Problems Session

Nikos Stylianopoulos University of Cyprus

Hausdorff Geometry Of Polynomials And Polynomial Sequences Institut Mittag-Leffler
Djursholm, Sweden
May-June 2018

Lebesgue spaces and Orthonormal Polynomials

Let μ be a finite positive Borel measure having compact and infinite support $S_{\mu}:=\operatorname{supp}(\mu)$ in the complex plane \mathbb{C}. Then, the measure yields the Lebesgue spaces $L^{2}(\mu)$ with inner product

$$
\langle f, g\rangle_{\mu}:=\int f(z) \overline{g(z)} d \mu(z)
$$

and norm

$$
\|f\|_{L^{2}(\mu)}:=\langle f, f\rangle_{\mu}^{1 / 2} .
$$

Let $\left\{p_{n}(\mu, z)\right\}_{n=0}^{\infty}$ denote the sequence of orthonormal polynomials associated with μ. That is, the unique sequence of the form

$$
p_{n}(\mu, z)=\gamma_{n}(\mu) z^{n}+\cdots, \quad \gamma_{n}(\mu)>0, \quad n=0,1,2, \ldots,
$$

satisfying $\left\langle p_{m}(\mu, \cdot), p_{n}(\mu, \cdot)\right\rangle_{\mu}=\delta_{m, n}$.

Distribution of zeros: The tools

For any polynomial $q_{n}(z)$, of degree n, we denote by $\nu_{q_{n}}$ the normalized counting measure for the zeros of $q_{n}(z)$; that is,

$$
\nu_{q_{n}}:=\frac{1}{n} \sum_{q_{n}(z)=0} \delta_{z}
$$

where δ_{z} is the unit point mass (Dirac delta) at the point z.
For any measure μ with compact support in \mathbb{C},

$$
U^{\mu}(z):=\int \log \frac{1}{|z-t|} d \mu(t), \quad z \in \mathbb{C} .
$$

denotes the logarithmic potential on μ. Then

$$
U^{\nu_{q_{n}}}(z)=\frac{1}{n} \log \frac{1}{\left|q_{n}(z)\right|}, \quad z \in \mathbb{C} .
$$

With μ_{E} we denote the equilibrium measure of a compact set E of positive logarithmic capacity.

Bergman polynomials $\left\{p_{n}\right\}$ on an Jordan domain G

$$
\Gamma:=\partial G \quad \Omega:=\overline{\mathbb{C}} \backslash \bar{G}
$$

$$
\langle f, g\rangle:=\int_{G} f(z) \overline{g(z)} d A(z), \quad\|f\|_{L^{2}(G)}:=\langle f, f\rangle^{1 / 2}
$$

The Bergman polynomials $\left\{p_{n}\right\}_{n=0}^{\infty}$ of G are the orthonormal polynomials w.r.t. the area measure on G :

$$
\left\langle p_{m}, p_{n}\right\rangle=\int_{G} p_{m}(z) \overline{p_{n}(z)} d A(z)=\delta_{m, n},
$$

with

$$
p_{n}(z)=\lambda_{n} z^{n}+\cdots, \quad \lambda_{n}>0, \quad n=0,1,2, \ldots
$$

Shift Operator

Let $L_{a}^{2}(G)$ denote the Bergman space of square integrable and analytic functions in G and consider the Bergman shift operator on $L_{a}^{2}(G)$. That is,

$$
S_{z}: L_{a}^{2}(G) \rightarrow L_{a}^{2}(G) \quad \text { with } \quad S_{z} f=z f
$$

Properties of S_{z}

(i) S_{z} defines a subnormal operator on $L_{a}^{2}(G)$.
(ii) $\sigma\left(S_{z}\right)=\bar{G}$ and $\sigma_{\text {ess }}\left(S_{z}\right)=\partial G$ (Axler, Conway \& McDonald, Can. J. Math., 1982).
(iii) $S_{z}^{*}(f)=P_{G}(\bar{z} f)$, where P_{G} denotes the orthogonal projection from $L^{2}(G)$ to $L_{a}^{2}(G)$.

Proof of (iii): For any $f, g \in L_{a}^{2}(G)$ it holds that

$$
\left\langle S_{z}^{*} f, g\right\rangle=\left\langle f, S_{z} g\right\rangle=\langle f, z g\rangle=\langle\bar{z} f, g\rangle=\left\langle P_{G}(\bar{z} f), g\right\rangle
$$

Recurrences for Bergman polynomials $\left\{\boldsymbol{p}_{n}\right\}$

In general it holds that

$$
z p_{n}(z)=\sum_{k=0}^{n+1} b_{k, n} p_{k}(z), \quad \text { where } \quad b_{k, n}:=\left\langle z p_{n}, p_{k}\right\rangle
$$

Matrix representation for S_{z}

The Bergman operator S_{z} has the following upper Hessenberg matrix representation with respect to the Bergman polynomials $\left\{p_{n}\right\}_{n=0}^{\infty}$ of G :

$$
\mathcal{M}=\left[\begin{array}{ccccccc}
b_{00} & b_{01} & b_{02} & b_{03} & b_{04} & b_{05} & \cdots \\
b_{10} & b_{11} & b_{12} & b_{13} & b_{14} & b_{15} & \cdots \\
0 & b_{21} & b_{22} & b_{23} & b_{24} & b_{25} & \cdots \\
0 & 0 & b_{32} & b_{33} & b_{34} & b_{35} & \cdots \\
0 & 0 & 0 & b_{43} & b_{44} & b_{45} & \cdots \\
0 & 0 & 0 & 0 & b_{54} & b_{55} & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \ddots
\end{array}\right]
$$

where $b_{k, n}=\left\langle z p_{n}, p_{k}\right\rangle$ are the Fourier coefficients of $S_{z} p_{n}=z p_{n}$.

Note

The eigenvalues of the $n \times n$ principal submatrix \mathcal{M}_{n} of \mathcal{M} coincide with the zeros of p_{n}.

Example: $G \equiv \mathbb{D}$

This example shows why modern text books on Functional Analysis or Operators Theory do not refer to matrices: Indeed, in this case we have:

$$
p_{n}(z)=\sqrt{\frac{n+1}{\pi}} z^{n}, \quad n=0,1, \ldots
$$

Therefore, in the matrix representation \mathcal{M} of S_{z} the only non-zero diagonals are the main subdiagonal, and hence for any $n \in \mathbb{N}, \mathcal{M}_{n}$ is a nilpotent matrix. As a result, the Caley-Hamilton theorem implies:

$$
\sigma\left(\mathcal{M}_{n}\right)=\{0\} .
$$

This is in sharp contrast to:

$$
\sigma_{e s s}(\mathcal{M})=\sigma_{\text {ess }}\left(S_{z}\right)=\{w:|w|=1\}
$$

and

$$
\sigma(\mathcal{M})=\sigma\left(S_{z}\right)=\{w:|w| \leq 1\} .
$$

The inverse conformal map ψ

Recall that

$$
\Phi(z)=\gamma z+\gamma_{0}+\frac{\gamma_{1}}{z}+\frac{\gamma_{2}}{z^{2}}+\cdots
$$

and let $\psi:=\Phi^{-1}:\{w:|w|>1\} \rightarrow \Omega$, denote the inverse conformal map. Then,

$$
\Psi(w)=b w+b_{0}+\frac{b_{1}}{w}+\frac{b_{2}}{w^{2}}+\cdots, \quad|w|<1
$$

where

$$
b=\operatorname{cap}(\Gamma)=1 / \gamma .
$$

The Toeplitz matrix with (continuous) symbol Ψ

$$
T_{\psi}=\left[\begin{array}{cccccccc}
b_{0} & b_{1} & b_{2} & b_{3} & b_{4} & b_{5} & b_{6} & \cdots \\
b & b_{0} & b_{1} & b_{2} & b_{3} & b_{4} & b_{5} & \cdots \\
0 & b & b_{0} & b_{1} & b_{2} & b_{3} & b_{4} & \cdots \\
0 & 0 & b & b_{0} & b_{1} & b_{2} & b_{3} & \cdots \\
0 & 0 & 0 & b & b_{0} & b_{1} & b_{2} & \cdots \\
0 & 0 & 0 & 0 & b & b_{0} & b_{1} & \cdots \\
0 & 0 & 0 & 0 & 0 & b & b_{0} & \ddots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \ddots & \ddots
\end{array}\right]
$$

Spectral properties

Theorem (St, Constr, Approx., 2013)
If Γ is piecewise analytic without cusps, then

$$
\begin{equation*}
\left|b_{n}\right| \leq c_{1}(\Gamma) \frac{1}{n^{1+\omega}}, \quad n \in \mathbb{N} \tag{1}
\end{equation*}
$$

where $\omega \pi(0<\omega<2)$ is the smallest exterior angle of Γ.
Therefore, in this case, the symbol ψ of the Toeplitz matrix T_{ψ} belongs to the Wiener algebra. Thus, T_{Ψ} defines a bounded linear operator on the Hilbert space $I^{2}(\mathbb{N})$ and

$$
\begin{equation*}
\sigma_{e s s}\left(T_{\Psi}\right)=\Gamma \tag{2}
\end{equation*}
$$

see e.g., Bottcher \& Grudsky, Toeplitz book, 2005.

Faber polynomials of G

The Faber polynomial of the 2nd kind $G_{n}(z)$ ，is the polynomial part of the expansion of the Laurent series expansion of $\Phi^{n}(z) \Phi^{\prime}(z)$ at ∞ ：

$$
G_{n}(z)=\Phi^{n}(z) \Phi^{\prime}(z)+O\left(\frac{1}{z}\right), \quad z \rightarrow \infty
$$

These polynomials satisfy the recurrence relation：

$$
z G_{n}(z)=b G_{n+1}(z)+\sum_{k=0}^{n} b_{k} G_{n-k}(z), \quad n=0,1, \ldots
$$

Recall：$z p_{n}(z)=\sum_{k=0}^{n+1} b_{k, n} p_{k}(z)$ ．

Note

The eigenvalues of the $n \times n$ principal submatrix \mathcal{T}_{n} of T_{ψ} coincide with the zeros of G_{n} ．

$\mathcal{M} \rightarrow T_{\psi}$ diagonally

The next series of theorems show that the connection between the two matrices \mathcal{M} and T_{ψ} is much more substantial.

Theorem (Saff \& St., CAOT, 2012 and Beckemann \& St., Constr. Approx., 2018)

Assume that Γ is piecewise analytic without cusps. Then, it holds as $n \rightarrow \infty$,

$$
\begin{equation*}
\sqrt{\frac{n+2}{n+1}} b_{n+1, n}=b+O\left(\frac{1}{n}\right) \tag{3}
\end{equation*}
$$

and for $k \geq 0$,

$$
\begin{equation*}
\sqrt{\frac{n-k+1}{n+1}} b_{n-k, n}=b_{k}+O\left(\frac{1}{n}\right), \tag{4}
\end{equation*}
$$

where O depends on k but not on n.

$\mathcal{M} \rightarrow T_{\psi}$ diagonally: Smooth curve

Improvements in the order of convergence occur in cases when Γ is smooth.

Theorem (Saff \& St., CAOT, 2012 and Beckemann \& St., Constr. Approx., 2018)

Assume that $\Gamma \in C(p+1, \alpha)$, with $p+\alpha>1 / 2$. Then, it holds as $n \rightarrow \infty$,

$$
\begin{equation*}
\sqrt{\frac{n+2}{n+1}} b_{n+1, n}=b+O\left(\frac{1}{n^{2(p+\alpha)}}\right), \tag{5}
\end{equation*}
$$

and for $k \geq 0$,

$$
\begin{equation*}
\sqrt{\frac{n-k+1}{n+1}} b_{n-k, n}=b_{k}+O\left(\frac{1}{n^{2(p+\alpha)}}\right), \tag{6}
\end{equation*}
$$

where O depends on k but not on n.

$\mathcal{M} \rightarrow T_{\psi}$ diagonally: Analytic curve

For the case of an analytic boundary Γ further improved asymptotic results can be obtained.

Theorem (Saff \& St., CAOT, 2012 and Beckemann \& St., Constr. Approx., 2018)

Assume that the boundary Γ is analytic and let $\rho<1$ be the smallest index for which Φ is conformal in the exterior of L_{ρ}. Then, it holds as $n \rightarrow \infty$,

$$
\begin{equation*}
\sqrt{\frac{n+2}{n+1}} b_{n+1, n}=b+O\left(\rho^{2 n}\right) \tag{7}
\end{equation*}
$$

and for $k \geq 0$,

$$
\begin{equation*}
\sqrt{\frac{n-k+1}{n+1}} b_{n-k, n}=b_{k}+O\left(\rho^{2 n}\right), \tag{8}
\end{equation*}
$$

where O depends on k but not on n.

Is $\mathcal{M}-T_{\psi}$ compact?

Corollary

If the upper Hessenberg matrix \mathcal{M} is banded, with constant bandwidth, then $\mathcal{M}-T_{\psi}$ defines a compact operator on $I^{2}(\mathbb{N})$.

Theorem (Putinar \& St, CAOT, 2007)

If the Bergman polynomials $\left\{p_{n}\right\}$ satisfy a 3-term recurrence relation, then $\Gamma=\partial G$ is an ellipse.

Theorem (Khavinson \& St, Springer, 2009 (St, CRAS, 2010))
Assume that:
(i) $\Gamma=\partial G$ is C^{2} continuous (piecewise analytic without cusps).
(ii) The Bergman polynomials $\left\{p_{n}\right\}_{n=0}^{\infty}$ satisfy an $m+1$-term recurrence relation, with some $m \geq 2$.
Then $m=2$ and Γ is an ellipse.

Example: G is a 3 -cusped hypocycloid

Note that $\operatorname{supp}\left(\mu_{\Gamma}\right)=\Gamma$ and recall $\sigma_{\text {ess }}(\mathcal{M})=\Gamma=\sigma_{\text {ess }}\left(T_{\psi}\right)$.

- Levin, Saff \& St., Constr. Approx. (2003):

$$
\nu\left(p_{n}\right) \xrightarrow{*} \mu_{\Gamma}, \quad n \rightarrow \infty, n \in \mathcal{N}, \quad \mathcal{N} \subset \mathbb{N} .
$$

- He \& Saff, JAT (1994):

$$
\sigma\left(\mathcal{T}_{n}\right) \subset[0,1.5] \cup\left[0,1.5 e^{i 2 \pi / 3}\right] \cup\left[0,1.5 e^{i 4 \pi / 3}\right] .
$$

Example: G is the square

- Maymeskul \& Saff, JAT (2003):

$$
\sigma\left(\mathcal{M}_{n}\right) \subset \text { the two diagonals }
$$

- Kuijlaars \& Saff, Math. Proc. Cambrigde Phil. Soc. (1995):

$$
\nu\left(G_{n}\right) \xrightarrow{*} \mu_{\Gamma}, \quad n \rightarrow \infty, n \in \mathcal{N}, \quad \mathcal{N} \subset \mathbb{N}
$$

Example: G is the canonical pentagon

Levin, Saff \& St., Constr. Approx. (2003):

$$
\nu\left(p_{n}\right) \xrightarrow{*} \mu_{\Gamma}, \quad n \rightarrow \infty, n \in \mathcal{N}, \quad \mathcal{N} \subset \mathbb{N}
$$

Kuijlaars \& Saff, Math. Proc. Cambrigde Phil. Soc. (1995):

$$
\nu\left(G_{n}\right) \xrightarrow{*} \mu_{\Gamma}, \quad n \rightarrow \infty, n \in \mathcal{N}, \quad \mathcal{N} \subset \mathbb{N}
$$

The challenge

Problem

Describe the three distinct behaviours in the spectral properties of \mathcal{M}_{n} and \mathcal{T}_{n}, by using the two infinite matrices \mathcal{M} and T_{ψ} ONLY!

Note that each of the matrix alone, carries all the information of the domain G, because it contains, either as limits, or explicitly, all the coefficients of the inverse conformal mapping $\psi: \Delta \rightarrow \Omega$.

