

Relative Asymptotics of Orthogonal Polynomials for Perturbed Measures

Nikos Stylianopoulos University of Cyprus *a report of joint work with* Ed Saff, Vanderbilt University

AppOpt'12, Havana University, CUBA June 2016

Definition Examples Theory Archipelago

Perturbation of measures

Let μ_0 and μ_1 be two finite Borel measures having compact and infinite supports $S_j := \text{supp}(\mu_j)$ in the complex plane \mathbb{C} , with $\mu_0 \ge \mu_1$. Then, there exists a measure μ_2 such that

$$\mu_0 := \mu_1 + \mu_2,$$

and we denote the support of μ_2 by $S_2 := \operatorname{supp}(\mu_2)$.

We shall regard μ_0 as a perturbation of μ_1 and investigate when such a perturbation is "small".

Lebesgue spaces and Orthonormal Polynomials

The three measures yield three Lebesgue spaces $L^2(\mu_j), j = 0, 1, 2$, with respective inner products

$$\langle f, g \rangle_{\mu_j} := \int f(z) \overline{g(z)} d\mu_j(z)$$

and norms $\|f\|_{L^2(\mu_j)} := \langle f, f \rangle_{\mu_j}^{1/2}$. Let $\{p_n(\mu_j, z)\}_{n=0}^{\infty}, j = 0, 1$, denote the sequence of orthonormal polynomials associated with μ_j . That is, the unique sequence of the form

$$p_n(\mu_j, z) = \gamma_n(\mu_j) z^n + \cdots, \quad \gamma_n(\mu_j) > 0, \quad n = 0, 1, 2, \dots,$$

satisfying $\langle \boldsymbol{p}_m(\mu_j, \cdot), \boldsymbol{p}_n(\mu_j, \cdot) \rangle_{\mu_j} = \delta_{m,n}$.

Christoffel functions

The monic orthogonal polynomials $p_n(\mu_j, z)/\gamma_n(\mu_j)$, can be defined by the extremal property

$$\left\|\frac{1}{\gamma_n(\mu_j)}\rho_n(\mu_j,\cdot)\right\|_{L^2(\mu_j)}:=\min_{z^n+\cdots}\|z^n+\cdots\|_{L^2(\mu_j)}=\frac{1}{\gamma_n(\mu_j)}.$$

A related extremal problem leads to the sequence $\{\lambda_n(\mu_j, z)\}_{n=0}^{\infty}$ of the Christoffel functions. These are defined, for any $z \in \mathbb{C}$, by

$$\lambda_n(\mu_j, z) := \inf\{\|\mathcal{P}\|_{L^2(\mu_j)}^2, \, \mathcal{P} \in \mathbb{P}_n \text{ with } \mathcal{P}(z) = 1\},$$

where \mathbb{P}_n is the space of polynomials of degree $\leq n$. Since, $\mu_1 \leq \mu_0$ the following inequality is immediate

$$\lambda_n(\mu_1, z) \leq \lambda_n(\mu_0, z), \quad n = 0, 1, \dots,$$

Christoffel functions

Cauchy-Schwarz inequality yields that

$$\frac{1}{\lambda_n(\mu_j,z)} = \sum_{k=0}^n |p_k(\mu_j,z)|^2, \quad z \in \mathbb{C}.$$

This leads to reconstruction algorithms from a finite set of moments

$$\int z^k \overline{z}^l d\mu_j(z), \quad k, l=0,1,\ldots,n.$$

- Archipelagos, in Gustafsson, Putinar, Saff & St, Adv. Math. (2009).
- Archipelagos with Lakes, in Saff, Stahl, St & Totik, SIAM J. Math. Anal. (2016).

PS perturbation

Definition (PS perturbation)

With $\mu_0 := \mu_1 + \mu_2$ we say that μ_0 is a polynomially small (PS) perturbation of μ_1 provided that μ_2 is not the zero measure and

 $\lim_{n\to\infty}\|p_n(\mu_1,\cdot)\|_{L^2(\mu_2)}=0.$

The next result shows that the fact that μ_0 is a PS perturbation of μ_1 implies certain constraints on the relative position of the support of μ_2 . We use Co(E) to denote the convex hull of a set *E*.

Proposition

If μ_0 is a PS perturbation of μ_1 , then $S_2 \subset Co(S_1)$.

The result is a simple consequence of Theorem 1.1.4 in Stahl & Totik, *General Orthogonal Polynomials*, CUP 1992.

Examples of PS perturbations

We use $A|_E$ to denote the area measure on a bounded set *E* and $s|_{\Gamma}$ to denote the arclength measure on a rectifiable curve Γ .

Example (I)

Let *G* be a bounded Jordan domain (or the union of finitely many bounded Jordan domains with pairwise disjoint closures) and let *B* be a compact subset of *G*. Take $\mu_1 = A|_{G\setminus B}$, $\mu_2 = w(z)A|_B$ where w(z)is integrable on *B* and $\mu_0 = \mu_1 + \mu_2$.

Then Lemma 2.2 of Stahl, Saff, St & Totik, SIAM, J. Math. Anal. (2015) implies the PS property.

Examples of PS perturbations

We use $A|_E$ to denote the area measure on a bounded set *E* and $s|_{\Gamma}$ to denote the arclength measure on a rectifiable curve Γ .

Example (II)

Let Γ be a a closed piecewise analytic Jordan curve without cusps and let *B* be a compact subset in the interior of Γ . Take $\mu_1 = s|_{\Gamma}$, $\mu_2 = w(z)A|_B$, where w(z) is integrable on *B* and $\mu_0 = \mu_1 + \mu_2$.

Then Theorem 2.1 of Pritsker, CMFT (2003) implies the PS property.

Examples

Example (III)

Here we assume μ_1 is in the Szegő class on the unit circle; i.e., the absolutely continuous part $w(\theta)$ of μ_1 with respect to arclength on the unit circle |z| = 1 satisfies the condition $\int_0^{2\pi} \log(w(\theta)) d\theta > -\infty$, and we let μ_2 be a finite measure supported on a compact set inside the unit circle. Take $\mu_0 = \mu_1 + \mu_2$.

Then Corollary 2.4.10 of B. Simon, *Orthogonal Polynomials on the Unit Circle I*, AMS (2005) implies the PS property.

Examples

Example (IV)

Let Γ be a piecewise analytic Jordan curve without cusps, let G denote its interior let $\mu_1 = A|_G$ and set $\mu_0 = \mu_1 + t\delta_z$, t > 0, where z is a point on the boundary Γ and δ_z is the Dirac measure at z.

• If the exterior angle at $z \in \Gamma$ is less than $\pi/2$, then from St, Contemporary Math., (2016) $\lim_{n \to \infty} p_n(\mu_1, z) = 0$, and therefore $\mu_0 = \mu_1 + t\delta_z$, is a PS perturbation of μ_1 .

• If the exterior angle at *z* is π , then from Totik & Varga, Proc. Lond. Math. Soc. (2016) $|p_n(\mu_1, z)| \ge Cn^{1/2}|$, for some positive constant *C* and infinitely many *n* and thus $\mu_0 = \mu_1 + t\delta_z$ is not a PS perturbation of μ_1 ,

Examples

Proposition

Let G be a bounded Jordan domain with boundary Γ in the class $C(2, \alpha)$, $\alpha > 1/2$. If $\mu_1 = s|_{\Gamma}$ is the arclength measure on Γ and $\mu_2 = A|_G$ is the area measure on G, then $\mu_0 = \mu_1 + \mu_2$ is a PS perturbation of μ_1 .

[12] ગેલભ

A Useful Lemma

In view of the extremal property of the monic orthogonal polynomials the assumption $\mu_0 \geq \mu_1$ implies

$$\gamma_n(\mu_0) \leq \gamma_n(\mu_1), \quad n = 0, 1, \ldots$$

Lemma (Useful)

For all $n \in \mathbb{N} \cup \{0\}$,

$$\frac{\gamma_n(\mu_1)}{\gamma_n(\mu_0)} = \mathbf{1} + \beta_n,$$

where β_n is non-negative and such that

$$\frac{1}{\left\{1-\|p_n(\mu_0,\cdot)\|_{L^2(\mu_2)}^2\right\}^{1/2}}-1\leq \beta_n\leq \left\{1+\|p_n(\mu_1,\cdot)\|_{L^2(\mu_2)}^2\right\}^{1/2}-1.$$

Our reasoning is guided by the arguments for Bergman polynomials in Saff, Stahl, St & Totik, SIAM J. Math. Anal. (2016).

Definition Examples Theory Archipelago

A Useful Lemma

Lemma (Useful, cont.)

Furthermore,

(i)

$$\| p_n(\mu_0, \cdot) - p_n(\mu_1, \cdot) \|_{L^2(\mu_1)}^2 \le 2\beta_n;$$

(ii) for any $z \in \overline{\mathbb{C}} \setminus \operatorname{Co}(S_1)$

$$\left|\frac{p_n(\mu_0, z)}{p_n(\mu_1, z)} - 1\right| \leq \sqrt{2\beta_n} \left[1 + \frac{\operatorname{diam}(S_1)}{\operatorname{dist}(z, \operatorname{Co}(S_1))}\right]^2$$

The result holds for *any* two positive measures with compact and infinite support, such that $\mu_0 \geq \mu_1$.

The main perturbation result

The main purpose of the talk is to show that the following two associated pairs of sequences

 $\{\gamma_n(\mu_0), \gamma_n(\mu_1)\}, \{p_n(\mu_0, z), p_n(\mu_1, z)\},\$

have comparable asymptotics when the measure μ_0 is a polynomially small perturbation of μ_1 . Also, the pair

 $\{\lambda_n(\mu_0, \mathbf{Z}), \lambda_n(\mu_1, \mathbf{Z})\},\$

is comparable on a somewhat stronger condition.

- We let Ω denote the unbounded component of $\overline{\mathbb{C}} \setminus S_1$.
- We use cap(*E*) to denote the logarithmic capacity of a compact set *E*.

The main perturbation result

Theorem (Main)

If the measure μ_0 is a PS perturbation of the measure μ_1 , then:

(i)

$$\lim_{n\to\infty}\gamma_n(\mu_1)/\gamma_n(\mu_0)=1;$$

(ii)

$$\lim_{n\to\infty} \|p_n(\mu_1,\cdot) - p_n(\mu_0,\cdot)\|_{L^2(\mu_0)} = 0;$$

(iii) uniformly on compact subsets of $\overline{\mathbb{C}} \setminus \operatorname{Co}(S_1)$:

 $\lim_{n\to\infty}p_n(\mu_1,z)/p_n(\mu_0,z)=1;$

Furthermore, if $\operatorname{cap}(S_1) > 0$ and $\lim_{m\to\infty} \sum_{j=m}^{\infty} \|p_j(\mu_1, z)\|_{L^2(\mu_2)}^2 = 0$, then uniformly on compact subsets of $\overline{\mathbb{C}} \setminus \Omega$,

$$\lim_{n\to\infty}\lambda_n(\mu_0,z)/\lambda_n(\mu_1,z)=1,$$

Definition Examples Theory Archipelago

Motivation

University of Cyprus

Bergman polynomials on an archipelago

 $\Gamma_j, j = 1, ..., N$, a system of disjoint and mutually exterior Jordan curves in $\mathbb{C}, \overline{G_j := int(\Gamma_j)}, \overline{\Gamma := \cup_{j=1}^N \Gamma_j}, \overline{G := \cup_{j=1}^N G_j}.$

$$\langle f,g\rangle_G := \int_G f(z)\overline{g(z)}dA(z), \quad \|f\|_{L^2(G)} := \langle f,f\rangle_G^{1/2}$$

The Bergman polynomials $\{p_n\}_{n=0}^{\infty}$ of *G* are the unique orthonormal polynomials w.r.t. the area measure on *G*:

$$\langle \boldsymbol{p}_m, \boldsymbol{p}_n \rangle_G = \int_G \boldsymbol{p}_m(z) \overline{\boldsymbol{p}_n(z)} d\boldsymbol{A}(z) = \delta_{m,n},$$

with

$$p_n(z) = \gamma_n z^n + \cdots, \quad \gamma_n > 0, \quad n = 0, 1, 2, \ldots$$

Definition Examples Theory Archipelago

Bergman polynomials on archipelago with lakes

With K is a compact subset of G, set $G^* := G \setminus K$ and consider

$$\langle f,g\rangle_{G^*}:=\int_{G^*}f(z)\overline{g(z)}dA(z),\quad \|f\|_{L^2(G^*)}:=\langle f,f\rangle_{G^*}^{1/2}.$$

The Bergman polynomials $\{p_n^*\}_{n=0}^{\infty}$ of G^* are the unique orthonormal polynomials w.r.t. the area measure on G^* :

$$\langle \boldsymbol{p}_m^*, \boldsymbol{p}_n^* \rangle_{G^*} = \int_{G^*} \boldsymbol{p}_m^*(z) \overline{\boldsymbol{p}_n^*(z)} d\boldsymbol{A}(z) = \delta_{m,n},$$

with

$$p_n^*(z) = \gamma_n^* z^n + \cdots, \quad \gamma_n^* > 0, \quad n = 0, 1, 2, \dots$$

The SSST Lemma

Take $\mu_1 = A|_{G \setminus K}$ and $\mu_2 = A|_K$. Then $\mu_0 = A|_G$ is a PS perturbation of μ_1 , in view of the following result

Lemma (Saff, Stahl, St & Totik, SIAM, J. Math. Anal., 201))

We have

$$\sum_{n=0}^{\infty} |\boldsymbol{p}_n^*(\boldsymbol{z})|^2 < \infty,$$

uniformly on compact subsets of G. In particular, $p_n^*(z) \to 0$ uniformly on compact subsets of G.

The distribution of zeros of p_n^*

Our task is to describe the asymptotic behaviour of the zeros of the polynomials p_n^* .

The behaviour of the zeros of p_n was clarified in Gustafsson, Putinar, Saff & St, Adv. Math. (2009).

Our tool is the normalized counting measure ν_n for the zeros of a the polynomial p_n^* :

$$\nu_n := \frac{1}{n} \sum_{p_n^*(z)=0} \delta_z,$$

where δ_z is the unit point mass (Dirac delta) at the point *z*. We denote by μ_E the equilibrium measure for a compact set *E*.

The balayage theorem

Theorem

If μ is any weak-star limit measure of the sequence $\{\nu_n\}_{n\in\mathbb{N}}$, then μ is a Borel probability measure supported on $\overline{\mathbb{C}} \setminus \Omega$ and $\mu^b = \mu_{\Gamma}$, where μ^b is the balayage of μ out of $\overline{\mathbb{C}} \setminus \Omega$ onto $\partial\Omega$. Similarly, the sequence of balayaged counting measures converges to μ_{Γ} :

 $\nu_n^b \xrightarrow{*} \mu_{\Gamma}, \quad n \to \infty, \quad n \in \mathbb{N}.$

By the weak-star convergence of a sequence of measures τ_n to a measure τ we mean that, for any continuous *f* with compact support in \mathbb{C} , there holds

$$\int \mathbf{f} d\tau_n \to \int \mathbf{f} d\tau$$
, as $n \to \infty$.

The result is a consequence of the fact that $A|_{G^*}$ belongs to the class **Reg** and Theorem 2.3 Mhaskar & Saff, JAT (1991).

The IC-point theorem

A point z_0 on the boundary Γ_j of G_j is said to be an (inward-corner) IC point, if there exists a circular sector of the form $S := \{z : 0 < |z - z_0| < r, \alpha \pi < \arg(z - z_0) < \beta \pi\}$ with $\beta - \alpha > 1$ whose closure is contained in G_j except for z_0 .

Theorem

Assume that for each j = 1, ..., k the boundary Γ_j of G_j , contains an IC point. Then

$$u_n|_{\mathcal{V}} \xrightarrow{*} \mu_{\Gamma}|_{\mathcal{V}}, \quad n \to \infty, \quad n \in \mathbb{N},$$

where \mathcal{V} is an open set containing $\bigcup_{j=1}^{k} \overline{G}_{j}$, such that if k < m the distance of $\overline{\mathcal{V}}$ from $\bigcup_{i=k+1}^{m} \overline{G}_{i}$ is positive.

The result is a consequence of Corollary 2.2 of Saff & St, JAT (2015).

University of Cyprus

Example

