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Abstract. A number of open problems on constructive function theory are presented. These were submitted by
participants of Constructive Function Theory Tech-04.
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1. Introduction. A number of open problems posed at Constructive Functions Tech-04
are presented below together with recent progress in solving them. Many involve potential
theory and its applications to weighted approximation, number theory, and numerical inte-
gration on the sphere. Equally many are related to the theory of orthogonal polynomials and
their relatives: Bergman and Sobolev polynomials, entropy of orthogonal polynomials, and
Heine-Stieltjes polynomials. The list of problems grew out of a problem session held at Con-
structive Functions Tech-04. At the end of each section, the contributing author is mentioned
in parenthesis.

2. Asymptotic Discretization of a Potential. Let 
 be compactly supported probability
measure in the open unit ball �
� of � � , and ��� its Newtonian potential (logarithmic if ����� ).
Assume that the support of 
 is a smooth ����� submanifold with boundary on which 

has smooth nonvanishing density with respect to Lebesgue measure. Let 
�� be a discrete
probability measure whose support consists of at most � points � � �! #"#"$"# � �% , &(')� , � �*,+�-� , and whose potential ���/. minimizes0�1324657498 �;: < �;= �?>�� < � . = �@> :
among all such measures. Is it true that the counting measure of the � �* , namely the discrete
probability measure with equal mass at each � �* , converges weak-*, as � goes to infinity, to
the Green equilibrium distribution of supp 
 with respect to the unit ball of � � ?� Received June 1, 2005. Accepted for publication December 1, 2005. Recommended by D. Lubinsky.�
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(Baratchart)

3. Heine-Stieltjes Polynomials. Let B � stand for the class of all algebraic polynomials
of degree at most � +DC . The generalized Lamé differential equation (in algebraic form) is

(3.1) E = �@>GFIH H = �?>KJL� = �?>GF!H = �@>KJNM = �?>GF = �@>O�QP  
where E , � are polynomials of degree < J)� , < , respectively, and M + BSRUT � . The case < �V�
corresponds to the hypergeometric differential equation, and < �W� , to the Heun’s equation;
see [31]. Heine [14] proved that for every � +XC there exist at mostY = �Z>[� \ �]J < �^�� _
different polynomials M in (3.1) such that this equation admits a polynomial solution ` � +B � . These coefficients M are called Van Vleck polynomials, and the corresponding polyno-
mial solutions F are known as Heine-Stieltjes polynomials. Moreover, Szegő [36, a 6.8] cites
this result saying that “Heine asserts that, in general, there are exactly Y = �b> determinations
of M of this kind”.

QUESTION 3.1. If you are lucky enough to be able to read XIX century style German,
try [14]. Heine uses some complicated arguments about the number of solutions of a system
of nonlinear equations. As far as I know, there is no modern proof of Heine’s result. Also,
is it possible to characterize the exceptional cases when the number of different Van Vleck
polynomials is strictly less than Y = �b> ?

Assume that the coefficients of (3.1) depend on the parameter � , and we are interested
in the asymptotic zero distribution of the Heine-Stieltjes polynomials c$`d�!e as �gfih ; see
[19] for some results in this sense. One way we may proceed is to reduce (3.1) to the Riccati
form, rewriting it in terms of j � �k` H�ml ` � :E �n=po >rqsjut� =so >vJNj H� =so >AwxJy� �z=po >�j �z=so >vJNM �{=so >[�kP "
Observing that j@� l � is the Cauchy transform of the unit zero counting measure of `d� ’s,
and assuming that E|� , �-� l � and M}� l � t are uniformly bounded, we may take limits
along appropriate subsequences in order to find an expression for the Cauchy transform~
 =po >[��� �o �Z�r� 
 = ��>
of the limit distribution 
 . In general it will have the form

(3.2)
~
 =so > t �Q� =so >  

where � is an analytic function. This expression is valid in every connected component of��� 0�132�2 = 
K> , where � must be holomorphic.
QUESTION 3.2. Provided we have obtained that~
 =po >Gt�� �o t �^�

in every connected component of
��� 0A13232 = 
K> , is it true that necessarily 
 is the equilibrium

measure of ���m�  ��� ?
QUESTION 3.3. More generally, if we know that 
 is a positive unit Borel measure

compactly supported on
�

, and that � is a rational function (the same in every connected
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component of
�L� 0A13232 = 
K> ), does equation (3.2) determine uniquely 
 ? Is it true that in this

case 0A13232 = 
K> does not have interior points in
�

?
If the answer to this question is “yes”, the support of 
 must be a union of trajectories of

the quadratic differential � =po > � o t . In the case when E � and � � do not depend on � these
trajectories are characterized by their minimum capacity in the class of all cuts of the plane
making � � single-valued, i.e. by a min-max property of the logarithmic energy; see [33].

QUESTION 3.4. Is there an electrostatic model for the zeros of Heine-Stieltjes polynomi-
als, describing their location in terms of a min-max property of the corresponding energy?

The answer is “yes”, for instance, for the classical Jacobi polynomials, but the situation
is not clear in general.

(Martı́nez-Finkelshtein)

4. Non-Standard Orthogonal Polynomials. Let 
K� and 
 � be two Borel measures on�
such that at least one of them has an infinite number of points of increase. Monic Sobolev

orthogonal polynomials � � are those minimizing the norm���3� t�� �#�3� t�3��� �U�A� J ��� H � t�3��� ���G�  
(where prime denotes derivative) in the class of all monic polynomials of degree � . If 
 �
is a discrete measure, polynomials �I� are known as discrete Sobolev, otherwise they are
continuous. Their asymptotic properties have been studied by several authors; see e.g. [17]
for the discrete case, and [16, 20, 21] for the continuous. Nevertheless, many open questions
still remain, among which my favorites are:

QUESTION 4.1. Is there any matrix Riemann-Hilbert characterization of this kind of
orthogonality?

QUESTION 4.2. What is the strong asymptotics of cU�I�ue if 
 � , 
 t are absolutely con-
tinuous measures from the Szegő class with disjoint or at least non-coincident supports? For
the � -th root asymptotics, see [12], and for zero location, [9].

The balanced monic Sobolev orthogonal polynomials minimize the norm depending on
their degree, ���3� t� � ���3� t� � � �U�A� J�����

� H� ���� t� � � ���G�  
in the class of all monic polynomials of degree � . For a narrow class of measures (absolutely
continuous on ���m�  �#� and satisfying a certain algebraic relation) it have been proved in [1]
that � � ’s behave as the standard polynomials orthogonal with respect to the “combined”
measure

� 
 � = �@>�� \ 
vH� = �@>�J 
 H � = �@>����� t _�� �  � + = �m�  � > "
QUESTION 4.3. Is this result valid under in a more general situation?
Finally, let ¡ be a Jordan arc or curve (say, an interval), and ¢ a function holomorphic in

a neighborhood of ¡ . In some cases it is possible to prove the existence and uniqueness (up
to normalization) of a sequence of polynomials �r� , £¥¤#¦����§�)� , such that�7¨ ��� =po >G¢r© =so >Gª =po > � o �QP  ¬« �kP  �  #"$"#"� �­�^� "
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QUESTION 4.4. Is it possible to characterize polynomials � � in terms of a matrix
Riemann-Hilbert problem?

Observe that orthogonality with respect to powers o © is naturally connected with the
Cauchy integral, and this in its turn, has a nice Riemann-Hilbert problem associated via
Sokhotski-Plemelj formulas. A related question is: is there any other kernel with a nice
jump condition associated?

(Martı́nez-Finkelshtein)

5. Entropy of Orthogonal Polynomials. Assume that c < � e is a sequence of orthonor-
mal polynomials with respect to a unit positive weight ® on � . The Boltzmann-Shannon
entropy of these polynomials is defined asF¯� def��� � < t� = �?>d°²±�¦ q < t� = �@> w ® = �?> � � "
There are two mathematical problems of absolutely different nature related with these quan-
tities:

(i) Explicit formula or at least a stable numerical algorithm for computation of F � for
any reasonable � +³C ;

(ii) The asymptotic analysis of F � as �Df´h .
Regarding (i), general explicit formulas for F-� have been obtained for the Gegenbauer poly-
nomials with index µL�¶P (Chebyshev), µ��·� (Chebyshev of the second kind) and µ��,�
only. In particular, it has been shown in [8, 43] that for Chebyshev polynomials, F-���°²±�¦ = ��>��)� , for all � +bC . Moreover, as it follows from [2], for the unit weight ® on ���m�  ��� ,°²±�¦ = ��>��^� is the asymptotically maximum value that F-� can achieve.

QUESTION 5.1. Does the property F-��¸º¹�» �K¼$� characterize the family of Chebyshev
polynomials? The answer is “yes” in the Bernstein-Szegő class = see [2] > , but what about, say
the whole Szegő class?

QUESTION 5.2. Is there any other family of polynomials for which F � has a compact
closed expression?

In [4] a stable algorithm for computing F � for a unit weight ® on ���m�  �#� has been found.
It uses the coefficients of the three-terms recurrent relation for the < � ’s as the only input, in
the spirit of the well-known procedure for the computation of the gaussian quadratures.

QUESTION 5.3. Is it possible to extend this method (or to find an alternative one) for the
case of the unbounded interval of orthogonality?

Problem (ii) is closely related to the strong (or at least, ½ t¿¾KÀ ) asymptotics of the polyno-
mials. In [18] it was shown that under rather general conditions,

(5.1) F¯�Á� �NÂ�ÃÂÅÄ Ã °�±Æ¦r® = �?>Ç =sÈ �{���@> = �§� È T@�3> � � = �xJy» = � >�>  ��fÉh  
where È3Ê � are the well-known Mhaskar-Rakhmanov-Saff numbers.

QUESTION 5.4. The Pollaczek polynomials < � = �SË¿µ  È  ¿Ì > are orthogonal on ���m�  ��� with
respect to the unit weight® = �SË¿µ  È  ¿Ì >x� � t�Í = µ{J È >�UÎÐÏ = �Æµu> = ���Z�@tÅ>AÍ T ��Ñ tOÒ � t7ÓAÔpÕ�Õ�ÖA× 5 T?Ø/�!Ù�Ú¿ÛÆÜÝ � Ä Ú ��ÞÞÞÞ Ï = µ{J�ß È �{J Ì� ����� t > ÞÞÞÞ t "
They also satisfy the three-term recurrence relation� < � = �KË�µ  È  ¿Ì >�� È � ¾ � < � ¾ � = �KË�µ  È  �Ì >KJ Ì � < � = �KË¿µ  È  �Ì >KJ È � < �dT � = �KË�µ  È  ¿Ì >  
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with È �Á� ��[à � = �ÐJy�Æµn�^�Å>= �ÁJNµzJ È > = �§JNµzJ È �^�Å>  áÌ �n��� Ì�ÁJNµzJ È "
As it follows from [2], for these polynomials F-� diverges. However, they do not satisfy the
conditions of [18]. Is formula (5.1) still valid?

If 
 and â are two Borel (generally speaking, real signed) measures on
�

, we denote byã � â  
?�@��� �r� °�ä : o ��� : � â = ��> � 
 =po >
their mutual energy. With each polynomial< �;=po >r�)¡ � �å* 8 �}æ o ��ç � �/�*´è
we can associate naturally two probability measures:µ��Á� �� �é* 8 �@ê#ë�ì ÃÅíî and � âU� = �@>�� < t� = �@> � 
 = �?> "
Both measures are standard objects of study in the analytic theory of orthogonal polynomials.
For instance, the normalized zero counting measure µ � is closely connected with the � -th
root asymptotics of < � , and as was shown by Rakhmanov in his pioneering work [30], â � is
associated with the behavior of the ratio < � ¾ � l < � as ��fÉh .

A nice link between the entropy and the logarithmic potential theory is established by
the following identity: if ¡3�­ï^P is the leading coefficient of < � , then

(5.2) F � �V����°²±�¦ = ¡ � >KJy�/� ã � µ �  â � � "
Hence, if we know the asymptotic behavior of the entropy, it gives us information about the
mutual energy

ã � µ �  â � � , and viceversa.
Assume that ® is a weight on ���m�  ��� , strictly positive a. e. on the interval. Then both µ �

and âU� tend (in a weak-star sense) to the equilibrium measure of the interval, 
 , and it is not
surprising at all to find out that

ã � µ@�  âU�7�Sf ã � 
  
?�K�ð°²±�¦ = �Æ> . But what about the next term
of the asymptotics of the energy, does it depend on the weight ® ? From the results of [2] it
follows that for a large subset of the Szegő class (for instance, for weights satisfying that0A132� � �T � q < t� = �?> w � ¾vñ ® = �@> � ��òkh
for a ózïNP ), we have

(5.3)
ã � µu�  âU�7�?�k°²±�¦ = ��>�� ��U� JL» \ ���_  ��fÉh "

QUESTION 5.5. What is the explanation of this “universal” behavior of the second
term? Is the constant � l � appearing there the logarithmic capacity of the support of the
measure of orthogonality? Is there any direct proof of (5.3) which does not use (5.2)? Is
(5.3) still valid in a larger class of weights ® ?
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Finally, if < � is now a sequence of polynomials orthonormal with respect to a varying
weight, �dô < �;= �@> < © = �@>�® � = �?> � �³� ê � ©  ¬« �QP  �  $"#"$"� �  
the asymptotic behavior or F-� is described in terms of the equilibrium measure in the external
field � = �@>x���X°²±�¦ = ® = �@>A> : if õ is its support, and 
Kö is the Robin distribution on õ , then

(5.4) F¯�§�V���/� � ô³� � 
vö÷Jy» = �K>  ��fÉh "
This formula was established in [3] only for the case when ® is the Jacobi or Laguerre weight.

QUESTION 5.6. Is this result valid in a more general setting, say when õ is an interval?
We note that after the conference, there has been some progress in the study of the asymp-

totic behavior of the entropy in the case when the weight does not satisfy the Szegő condition
(Question 5.4). According to [22], formula (5.1) is valid also for Pollaczek polynomials< � = �KË�µ  È  PÆ> with È�ø P and µ ø � ; see notation in the statement of Question 5.4. More-
over, for these polynomials the following asymptotic behavior for the mutual energy

ã � µv�  âU�7�
holds: ã � µu�  â/�7�;�)°²±�¦ = �Æ>�� ����� È�U� JL» \ ���_  ��fÉh "
Obviously, for È �ùP we recover (5.3). Since < � = �SË¿µ  P  PÆ> are just the well-known Gegen-
bauer polynomials, a natural addendum to Question 5.5 is: does the asymptotic behavior (5.3)
characterize the class of weights on ���m�  ��� satisfying the Szegő condition?

(Martı́nez-Finkelshtein)

6. Minimizing Multiplier Polynomials. In some investigations of Padé approximation,
the following problem arises: let � be a given polynomial of degree � , and : o : ò¶� . Find a
polynomial ú of degree � that minimizesû �-= �nË o >r�,üÁý/þ;ÿ �Gÿ 8 � : �Iú : = ��>: �!ú : =po >
over all polynomials ú of degree '^� . That is,û � = �ÁË o >�� � ä������� �
	 ���?� üÁý/þ;ÿ �Gÿ 8 � : �!ú : = ��>: �!ú : =po > "
If � =po >[� �å* 8 � =so � o * >  
then it is easy to see that û �|= �nË o >x' �å* 8 � û � =�
 * Ë o >  
where for each � , 
 * = ��>[�k�S� o * "
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QUESTION 6.1. (I) Compute
û � =�
 Ë o > , where 
[= ��>[�k�S� È is a linear function.

(II) Ultimately, one would like to estimate quantities such as&XÒ È ¼[c o�� : o : '�� and
û � = �ÁË o > ø �7e  

where &XÒ È ¼ denotes planar Lebesgue measure and �zï^P .
Even part (I) of this problem is less trivial than it seems.

The following estimate for
û � =�
 Ë o > was proved by David Jimenez, a graduate student in the

School of Mathematics, Georgia Institute of Technology.
THEOREM 6.1. Let 
[= ��>[�k�S� È . Then for : o : '�� ,

(a) û � =�
 Ë o >x' �xJ : È :: o � È : "
(b) �xJ : È :� : o � È : ' û � =�
 Ë o >x' �xJ : È :: o � È :

Proof. (a) Firstly, û � =�
 Ë o >x'WüÁýUþvÿ �Gÿ 8 � : ��� È :: o � È : ' �xJ : È :: o � È : "
(b) Note that for each Ì + � , : ��� Ì : ø � �xJ : Ì : t
for at least half of all � on the unit circle. (If Ì � P , then it hold for all � . If Ì���ðP , it holds as
long as the triangle with vertices Ì  � and P is obtuse.) Therefore, for at least two points � on
the unit circle, : ��� Ì :#: ��� È : ø � �xJ : Ì : t � �xJ : È : t "
So û � =�
 Ë o > ø � ä������� � �xJ : Ì : t � �xJ : È : t: o � Ì :�: o � È : "
Here � �xJ : Ì : t ø �� � = �xJ : Ì : > ø �� � : o � Ì : "
So û � =�
 Ë o > ø �� � � �xJ : È : t: o � È : ø ��J : È :� : o � È : "

(Lubinsky)
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7. Quadrature Formulae and Weighted Approximation. It is well known [24, 32]
that under suitable conditions on � = �?>��Q¤ þ 2 = ��� = �@>A> , there exists, for every integer � ø � ,
a unique probability measure 
�� � � , supported on ���m�  ��� that maximizes�º� °²±�¦ : � =sÈ �d�?>�� =sÈ �3��> = �­�Z��> : � â = �?> � â = ��>
among all compactly supported probability measures â supported on � , where È"! is defined
by # � �Î � �� È$! ��� H =pÈ$! ��> � �� ����� t  

# ï)P "
It will be interesting to prove the following analogue of a theorem of Erdős, Kroó, and Sz-
abados [10].

QUESTION 7.1. Let � © � � be distinct points on � , � be a weight function such that the
measures 
%� � � are supported on ���m�  ��� . The following are equivalent.
(a) To every & with �'& + M � = �r> and (ÁïùP , there exists a sequence of polynomials � � +) � � � ¾SÀ � such that �$� = � © � ��>Á�*& = � © � ��> for « � �  �+,+�+; � , and

� = &��^�Å��>�� �,- � .kf P as��fÉh .
(b) We have

(7.1) ° � ü 0�1�2�0/ - 1 c « � � © � � l È � + ã �?e�;
 � � �;= ã � > 'ð�
for every sequence of intervals

ã �32 ���m�  ��� for which ° � ü �4/ - �;
 � � �;= ã � >[fÉh , and

(7.2) ° � ü � ä���0/ - �;
 � � �;= � � © ¾ � � � l Èd�  � © � � l Èd� � >}ï)P  �m' « 'N� "
It is worth mentioning here that the location and distribution of node systems c$� © � �@e that

provide a “good” interpolation process has been studied by Szabados [35], Damelin [7], and
Vertesi [39, 37].

QUESTION 7.2. Let
� ø � be an integer, 576 be the unit sphere embedded in the Euclidean

space � 6 ¾ � , and 
 be the volume element of 5 6 . We are interested in quadrature formulas of
the form é89��: ª 8 & =�; >=<��$>@?�& =�A > � 
 =�A >  
where B is a finite set of points on 5 6 , ª 8 are positive numbers, and the formula is required
to be exact for spherical polynomials of degree as high as possible. The highest degree of
polynomials for which the formula is exact will be called the order of the formula. The
formula will be called interpolatory if � is any spherical polynomial of degree at most : B : ,
and � =�; >Ð� P for each ; + B , then � ¸ P . Numerical experiments in [23] suggest that
if B is the Saff-Kuijlaars system then one obtains quadrature formulas of nearly the highest
order. The questions are: (1) If B is an extremal system of points with respect to some energy
problem, does there exists an interpolatory quadrature formula based at these points? (2)
If an interpolatory quadrature formula exists, then is it necessarily based on the extremal
points for some discretized energy problem? In this connection, it is noteworthy that Prestin
and Roşca [27] have recently obtained interpolatory quadrature formulas, some of which can
be thought of as based on a set of tensor product Fekete points with respect to a suitable
energy functional.

(Mhaskar)
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8. Distribution of Primes and a Weighted Energy Problem. Let Î = �?> be the number
of primes not exceeding � . The celebrated Prime Number Theorem (PNT), suggested by
Legendre and Gauss, states that Î = �@>DC �°²±�¦[� as �³f´h "
Chebyshev [5] made the first important step towards the PNT in 1852, by proving the boundsP " E �3� �°²±�¦�� 'yÎ = �@>¯'�� " �$P0F �°²±�¦r� as �­f´h "
Hadamard and de la Vallée Poussin independently proved the Prime Number Theorem in
1896, via establishing that ç = ¼ > does not have zeros on the line c7��Jnß6�  � + �xe . From a differ-
ent perspective, Gelfond and Schnirelman (see [5, pp. 285–288]) proposed an interesting “ele-
mentary” method aimed at producing the PNT with a good error term, in 1936. It used polyno-
mials with integer coefficients and the Chebyshev function G = �@>��k°�±Æ¦ lcm = �  $"#"$"# �?>  � +XC ,
together with the well known fact that the PNT is equivalent to G = �@>HC�� as �Zf Jmh ; see
[15]. Later work showed that the original Gelfond-Schnirelman method cannot give a proof
of the PNT [25, Ch. 10]. However, Nair [26] and Chudnovsky [6] found a generalization
based on an equivalent form of the Prime Number Theorem [15]

(8.1) � 5� G = ��> � �IC � t� as �­f´Jmh "
Using the following weighted version of Vandermonde determinantJLK� = � �  #"$"#"� �u��> � � �åM 8 � ª �dT � = � M > å� � M�N3* �@� = � M ��� * >  
where � M + � P  �#� and ª = �@>x� = � = �¯���@>A>�O � , P � ïNP , they obtained the bound

(8.2) � 5� G = ��> � � ø P " E4E P0Q0R � t� as �­f Jmh  
produced by the optimal choice P � <ºP " � E R . We developed the ideas of [26] and [6], and
established a connection with the weighted capacity ¹ K (cf. [32]) of � P  ��� corresponding to
the weight ª of the form

(8.3) ª = �@>}� ©åM 8 � : � %TS = �@> : O S  P M ï^P  ß����  $"#"$"� ¿«? 
where � % S is a polynomial with integer coefficients of degree at most & M . For P � �VU ©M 8 � P M & M ,
we proved [28] that

(8.4) � 5� G = ��> � � ø ����°²±�¦[¹ KW P³JXQ � t� JZY = ��°�±Æ¦ t �@> as �­fÉJmh "
In particular, if ª = �@>��k� O � = �7�¯�?> O � , � + � P  ��� , P � �[P t ��P " � E R , then ¹ K <kP " �$P W R4R]\�R0R�^4^
and (8.2) holds true.

It is natural to try improving the bound (8.2) by choosing a weight with a proper com-
bination of factors � %_S = �@> and exponents P M . The most interesting question is, of course,
whether one can find a weight ª = �@> of the form (8.3) such that����°²±�¦[¹ KW P­JXQ ���a`
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It turns out this is impossible to achieve for any fixed weight of the type (8.3). The reason for
such a conclusion transpires from the error term in (8.4), which is “too good.” Indeed, it is
known from Littlewood’s theorem that the difference b 5� G = ��> � �r��� t l � takes both positive
and negative values of the amplitude ¹��dc Ñ t , ¹�ï·P , infinitely often as �ðf Jmh . This is
conveniently written in the notation� 5� G = ��> � ��� � t� �fe Ê = � c Ñ t > as �³f´JmhQË
cf. [15, pp. 91–92]. Hence the correct error term should be of the order Y = �gc Ñ t > . Relating
this to (8.1) and (8.4), we obtain in such an indirect way that

(8.5) � = ª-> � � ����°�±Æ¦[¹ KW PXJhQ òð� "
We should also note that if the Riemann hypothesis is true, then� 5� G = ��> � ��� � t� �fY = � c Ñ t > as �­fÉJmhkË
see Theorem 30 in [15, p. 83]. It would be very interesting to find a direct potential theoretic
argument explaining (8.5). Although (8.4) cannot provide a proof of the PNT for a fixed
weight ª , this does not preclude the possibility that such a proof can be obtained by finding
a sequence of weights ª¯� with � = ª���>�f � , as ��f h . Thus one needs an insight into the
nature of such factors, to address the following problem.

QUESTION 8.1. For ª = �@> as in (8.3) and PZ�iU ©M 8 � P M & M , find

(8.6) � � � 0A132K ����°²±�¦[¹ KW P­JXQ "
If � � � then find a sequence of weights that gives this value. If � ò(� then investigate
whether � is attained for a weight of the form (8.3).

A solution of the minimum weighted energy problem for weights (8.3) with real zeros is
given in our paper [28]. Arbitrary weights (8.3) with complex zeros are considered in [29].
These papers also contain more background material.

(Pritsker)

9. Positivity of the Defining Equation of a Disjoint Union of Disks.
QUESTION 9.1. Let j =sÈ M  � M >  �z'^ß}'Q� , be a finite collection of disjoint open disks in

the complex plane. Let � =po  ª->[�lk �M 8 � � =po � È M > = ª^� È M >S��� tM � be the polarized form of the
defining function of the union. Prove by elementary means that the matrix= ��� =sÈ M  È * >�> �M � * 8 �
is positive semi-definite.

For a more elaborated proof and the relevance of this question, see [13].
(Putinar)

10. A Conjecture on the Strong Asymptotics of Bergman Orthogonal Polynomials.
Let m be a bounded simply-connected domain in the complex plane B , whose boundary½ � �ondm is a Jordan curve and let c ���@e -� 8 � denote the sequence of Bergman polynomials ofm . This is defined as the sequence�S� =so >[�Q¡¥� o � J +,+�+; ¡¥�³ïNP  ���QP  �  �  $"#"$"� 
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of polynomials that are orthonormal with respect to the inner product= &  qp > � � �$r & =po > p =po > � & =so >  
where � & stands for the 2-dimensional Lebesgue measure. Also, let e � � �y� m denote the
exterior (in

�
) of m . Then, the exterior conformal map s associated with m is the conformal

map s � e)fut � ��c$ª � : ª : ï �/e  normalised so thats =po >[�Q¹ o Jwv = �Å>  o fÉh  ¹|ïNP "
The constant x ý 2 ½y��� l ¹  
is called the (logarithmic) capacity of ½ .

With respect to the strong asymptotics of the leading coefficient ¡ � and of � �v=po > , foro + e , we consider the following two formulas:¡¥�§�'y �§Jk�Î �x ý 2 ½ � ¾ � cÆ��JXPS�?e  
and �S� =so >[� y �§J��Î s}H =po >zs � =po >-cÆ��Jh{u�@e  o + e "
If the boundary ½ of m is an analytic Jordan curve, then a result due to T. Carleman gives
respectively, P � �iv =�| t � > and {b�Vv =�| � >  �DfÉh  
for some | ò � ; see e.g. [11, pp. 12–13]. In the case where ½ is smooth, typically ½ +M = < Jk�  ¼Å> , where < Jk� +XC and < JN¼mï �t , then a result of P.K. Suetin (see [34, Thms 1.1
and 1.2]) gives, P��n�iv \ �� t � R ¾~} � _ and {u�Á�iv \ °²±�¦[�� R ¾~} _  ��fÉh "
Apart from the above very important results, we haven’t been able to find, in the relevant
literature, any similar result concerning the behaviour of the two sequences c�P[�@e and c�{u�@e ,
associated with more general Jordan curves.

Accordingly, our conjecture is concerned with boundary curves that encountered very
frequently in the applications, namely with piecewise analytic Jordan curves. It is based on
certain theoretical results and strong numerical evidence and can be stated as follows.

CONJECTURE 10.1. Assume that the boundary ½ of m is a piecewise analytic Jordan
curve without cusps. Then,¡ � � y �§JQ�Î �x ý 2 ½ � ¾ � c7�xJZv \ �� t _ e  �Df´h  
and ��� =po >[� y �§Jk�Î s}H =so >�s � =po >-cÆ��JZv \ ��O_ e  o + e  ��fÉh "

(Stylianopoulos)
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11. Weighted Polynomial Approximation and Equilibrium Measures. Let ª��kÒ Td�
be a weight on ���m�  ��� , 
 K the associated equilibrium measure and � its density (wherever
exists) with respect to linear measure. A. B. J. Kuijlaars showed that if � = ��>=C : � : T Â with someÈ ï P and if ª � �S�Df�& uniformly on ���m�  ��� with some sequence c ���@e of polynomials of
degree �D���  �  #"$"#" , then & must vanish at 0. Show this if only � = ��> ø ¹ : � : T Â is true.

Since the conference there has been some progress: My student Péter Varjú has proved
a theorem that includes the solution as a special case [38]. Call a measure 
 smooth on the
interval =sÈ  ¿Ì > if for every óÐïðP there is a ê ïðP such that for any two adjacent subintervalsã  9� 2V=pÈ  �Ì > of equal length smaller than ê we have��xJ�ó ' 
 = ã >
 = � > 'ð�xJ�ó "

THEOREM 11.1. If ª � ���Ðf�& uniformly on ���m�  ��� with some sequence c ���@e of poly-
nomials of degree �)� �  �  #"$"#" and & = PÆ> ��,P , then 
 K is smooth on some interval aroundP .

This rules out a � = ��> ø ¹ : � : T Â behavior for the density (as well as a � = ��>O'^¹ : � : Â behavior)
if approximation is possible for a function that is not zero at 0. Based on these, it is easy to
construct a ª such that � is positive at all � + ���m�  ��� , but no nonzero function can be
uniformly approximated by ª � � � .

The converse is also true under some mild additional conditions (without any additional
condition the converse is not true). To this end call a measure 
 doubling on the interval� È  �Ì � , if there is a constant � such that for any two adjacent subintervals

ã  �� of � È  �Ì � of
equal length we have �� ' 
 = ã >
 = � > '�� "
We say that 
 has a positive lower bound on the interval =sÈ  ¿Ì > if there is a ¹§ï�P such that� 
 = ��> l � � ø ¹ on =pÈ  ¿Ì > .

THEOREM 11.2. Suppose that 
 K is smooth on some interval = � ê  ê > , and either of the
following two conditions is true:
a) 0�1�232 = 
 K > can be written as the union of finitely many intervals � © , and the restriction of
 K to each � © is a doubling measure on � © ,
b) 
 K has a positive lower bound in = � ê  ê > .

Then any continuous & that vanishes outside = � ê  ê > is the uniform limit of some sequence of
weighted polynomials ª � �S� .

For the proofs of these theorems, see [38].
(Totik)

12. Generalized Translation Operator on the Simplex. The generalized translation
operator, ���� , for the weight function� � = �?>��)� � �� +�+,+ � �a�� = ��� : � : � > � �  : � : � � = ���Z� � � +,+�+ ��� � >  
on the simplex � � �´cÅ� � � � ø P  #"$"#"� � � ø P  �!� : � : � ø P¥e is defined in [41]. For& + ½ t = � �  � � > , the operator ���� has the orthogonal expansion

� �� & = �?>IC -é© 8 � �
� Í T �AÑ t � T ��Ñ t �© = x ± 0 ���Æ>� � Í T �AÑ t � T ��Ñ t �© = �Å> 2�� ±�� � & = �?>  
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where µÐ�iU � ¾ �M 8 �H� M J = � �³�Å> l � and 2�� ±�� � denotes the projection operator from ½ t = � �  � � >
onto

) �� , the space of polynomials of degree at most � in � variables. This operator is used
to define a modulus of smoothness in [41], which leads to a characterization of the weighted
best approximation by polynomials (the direct and the inverse theorems) on � � [42].

The operator �H�� is associated with a corresponding one for the weight function� � = �@> � � : � � : t � � "$"#" : � � : t � � = ��� � � � tÅ> � � Û � T �AÑ t
on the unit ball � � �(c$� + � � � � � � t '÷��e , which in turn is associated to the weighted
spherical means for the weight function j t � = �@>!��k � ¾ �M 8 � : � M : t � S on the unit sphere ú � [40].
In the case of the classical weight function

� �?= �?>z� = �
� � � � t > �7T ��Ñ t on the unit ball, an
integral formula is found for the generalized translation operator [42]. The formula takes the
form � �� & = �?>[�kE � �$� � & q x ± 0 �/�nJ 0 � ä���¼�j = �@> ��� = �@> w�= ��� � ¼ � t > �7T � � ¼  
where j = �?>n�·£ � ý ¦�c Ç ��� � � � t  �  $"#"$"� ��e is a diagonal matrix,

� = �@> is a unitary matrix
whose first column is � l � � � and E � is a constant ( ¼ + � � is taken as a row vector). For� ��� , this becomes the classical generalized translation operator� } & = ��>[� Ì Í T �AÑ t � �T � & æ ¼$�KJ

# Ç ����¼ t Ç ���Z� t è = ��� # t > Í T � �
#

for the weight function ª Í = ��>[� = ���Z� t > Í T �AÑ t on ���m�  �#� .
The open question calls for an integral formula for the generalized translation opera-

tor with respect to the weight function � � on the simplex. The definition of � �� is given
implicitly by an integral relation in [41], relying on the intertwining operator

J � of Dunkl’s
operators for j t � = �@> given above. For this j � , the operator

J � is an explicit integral transform,
which suggests that an integral formula for ���� should exist.

(Xu)
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