

Problems Session

Nikos Stylianopoulos University of Cyprus

Hausdorff Geometry Of Polynomials And Polynomial Sequences Institut Mittag-Leffler Djursholm, Sweden May-June 2018

Lebesgue spaces and Orthonormal Polynomials

Let μ be a finite positive Borel measure having compact and infinite support $S_{\mu} := \operatorname{supp}(\mu)$ in the complex plane \mathbb{C} . Then, the measure yields the Lebesgue spaces $L^{2}(\mu)$ with inner product

$$\langle f,g
angle_{\mu}:=\int f(z)\overline{g(z)}d\mu(z)$$

and norm

$$\|f\|_{L^2(\mu)} := \langle f, f \rangle_{\mu}^{1/2}.$$

Let $\{p_n(\mu, z)\}_{n=0}^{\infty}$ denote the sequence of orthonormal polynomials associated with μ . That is, the unique sequence of the form

$$p_n(\mu, z) = \gamma_n(\mu) z^n + \cdots, \quad \gamma_n(\mu) > 0, \quad n = 0, 1, 2, \dots,$$

satisfying $\langle p_m(\mu, \cdot), p_n(\mu, \cdot) \rangle_{\mu} = \delta_{m,n}$.

Distribution of zeros: The tools

For any polynomial $q_n(z)$, of degree *n*, we denote by ν_{q_n} the normalized counting measure for the zeros of $q_n(z)$; that is,

$$\nu_{q_n} := \frac{1}{n} \sum_{q_n(z)=0} \delta_z,$$

where δ_z is the unit point mass (Dirac delta) at the point *z*. For any measure μ with compact support in \mathbb{C} ,

$$U^{\mu}(z):=\int\lograc{1}{|z-t|}d\mu(t),\quad z\in\mathbb{C}.$$

denotes the logarithmic potential on μ . Then

$$U^{
u_{q_n}}(z)=rac{1}{n}\lograc{1}{|q_n(z)|},\quad z\in\mathbb{C}.$$

With μ_E we denote the equilibrium measure of a compact set *E* of positive logarithmic capacity.

Approximation Theory Operator Theory

Bergman polynomials $\{p_n\}$ on an Jordan domain G

$$\langle f,g\rangle := \int_G f(z)\overline{g(z)}dA(z), \quad \|f\|_{L^2(G)} := \langle f,f\rangle^{1/2}.$$

The Bergman polynomials $\{p_n\}_{n=0}^{\infty}$ of *G* are the orthonormal polynomials w.r.t. the area measure on *G*:

$$\langle \boldsymbol{p}_m, \boldsymbol{p}_n \rangle = \int_G \boldsymbol{p}_m(z) \overline{\boldsymbol{p}_n(z)} d\boldsymbol{A}(z) = \delta_{m,n},$$

with

$$p_n(z) = \lambda_n z^n + \cdots, \quad \lambda_n > 0, \quad n = 0, 1, 2, \ldots$$

Shift Operator

Let $L_a^2(G)$ denote the Bergman space of square integrable and analytic functions in *G* and consider the Bergman shift operator on $L_a^2(G)$. That is,

$$S_z: L^2_a(G) \to L^2_a(G)$$
 with $S_z f = zf$.

Properties of Sz

- (i) S_z defines a subnormal operator on $L^2_a(G)$.
- (ii) $\sigma(S_z) = \overline{G}$ and $\sigma_{ess}(S_z) = \partial G$ (Axler, Conway & McDonald, Can. J. Math., 1982).
- (iii) $S_z^*(f) = P_G(\overline{z}f)$, where P_G denotes the orthogonal projection from $L^2(G)$ to $L_a^2(G)$.

Proof of (iii): For any $f, g \in L^2_a(G)$ it holds that

$$\langle S_z^*f,g\rangle = \langle f,S_zg\rangle = \langle f,zg\rangle = \langle \overline{z}f,g\rangle = \langle \mathcal{P}_G(\overline{z}f),g\rangle.$$

Recurrences for Bergman polynomials $\{p_n\}$

In general it holds that

$$zp_n(z) = \sum_{k=0}^{n+1} b_{k,n}p_k(z), \text{ where } b_{k,n} := \langle zp_n, p_k \rangle.$$

Matrix representation for S_z

The Bergman operator S_z has the following upper Hessenberg matrix representation with respect to the Bergman polynomials $\{p_n\}_{n=0}^{\infty}$ of *G*:

$$\mathcal{M} = \begin{bmatrix} b_{00} & b_{01} & b_{02} & b_{03} & b_{04} & b_{05} & \cdots \\ b_{10} & b_{11} & b_{12} & b_{13} & b_{14} & b_{15} & \cdots \\ 0 & b_{21} & b_{22} & b_{23} & b_{24} & b_{25} & \cdots \\ 0 & 0 & b_{32} & b_{33} & b_{34} & b_{35} & \cdots \\ 0 & 0 & 0 & b_{43} & b_{44} & b_{45} & \cdots \\ 0 & 0 & 0 & 0 & b_{54} & b_{55} & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots & \ddots \end{bmatrix},$$

where $b_{k,n} = \langle zp_n, p_k \rangle$ are the Fourier coefficients of $S_z p_n = zp_n$.

Note

The eigenvalues of the $n \times n$ principal submatrix \mathcal{M}_n of \mathcal{M} coincide with the zeros of p_n .

Approximation Theory Operator Theory

Shift Matrix Toeplitz Examples

Example: $G \equiv \mathbb{D}$

This example shows why modern text books on Functional Analysis or Operators Theory do not refer to matrices: Indeed, in this case we have:

$$p_n(z) = \sqrt{\frac{n+1}{\pi}}z^n, \quad n = 0, 1, \ldots$$

Therefore, in the matrix representation \mathcal{M} of S_z the only non-zero diagonals are the main subdiagonal, and hence for any $n \in \mathbb{N}$, \mathcal{M}_n is a nilpotent matrix. As a result, the Caley-Hamilton theorem implies:

$$\sigma(\mathcal{M}_n) = \{\mathbf{0}\}.$$

This is in sharp contrast to:

$$\sigma_{ess}(\mathcal{M}) = \sigma_{ess}(\mathcal{S}_z) = \{ w : |w| = 1 \}$$

and

$$\sigma(\mathcal{M}) = \sigma(\mathcal{S}_z) = \{ w : |w| \leq 1 \}.$$

The inverse conformal map Ψ

Recall that

$$\Phi(z) = \gamma z + \gamma_0 + \frac{\gamma_1}{z} + \frac{\gamma_2}{z^2} + \cdots,$$

and let $\Psi := \Phi^{-1} : \{ w : |w| > 1 \} \to \Omega$, denote the inverse conformal map. Then,

$$\Psi(w) = bw + b_0 + \frac{b_1}{w} + \frac{b_2}{w^2} + \cdots, \quad |w| < 1,$$

where

$$b = \operatorname{cap}(\Gamma) = 1/\gamma.$$

٠

The Toeplitz matrix with (continuous) symbol Ψ

Spectral properties

Theorem (St, Constr, Approx., 2013)

If Γ is piecewise analytic without cusps, then

$$|b_n| \le c_1(\Gamma) \frac{1}{n^{1+\omega}}, \quad n \in \mathbb{N},$$
 (1)

where $\omega \pi$ (0 < ω < 2) is the smallest exterior angle of Γ .

Therefore, in this case, the symbol Ψ of the Toeplitz matrix T_{Ψ} belongs to the Wiener algebra. Thus, T_{Ψ} defines a bounded linear operator on the Hilbert space $l^2(\mathbb{N})$ and

$$\sigma_{ess}(T_{\Psi}) = \Gamma$$
; (2)

see e.g., Bottcher & Grudsky, Toeplitz book, 2005.

Faber polynomials of G

The Faber polynomial of the 2nd kind $G_n(z)$, is the polynomial part of the expansion of the Laurent series expansion of $\Phi^n(z)\Phi'(z)$ at ∞ :

$$G_n(z) = \Phi^n(z)\Phi'(z) + O\left(\frac{1}{z}\right), \quad z \to \infty.$$

These polynomials satisfy the recurrence relation:

$$zG_n(z) = bG_{n+1}(z) + \sum_{k=0}^n b_k G_{n-k}(z)$$
, $n = 0, 1, ...,$

Recall:
$$zp_n(z) = \sum_{k=0}^{n+1} b_{k,n} p_k(z)$$
.

Note

The eigenvalues of the $n \times n$ principal submatrix T_n of T_{ψ} coincide with the zeros of G_n .

Approximation Theory Operator Theory

Shift Matrix Toeplitz Examples

$\mathcal{M} ightarrow \mathcal{T}_\psi$ diagonally

The next series of theorems show that the connection between the two matrices \mathcal{M} and T_{Ψ} is much more substantial.

Theorem (Saff & St., CAOT, 2012 and Beckemann & St., Constr. Approx., 2018)

Assume that Γ is piecewise analytic without cusps. Then, it holds as $n \to \infty,$

$$\sqrt{\frac{n+2}{n+1}}b_{n+1,n} = b + O\left(\frac{1}{n}\right),\tag{3}$$

and for $k \ge 0$,

$$\sqrt{\frac{n-k+1}{n+1}}b_{n-k,n} = b_k + O\left(\frac{1}{n}\right),\tag{4}$$

where O depends on k but not on n.

$\mathcal{M} ightarrow \mathcal{T}_\psi$ diagonally: Smooth curve

Improvements in the order of convergence occur in cases when Γ is smooth.

Theorem (Saff & St., CAOT, 2012 and Beckemann & St., Constr. Approx., 2018)

Assume that $\Gamma \in C(p + 1, \alpha)$, with $p + \alpha > 1/2$. Then, it holds as $n \to \infty$,

$$\sqrt{\frac{n+2}{n+1}}b_{n+1,n} = b + O\left(\frac{1}{n^{2(p+\alpha)}}\right),\tag{5}$$

and for $k \ge 0$,

$$\sqrt{\frac{n-k+1}{n+1}}b_{n-k,n} = b_k + O\left(\frac{1}{n^{2(p+\alpha)}}\right),\tag{6}$$

where O depends on k but not on n.

$\mathcal{M} ightarrow \mathcal{T}_\psi$ diagonally: Analytic curve

For the case of an analytic boundary Γ further improved asymptotic results can be obtained.

Theorem (Saff & St., CAOT, 2012 and Beckemann & St., Constr. Approx., 2018)

Assume that the boundary Γ is analytic and let $\rho < 1$ be the smallest index for which Φ is conformal in the exterior of L_{ρ} . Then, it holds as $n \to \infty$,

$$\sqrt{\frac{n+2}{n+1}}b_{n+1,n} = b + O(\rho^{2n}), \tag{7}$$

and for $k \ge 0$,

$$\sqrt{\frac{n-k+1}{n+1}}b_{n-k,n} = b_k + O(\rho^{2n}),$$
(8)

where O depends on k but not on n.

Is $\mathcal{M} - \mathcal{T}_{\psi}$ compact?

Corollary

If the upper Hessenberg matrix \mathcal{M} is banded, with constant bandwidth, then $\mathcal{M} - T_{\psi}$ defines a compact operator on $l^{2}(\mathbb{N})$.

Theorem (Putinar & St, CAOT, 2007)

If the Bergman polynomials $\{p_n\}$ satisfy a 3-term recurrence relation, then $\Gamma = \partial G$ is an ellipse.

Theorem (Khavinson & St, Springer, 2009 (St, CRAS, 2010))

Assume that:

- (i) $\Gamma = \partial G$ is C^2 continuous (piecewise analytic without cusps).
- (ii) The Bergman polynomials $\{p_n\}_{n=0}^{\infty}$ satisfy an m + 1-term recurrence relation, with some $m \ge 2$.

Then m = 2 and Γ is an ellipse.

Example: G is a 3-cusped hypocycloid

Note that $\operatorname{supp}(\mu_{\Gamma}) = \Gamma$ and recall $\sigma_{ess}(\mathcal{M}) = \Gamma = \sigma_{ess}(T_{\Psi})$.

• Levin, Saff & St., Constr. Approx. (2003):

$$u(\boldsymbol{p}_n) \stackrel{*}{\longrightarrow} \mu_{\Gamma}, \quad n \to \infty, \ n \in \mathcal{N}, \quad \mathcal{N} \subset \mathbb{N}.$$

• He & Saff, JAT (1994):

$$\sigma(\mathcal{T}_n) \subset [0, 1.5] \cup [0, 1.5e^{i2\pi/3}] \cup [0, 1.5e^{i4\pi/3}]$$

Example: G is the square

$$\sigma_{ess}(\mathcal{M}) = \Gamma = \sigma_{ess}(T_{\Psi}).$$

• Maymeskul & Saff, JAT (2003):

 $\sigma(\mathcal{M}_n) \subset$ the two diagonals .

• Kuijlaars & Saff, Math. Proc. Cambrigde Phil. Soc. (1995):

$$\left| \nu(G_n) \stackrel{*}{\longrightarrow} \mu_{\Gamma}, \quad n \to \infty, \ n \in \mathcal{N} \right|, \quad \mathcal{N} \subset \mathbb{N}$$

Example: G is the canonical pentagon

Levin, Saff & St., Constr. Approx. (2003):

$$\boxed{
u(p_n) \stackrel{*}{\longrightarrow} \mu_{\Gamma}, \quad n \to \infty, \ n \in \mathcal{N}}, \quad \mathcal{N} \subset \mathbb{N}$$

Kuijlaars & Saff, Math. Proc. Cambrigde Phil. Soc. (1995):

$$u(\mathbf{G}_n) \stackrel{*}{\longrightarrow} \mu_{\Gamma}, \quad n \to \infty, \ n \in \mathcal{N}, \quad \mathcal{N} \subset \mathbb{N}$$

The challenge

Problem

Describe the three distinct behaviours in the spectral properties of \mathcal{M}_n and \mathcal{T}_n , by using the two infinite matrices \mathcal{M} and \mathcal{T}_{ψ} ONLY!

Note that each of the matrix alone, carries all the information of the domain *G*, because it contains, either as limits, or explicitly, all the coefficients of the inverse conformal mapping $\psi : \Delta \rightarrow \Omega$.