Relative Asymptotics of Orthogonal Polynomials for Perturbed Measures

Nikos Stylianopoulos
University of Cyprus
a report of joint work with
Ed Saff, Vanderbilt University

AppOpt'12, Havana University, CUBA June 2016

Perturbation of measures

Let μ_{0} and μ_{1} be two finite Borel measures having compact and infinite supports $S_{j}:=\operatorname{supp}\left(\mu_{j}\right)$ in the complex plane \mathbb{C}, with $\mu_{0} \geq \mu_{1}$. Then, there exists a measure μ_{2} such that

$$
\mu_{0}:=\mu_{1}+\mu_{2}
$$

and we denote the support of μ_{2} by $S_{2}:=\operatorname{supp}\left(\mu_{2}\right)$.
We shall regard μ_{0} as a perturbation of μ_{1} and investigate when such a perturbation is "small".

Lebesgue spaces and Orthonormal Polynomials

The three measures yield three Lebesgue spaces $L^{2}\left(\mu_{j}\right), j=0,1,2$, with respective inner products

$$
\langle f, g\rangle_{\mu_{j}}:=\int f(z) \overline{g(z)} d \mu_{j}(z)
$$

and norms $\|f\|_{L^{2}\left(\mu_{j}\right)}:=\langle f, f\rangle_{\mu_{j}}^{1 / 2}$.
Let $\left\{p_{n}\left(\mu_{j}, z\right)\right\}_{n=0}^{\infty}, j=0,1$, denote the sequence of orthonormal polynomials associated with μ_{j}. That is, the unique sequence of the form

$$
p_{n}\left(\mu_{j}, z\right)=\gamma_{n}\left(\mu_{j}\right) z^{n}+\cdots, \quad \gamma_{n}\left(\mu_{j}\right)>0, \quad n=0,1,2, \ldots,
$$

satisfying $\left\langle p_{m}\left(\mu_{j}, \cdot\right), p_{n}\left(\mu_{j}, \cdot\right)\right\rangle_{\mu_{j}}=\delta_{m, n}$.

Christoffel functions

The monic orthogonal polynomials $p_{n}\left(\mu_{j}, z\right) / \gamma_{n}\left(\mu_{j}\right)$, can be defined by the extremal property

$$
\left\|\frac{1}{\gamma_{n}\left(\mu_{j}\right)} p_{n}\left(\mu_{j}, \cdot\right)\right\|_{L^{2}\left(\mu_{j}\right)}:=\min _{z^{n}+\cdots}\left\|z^{n}+\cdots\right\|_{L^{2}\left(\mu_{j}\right)}=\frac{1}{\gamma_{n}\left(\mu_{j}\right)} .
$$

A related extremal problem leads to the sequence $\left\{\lambda_{n}\left(\mu_{j}, z\right)\right\}_{n=0}^{\infty}$ of the Christoffel functions. These are defined, for any $z \in \mathbb{C}$, by

$$
\lambda_{n}\left(\mu_{j}, z\right):=\inf \left\{\|P\|_{L^{2}\left(\mu_{j}\right)}^{2}, P \in \mathbb{P}_{n} \text { with } P(z)=1\right\}
$$

where \mathbb{P}_{n} is the space of polynomials of degree $\leq n$.
Since, $\mu_{1} \leq \mu_{0}$ the following inequality is immediate

$$
\lambda_{n}\left(\mu_{1}, z\right) \leq \lambda_{n}\left(\mu_{0}, z\right), \quad n=0,1, \ldots
$$

Christoffel functions

Cauchy-Schwarz inequality yields that

$$
\frac{1}{\lambda_{n}\left(\mu_{j}, z\right)}=\sum_{k=0}^{n}\left|p_{k}\left(\mu_{j}, z\right)\right|^{2}, \quad z \in \mathbb{C}
$$

This leads to reconstruction algorithms from a finite set of moments

$$
\int z^{k} \bar{z}^{\prime} d \mu_{j}(z), \quad k, l=0,1, \ldots, n .
$$

- Archipelagos, in Gustafsson, Putinar, Saff \& St, Adv. Math. (2009).
- Archipelagos with Lakes, in Saff, Stahl, St \& Totik, SIAM J. Math. Anal. (2016).

PS perturbation

Definition (PS perturbation)

With $\mu_{0}:=\mu_{1}+\mu_{2}$ we say that μ_{0} is a polynomially small (PS) perturbation of μ_{1} provided that μ_{2} is not the zero measure and

$$
\lim _{n \rightarrow \infty}\left\|p_{n}\left(\mu_{1}, \cdot\right)\right\|_{L^{2}\left(\mu_{2}\right)}=0
$$

The next result shows that the fact that μ_{0} is a PS perturbation of μ_{1} implies certain constraints on the relative position of the support of μ_{2}. We use $\operatorname{Co}(E)$ to denote the convex hull of a set E.

Proposition

If μ_{0} is a PS perturbation of μ_{1}, then $S_{2} \subset \operatorname{Co}\left(S_{1}\right)$.
The result is a simple consequence of Theorem 1.1.4 in Stahl \& Totik, General Orthogonal Polynomials, CUP 1992.

Examples of PS perturbations

We use $\left.A\right|_{E}$ to denote the area measure on a bounded set E and $\left.s\right|_{\Gamma}$ to denote the arclength measure on a rectifiable curve Γ ．

Example（I）

Let G be a bounded Jordan domain（or the union of finitely many bounded Jordan domains with pairwise disjoint closures）and let B be a compact subset of G ．Take $\mu_{1}=\left.A\right|_{G \backslash B}, \mu_{2}=\left.w(z) A\right|_{B}$ where $w(z)$ is integrable on B and $\mu_{0}=\mu_{1}+\mu_{2}$ ．

Then Lemma 2.2 of Stahl，Saff，St \＆Totik，SIAM，J．Math．Anal． （2015）implies the PS property．

Examples of PS perturbations

We use $\left.A\right|_{E}$ to denote the area measure on a bounded set E and $\left.s\right|_{\Gamma}$ to denote the arclength measure on a rectifiable curve Γ.

Example (II)

Let Γ be a a closed piecewise analytic Jordan curve without cusps and let B be a compact subset in the interior of Γ. Take $\mu_{1}=\left.s\right|_{\Gamma}$, $\mu_{2}=\left.w(z) A\right|_{B}$, where $w(z)$ is integrable on B and $\mu_{0}=\mu_{1}+\mu_{2}$.

Then Theorem 2.1 of Pritsker, CMFT (2003) implies the PS property.

Examples

Example（III）

Here we assume μ_{1} is in the Szegő class on the unit circle；i．e．，the absolutely continuous part $w(\theta)$ of μ_{1} with respect to arclength on the unit circle $|z|=1$ satisfies the condition $\int_{0}^{2 \pi} \log (w(\theta)) d \theta>-\infty$ ，and we let μ_{2} be a finite measure supported on a compact set inside the unit circle．Take $\mu_{0}=\mu_{1}+\mu_{2}$ ．

Then Corollary 2．4．10 of B．Simon，Orthogonal Polynomials on the Unit Circle I，AMS（2005）implies the PS property．

Examples

Example (IV)

Let Γ be a piecewise analytic Jordan curve without cusps, let G denote its interior let $\mu_{1}=\left.A\right|_{G}$ and set $\mu_{0}=\mu_{1}+t \delta_{z}, t>0$, where z is a point on the boundary Γ and δ_{z} is the Dirac measure at z.

- If the exterior angle at $z \in \Gamma$ is less than $\pi / 2$, then from St , Contemporary Math., (2016) $\lim _{n \rightarrow \infty} p_{n}\left(\mu_{1}, z\right)=0$, and therefore $\mu_{0}=\mu_{1}+t \delta_{z}$, is a PS perturbation of μ_{1}.
- If the exterior angle at z is π, then from Totik \& Varga, Proc. Lond. Math. Soc. (2016) $\left|p_{n}\left(\mu_{1}, z\right)\right| \geq C n^{1 / 2}$, for some positive constant C and infinitely many n and thus $\mu_{0}=\mu_{1}+t \delta_{z}$ is not a PS perturbation of μ_{1},

Examples

Proposition

Let G be a bounded Jordan domain with boundary Γ in the class $C(2, \alpha), \alpha>1 / 2$. If $\mu_{1}=\left.s\right|_{\Gamma}$ is the arclength measure on Γ and $\mu_{2}=\left.A\right|_{G}$ is the area measure on G, then $\mu_{0}=\mu_{1}+\mu_{2}$ is a PS perturbation of μ_{1}.

A Useful Lemma

In view of the extremal property of the monic orthogonal polynomials the assumption $\mu_{0} \geq \mu_{1}$ implies

$$
\gamma_{n}\left(\mu_{0}\right) \leq \gamma_{n}\left(\mu_{1}\right), \quad n=0,1, \ldots
$$

Lemma (Useful)

For all $n \in \mathbb{N} \cup\{0\}$,

$$
\frac{\gamma_{n}\left(\mu_{1}\right)}{\gamma_{n}\left(\mu_{0}\right)}=1+\beta_{n},
$$

where β_{n} is non-negative and such that

$$
\frac{1}{\left\{1-\left\|p_{n}\left(\mu_{0}, \cdot\right)\right\|_{L^{2}\left(\mu_{2}\right)}^{2}\right\}^{1 / 2}}-1 \leq \beta_{n} \leq\left\{1+\left\|p_{n}\left(\mu_{1}, \cdot\right)\right\|_{L^{2}\left(\mu_{2}\right)}^{2}\right\}^{1 / 2}-1
$$

Our reasoning is guided by the arguments for Bergman polynomials in Saff, Stahl, St \& Totik, SIAM J. Math. Anal. (2016).

A Useful Lemma

Lemma (Useful, cont.)

Furthermore,
(i)

$$
\left\|p_{n}\left(\mu_{0}, \cdot\right)-p_{n}\left(\mu_{1}, \cdot\right)\right\|_{L^{2}\left(\mu_{1}\right)}^{2} \leq 2 \beta_{n} ;
$$

(ii) for any $z \in \overline{\mathbb{C}} \backslash \operatorname{Co}\left(S_{1}\right)$

$$
\left|\frac{p_{n}\left(\mu_{0}, z\right)}{p_{n}\left(\mu_{1}, z\right)}-1\right| \leq \sqrt{2 \beta_{n}}\left[1+\frac{\operatorname{diam}\left(S_{1}\right)}{\operatorname{dist}\left(z, \operatorname{Co}\left(S_{1}\right)\right)}\right]^{2}
$$

The result holds for any two positive measures with compact and infinite support, such that $\mu_{0} \geq \mu_{1}$.

The main perturbation result

The main purpose of the talk is to show that the following two associated pairs of sequences

$$
\left\{\gamma_{n}\left(\mu_{0}\right), \gamma_{n}\left(\mu_{1}\right)\right\}, \quad\left\{p_{n}\left(\mu_{0}, z\right), p_{n}\left(\mu_{1}, z\right)\right\}
$$

have comparable asymptotics when the measure μ_{0} is a polynomially small perturbation of μ_{1}. Also, the pair

$$
\left\{\lambda_{n}\left(\mu_{0}, \boldsymbol{z}\right), \lambda_{n}\left(\mu_{1}, \boldsymbol{z}\right)\right\},
$$

is comparable on a somewhat stronger condition.

- We let Ω denote the unbounded component of $\overline{\mathbb{C}} \backslash S_{1}$.
- We use $\operatorname{cap}(E)$ to denote the logarithmic capacity of a compact set E.

The main perturbation result

Theorem (Main)

If the measure μ_{0} is a PS perturbation of the measure μ_{1}, then:
(i)

$$
\lim _{n \rightarrow \infty} \gamma_{n}\left(\mu_{1}\right) / \gamma_{n}\left(\mu_{0}\right)=1
$$

(ii)

$$
\lim _{n \rightarrow \infty}\left\|p_{n}\left(\mu_{1}, \cdot\right)-p_{n}\left(\mu_{0}, \cdot\right)\right\|_{L^{2}\left(\mu_{0}\right)}=0 ;
$$

(iii) uniformly on compact subsets of $\overline{\mathbb{C}} \backslash \operatorname{Co}\left(S_{1}\right)$:

$$
\lim _{n \rightarrow \infty} p_{n}\left(\mu_{1}, z\right) / p_{n}\left(\mu_{0}, z\right)=1 ;
$$

Furthermore, if $\operatorname{cap}\left(S_{1}\right)>0$ and $\lim _{m \rightarrow \infty} \sum_{j=m}^{\infty}\left\|p_{j}\left(\mu_{1}, z\right)\right\|_{L^{2}\left(\mu_{2}\right)}^{2}=0$, then uniformly on compact subsets of $\overline{\mathbb{C}} \backslash \Omega$,

$$
\lim _{n \rightarrow \infty} \lambda_{n}\left(\mu_{0}, z\right) / \lambda_{n}\left(\mu_{1}, z\right)=1
$$

Motivation

Zeros of p_{40}, p_{60} and p_{80}, for pentagon G_{1}, disk lake K, disk G_{2}

$$
d=d \mu=\left.d A\right|_{G_{1}}+\left.d A\right|_{G_{2}}+\left.d A\right|_{K}
$$

Bergman polynomials on an archipelago

$\Gamma_{j}, j=1, \ldots, N$, a system of disjoint and mutually exterior Jordan curves in $\mathbb{C}, G_{j}:=\operatorname{int}\left(\Gamma_{j}\right), \Gamma:=\cup_{j=1}^{N} \Gamma_{j}, G:=\cup_{j=1}^{N} G_{j}$.

$$
\langle f, g\rangle_{G}:=\int_{G} f(z) \overline{g(z)} d A(z), \quad\|f\|_{L^{2}(G)}:=\langle f, f\rangle_{G}^{1 / 2}
$$

The Bergman polynomials $\left\{p_{n}\right\}_{n=0}^{\infty}$ of G are the unique orthonormal polynomials w.r.t. the area measure on G :

$$
\left\langle p_{m}, p_{n}\right\rangle_{G}=\int_{G} p_{m}(z) \overline{p_{n}(z)} d A(z)=\delta_{m, n},
$$

with

$$
p_{n}(z)=\gamma_{n} z^{n}+\cdots, \quad \gamma_{n}>0, \quad n=0,1,2, \ldots
$$

Bergman polynomials on archipelago with lakes

With K is a compact subset of G, set $G^{*}:=G \backslash K$ and consider

$$
\langle f, g\rangle_{G^{*}}:=\int_{G^{*}} f(z) \overline{g(z)} d A(z), \quad\|f\|_{L^{2}\left(G^{*}\right)}:=\langle f, f\rangle_{G^{*}}^{1 / 2}
$$

The Bergman polynomials $\left\{p_{n}^{*}\right\}_{n=0}^{\infty}$ of G^{*} are the unique orthonormal polynomials w.r.t. the area measure on G^{*} :

$$
\left\langle p_{m}^{*}, p_{n}^{*}\right\rangle_{G^{*}}=\int_{G^{*}} p_{m}^{*}(z) \overline{p_{n}^{*}(z)} d A(z)=\delta_{m, n}
$$

with

$$
p_{n}^{*}(z)=\gamma_{n}^{*} z^{n}+\cdots, \quad \gamma_{n}^{*}>0, \quad n=0,1,2, \ldots
$$

The SSST Lemma

Take $\mu_{1}=\left.A\right|_{G \backslash K}$ and $\mu_{2}=\left.\boldsymbol{A}\right|_{K}$. Then $\mu_{0}=\left.A\right|_{G}$ is a PS perturbation of μ_{1}, in view of the following result

Lemma (Saff, Stahl, St \& Totik, SIAM, J. Math. Anal., 201))
We have

$$
\sum_{n=0}^{\infty}\left|p_{n}^{*}(z)\right|^{2}<\infty
$$

uniformly on compact subsets of G. In particular, $p_{n}^{*}(z) \rightarrow 0$ uniformly on compact subsets of G.

The distribution of zeros of p_{n}^{*}

Our task is to describe the asymptotic behaviour of the zeros of the polynomials p_{n}^{*}.
The behaviour of the zeros of p_{n} was clarified in Gustafsson, Putinar, Saff \& St, Adv. Math. (2009).
Our tool is the normalized counting measure ν_{n} for the zeros of a the polynomial p_{n}^{*} :

$$
\nu_{n}:=\frac{1}{n} \sum_{p_{n}^{*}(z)=0} \delta_{z}
$$

where δ_{z} is the unit point mass (Dirac delta) at the point z. We denote by μ_{E} the equilibrium measure for a compact set E.

The balayage theorem

Theorem

If μ is any weak-star limit measure of the sequence $\left\{\nu_{n}\right\}_{n \in \mathbb{N}}$, then μ is a Borel probability measure supported on $\overline{\mathbb{C}} \backslash \Omega$ and $\mu^{b}=\mu_{\Gamma}$, where μ^{b} is the balayage of μ out of $\overline{\mathbb{C}} \backslash \Omega$ onto $\partial \Omega$. Similarly, the sequence of balayaged counting measures converges to μ_{Γ} :

$$
\nu_{n}^{b} \xrightarrow{*} \mu_{\Gamma}, \quad n \rightarrow \infty, \quad n \in \mathbb{N} .
$$

By the weak-star convergence of a sequence of measures τ_{n} to a measure τ we mean that, for any continuous f with compact support in \mathbb{C}, there holds

$$
\int f d \tau_{n} \rightarrow \int f d \tau, \quad \text { as } n \rightarrow \infty
$$

The result is a consequence of the fact that $\left.A\right|_{G^{*}}$ belongs to the class Reg and Theorem 2.3 Mhaskar \& Saff, JAT (1991).

The IC-point theorem

A point z_{0} on the boundary Γ_{j} of G_{j} is said to be an (inward-corner) IC point, if there exists a circular sector of the form
$S:=\left\{z: 0<\left|z-z_{0}\right|<r, \alpha \pi<\arg \left(z-z_{0}\right)<\beta \pi\right\}$ with $\beta-\alpha>1$ whose closure is contained in G_{j} except for z_{0}.

Theorem

Assume that for each $j=1, \ldots, k$ the boundary Γ_{j} of G_{j}, contains an IC point. Then

$$
\nu_{n}\left|\mathcal{V} \xrightarrow{*} \mu_{\Gamma}\right| \mathcal{V}, \quad n \rightarrow \infty, \quad n \in \mathbb{N},
$$

where \mathcal{V} is an open set containing $\bigcup_{j=1}^{k} \bar{G}_{j}$, such that if $k<m$ the distance of $\overline{\mathcal{V}}$ from $\bigcup_{j=k+1}^{m} \bar{G}_{j}$ is positive.

The result is a consequence of Corollary 2.2 of Saff \& St, JAT (2015).

Example

Zeros of p_{120}, p_{140} and p_{160}, for sector G_{1}, disk lake K, disk G_{2}

