangular frame for (x, y) that surrounds the plotted zero set.
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Theoretical Support of the Recovery Algorithm

P

Theorem (Gustafsson, Putinar, Saff & St, Adv. Math., 2009)

Assume that every T'; is analytic and letQ := C \ G. Then,

An(z) = dist(z,T), z€e G, n— oo

1
An(2) = e zel, n—oo

A(2) =< exp{—-nga(z,0)}, z€Q, n-— oco.

where ga(z, ) denotes the Green function of Q with pole at infinity.

Note: ’gg(z, 0)>0, zeQ ‘
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Recovery of three disks

Level lines of Ap(x +iy)on {(x,y): =1 < x <4, -2 <y <2}, for
n =25, 50, 75, 100.
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Recovery of half-disk and disk

Level lines of Aqgo(x +iy)on {(x,y): =1 <x<6,-2<y <2}
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Recovery of pentagon and disk

Level lines of Ap(x +iy) on {(x,y): —2 < x <5,-2 < y < 2}, for
n =25, 50.
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