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Lebesgue spaces and Orthonormal Polynomials

Let µ be a finite positive Borel measure having compact and infinite
support Sµ := supp(µ) in the complex plane C. Then, the measure

yields the Lebesgue spaces L2(µ) with inner product

〈f ,g〉µ :=

∫
f (z)g(z)dµ(z)

and norm
‖f‖L2(µ) := 〈f , f 〉1/2

µ .

Let {pn(µ, z)}∞n=0 denote the sequence of orthonormal polynomials
associated with µ. That is, the unique sequence of the form

pn(µ, z) = γn(µ)zn + · · · , γn(µ) > 0, n = 0,1,2, . . . ,

satisfying 〈pm(µ, ·),pn(µ, ·)〉µ = δm,n.
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Distribution of zeros: The tools
For any polynomial qn(z), of degree n, we denote by νqn the
normalized counting measure for the zeros of qn(z); that is,

νqn :=
1
n

∑
qn(z)=0

δz ,

where δz is the unit point mass (Dirac delta) at the point z.
For any measure µ with compact support in C,

Uµ(z) :=

∫
log

1
|z − t |

dµ(t), z ∈ C.

denotes the logarithmic potential on µ. In particular, if qn is monic,
then

Uνqn (z) =
1
n

log
1

|qn(z)|
, z ∈ C.

With µK we denote the equilibrium measure of a compact set K of
positive logarithmic capacity.
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Potential Theory: Five theorems

Theorem (Generalized Minimum Principle)

Let G ∈ C be a domain and h a superharmonic function on G that is
bounded from below and for which

lim sup
z→ζ,z∈G

h(z) ≥ m,

is satisfied for quasi-every ζ ∈ ∂G. Then,

h(z) > m, z ∈ G,

unless h is constant.

Saff & Totik, Logarithmic Potentials, Springer, 1997.
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Potential Theory: Five theorems

Theorem (Principle of Descent)

Let µn, n = 1, 2, ... , be probability measures, supported on the same
compact subset of C, such that

µn
∗−→ µ.

Suppose that for each n, a point zn is given so that zn → z, for some
z ∈ C. Then,

Uµ(z) ≤ lim inf
n→∞

Uµn (zn).

We say that µn
∗−→ µ, if∫

f dµn →
∫

f dµ, n→∞,

for every function f continuous on C.
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Potential Theory: Five theorems

Theorem (Lower Envelope Theorem)

Let µn, n = 1, 2, ... , be a sequence of positive unit Borel measures,
supported on the same compact subset of C, such that

µn
∗−→ µ.

Then,
lim inf
n→∞

Uµn (z) = Uµ(z),

for quasi-every z ∈ C.
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Potential Theory: Five theorems

Theorem (Unicity Theorem)

Suppose that the positive measures µ and ν have compact support
and in a region D ⊂ C the potentials Uν and Uµ satisfy

Uµ(z) = Uν(z) + u(z),

almost everywhere with respect to two-dimensional Lebesgue
measure, where the function u is harmonic in D. Then, in D the
measures µ and ν coincide.
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Potential Theory: Five theorems

Theorem (Carleson’s Unicity Theorem)

Let K be a compact set of positive capacity, and let Ω denote the
unbounded component of C \ K . If µ and ν are two unit measures
supported on ∂Ω, and if the potentials Uµ and Uν coincide in Ω, then
µ = ν.
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Bergman polynomials {pn} on an Jordan domain G

Δ

D

Ω Φ

0

Γ
Ψ

G

Γ := ∂G Ω := C \G

〈f ,g〉 :=

∫
G

f (z)g(z)dA(z), ‖f‖L2(G) := 〈f , f 〉1/2.

The Bergman polynomials {pn}∞n=0 of G are the orthonormal
polynomials w.r.t. the area measure on G:

〈pm,pn〉 =

∫
G

pm(z)pn(z)dA(z) = δm,n,

with
pn(z) = λnzn + · · · , λn > 0, n = 0,1,2, . . . .
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Example: G is the canonical pentagon
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Regular 5−gon:

zeros of orthogonal polynomials up to degree 50.

Theorem (Levin, Saff & St., Constr. Approx. 2003)

Let ϕ be a conformal map of G onto the unit disk D. Then, there is a
subsequence N of N such that

νpn

∗−→µΓ, n→∞, n ∈ N ,

if and only if ϕ cannot be analytically continued to some open set
containing G.
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Key results
The above theorem is based on the following facts:

• The area measure on G belongs to the class Reg, that is,

lim
n→∞

‖pn‖1/n
G

= 1.

• The kernel K (z, ζ), of the Bergman space L2
a(G) satisfies,

K (z, ζ) =
∞∑

n=0

pn(ζ)pn(z), z, ζ ∈ G,

and is is related to a normalized conformal map ϕζ : G→ D,
ϕζ(ζ) = 0, ζ ∈ G, by

K (z, ζ) =
1
π
ϕ′ζ(ζ)ϕ′ζ(z).

An application of Walsh’s maximal convergence then yields

lim sup
n→∞

|pn(ζ)|1/n = 1, n ∈ N ,

and the result then follows from Theorem III.4.1 in Saff and Totik.
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The two intersecting circles

Zeros of pn(z), with n = 80,100,120.

Theorem (Saff & St, JAT 2015)

If the boundary Γ of G contains an inward corner point, then

νpn

∗−→µΓ, n→∞, n ∈ N,

where µΓ denotes the equilibrium measure on Γ.

Based on Gardiner and Pommerenke, Constr, Approx, 2002.
The reluctance of the zeros to approach the points ±i , is due to the
fact that dµΓ(z) = |Φ′(z)|ds , where s denotes the arclength on Γ.
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The circular sector

Figure: Zeros of pn, n = 50, 100, 150, for the circular sector with opening
angle π/2.
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Explanation

Theorem (Mina-Diaz, Saff & St., CMFT 2005)

Let E 6= ∅ be a compact subset of C such that both C \ E and
◦

E := int(E) are connected. Let g : C \
◦

E → C be such that g is

analytic in C \E, |g| is continuous and never zero in C \
◦

E, g(∞) =∞
and g′(∞) = 1. Let {qn}∞n=1 be a sequence of monic polynomials of
respective degrees n = 1,2, . . ., such that∞ is not an accumulation
point of the set of zeros of the qn’s. Further, assume that

lim sup
n→∞

|qn(z)|1/n ≤ |g(z)| q.e. z ∈ ∂E .
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Theorem (Mina-Diaz, Saff & St., CMFT 2005, cont.)

Then, any measure σ that is a weak*-limit point of the sequence
{νqn}∞n=1 is supported on E and

Uσ(z) = log |g(z)|−1 ∀ z ∈ C \
◦

E . (1)

Moreover, there is a unique measure µg supported on ∂E such that
(1) holds with σ = µg . For such a measure, we have

(a) if
◦

E = ∅, then νqn

∗−→ µg as n→∞;

(b) if
◦

E 6= ∅ and for some z0 ∈
◦

E and a subsequence N ⊂ N

lim
n→∞

n∈N

|qn(z0)|1/n = e−Uµg (z0),

then
νqn

∗−→ µg as n→∞, n ∈ N .
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Used in the proof

Observe that the assumption of the theorem is equivalent to

lim inf
n→∞

Uνqn (z) ≥ log |g(z)|−1 q.e. z ∈ ∂E . (2)

Let σ be a weak*-limit point of the sequence {νqn}∞n=1, so that for
some subsequence N ⊂ N

νqn

∗−→ σ as n→∞ , n ∈ N .

Then σ is a probability measure and by (2) and the Lower Envelope
Theorem, we have for q.e. z ∈ ∂E ,

Uσ(z) = lim inf
n→∞
n∈N

Uνqn (z) ≥ lim inf
n→∞

Uνqn (z) ≥ log |g(z)|−1. (3)
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Used in the proof
By the assumptions on g, the function

Fσ(z) := Uσ(z)− log |g(z)|−1 , z ∈ C \ E ,

is superharmonic and lower bounded in C \ E , harmonic and equal to
zero at∞, and in view of (3) and the lower semicontinuity of Uσ, it
also satisfies for quasi-every z ′ ∈ ∂E

lim inf
z→z′

z∈C\E

Fσ(z) ≥ lim inf
z→z′

Uσ(z)− lim
z→z′

z∈C\E

log |g(z)|−1 ≥ Uσ(z ′)−log |g(z ′)|−1 ≥ 0 .

Then, by the generalized minimum principle for superharmonic
functions we conclude that Fσ ≡ 0, which implies that (1) holds in
C \ E . It also implies that Uσ is harmonic in C \ E and therefore, in
view of the Unicity Theorem supp(σ) must be contained in E .
It is a direct consequence of Carleson’s Unicity Theorem that there
can be at most one measure µg supported on ∂E that satisfies (1)
with σ = µg .
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Bergman polynomials on an archipelago

G1

G2
Γ1

GN

Γ2

ΓN

Γj , j = 1, . . . ,N, a system of disjoint and mutually exterior Jordan

curves in C, Gj := int(Γj ) , Γ := ∪N
j=1Γj , G := ∪N

j=1Gj .

〈f ,g〉G :=

∫
G

f (z)g(z)dA(z), ‖f‖L2(G) := 〈f , f 〉1/2
G

The Bergman polynomials {pn}∞n=0 of G are the unique orthonormal
polynomials w.r.t. the area measure on G:

〈pm,pn〉G =

∫
G

pm(z)pn(z)dA(z) = δm,n,

with
pn(z) = λnzn + · · · , λn > 0, n = 0,1,2, . . . .
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Three-disks

Zeros of the Bergman polynomials p140, p150 and p160.
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Theory in: Gustafsson, Putinar, Saff & St, Adv. Math., 2009.
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The basic tool for the distribution of zeros

• Ω := C \G.
• K (z, ζ): the Bergman (reproducing) kernel function of L2

a(G).
• LR := {z : gΩ(z,∞) = log R} the level lines of the Green function.
• %(ζ) := sup{R : K (z, ζ) has an analytic continuation inside LR}.
•

h(z) :=

{
gΩ(z,∞), z ∈ Ω,

− log %(z), z ∈ G,

• β :=
1

2π
∆h , in the sense of distributions.

• νpn : the normalized counting measure of zeros of pn.
• C: the set of weak-star cluster points of the counting measures
{νpn}∞n=1, i.e., the set of measures σ for which there exists a
subsequence Nσ ⊂ N such that νpn

∗−→ σ, as n→∞, n ∈ Nσ.
• µΓ: the equilibrium measure on the boundary Γ.
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The basic result for the distribution of zeros

Theorem (Gustafsson, Putinar, Saff & St, Advances in Math, 2009)

(i) β is a positive unit measure with support contained in G.
(ii) The balayage of β onto Γ gives the equilibrium measure µΓ:{

Uβ ≥ UµΓ in C,
Uβ = UµΓ in Ω.

(iii) C is nonempty, and for any σ ∈ C,{
Uσ ≥ Uβ in C,
Uσ = Uβ in the unbounded component of C \ suppβ.

(iv) The measure β is the lower envelope of C: Uβ = lsc(infσ∈C Uσ).

(v) If C has only one element, then this is β and
νpn

∗−→ β, n→∞, n ∈ N.
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Bergman polynomials on archipelago with lakes

Ω

Γ2

ΓNK
Γ1

KK GN

G2

G1

With K is a compact subset of G, set G∗ := G \ K and consider

〈f ,g〉G∗ :=

∫
G∗

f (z)g(z)dA(z), ‖f‖L2(G∗) := 〈f , f 〉1/2
G∗ .

The Bergman polynomials {p∗n}∞n=0 of G∗ are the unique orthonormal
polynomials w.r.t. the area measure on G∗:

〈p∗m,p∗n〉G∗ =

∫
G∗

p∗m(z)p∗n(z)dA(z) = δm,n,

with
p∗n(z) = γ∗n zn + · · · , γ∗n > 0, n = 0,1,2, . . . .
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The annular case

Plots of the zeros of p∗n(z), for n = 120,140 and 160.

Let G = D, K := {z : |z − a| ≤ %}, |a|+ % < 1, % > 0, G∗ = D \ K,
We recall that there exists a unique pair of points z1 and z2 that are
mutually inverse points with respect to the two circles T := ∂D and
{z : |z − a| = %}, that is

z1z2 = 1 and (z1 − a)(z2 − a) = %2.

Let z1 denote the point that lies in K (z2 will then lie outside D).
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The annular case: Explanation

Proposition (Saff & St, Mat. Sbornik, 2018)

With the above notation, there exists a subsequence N ⊂ N such that
the normalized zero counting measures for p∗n(z) satisfy

νp∗n
∗−→µ|z1|, n→∞, n ∈ N ,

where µ|z1| denotes the normalized arclength measure on the circle
|z| = |z1|.

Thus, no matter what the relative position of K, a weak limit of νn will
invariably be the arclength measure on a specific circle in D, always
centered at the origin.
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Shift Operator on L2(µ)

Let Nz denote the shift operator on L2(µ). That is,

Nz : L2(µ)→ L2(µ) with Nz f = zf .

Nz defines a normal operator on L2(µ). Furthermore,

pn(µ, z) = λn(µ) det(z − πnNzπn),

where πn is the projection onto the n-dimensional subspace onto
Pn−1.

Theorem (B. Simon, Duke Math. J., 2009)

Let
N(µ) := sup{|z| : z ∈ Sµ}.

Then, for any k ∈ N,

πnNk
z πn − (πnNzπn)k ,

is an operator of rank at most k and norm at most 2N(µ)k .
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Shift Operator on L2(µ)

Let µn denote the unit measures dµn = 1
n

∑n−1
j=0 |pn(µ, z)|2dµ(z).

Theorem (B. Simon, Duke Math. J., 2009)

1
n

Tr(πnNzπn)k =

∫
zk dνpn .

1
n

Tr(πnNk
z πn) =

∫
zk dµn.

Thus, from the previous theorem, for any k = 0,1,2, . . .,∣∣∣∣∫ zk dνpn −
∫

zk dµn

∣∣∣∣ ≤ 2kNk (µ)

n
.

Furthermore, if K is a compact set containing the supports of all νn
and µ, such that {zk}∞k=0 ∪ {zk}∞k=0 are ‖ · ‖∞-total in C(K ), then for

any subsequence {nj}, µnj

∗−→ ν if and only if µnj

∗−→ ν .
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Krylov subspaces

Let A ∈ L(H) be a linear bounded operator acting on the complex
Hilbert space H and let ξ ∈ H be a non-zero vector. We denote
Hn(A, ξ) the linear span of the vectors ξ,Aξ, ...,An−1ξ and let πn be
the orthogonal projection of H onto Hn(A, ξ). Let an denote the
counting measures of the spectra of the finite central truncations
An = πnAπn. Note that for any complex polynomial p(z) it holds that∫

p(z)dan(z) =
tr p(An)

n
.

The orthogonal monic polynomials Pn in this case are defined as
minimizers of the functional (semi-norm):

‖q‖2
A,ξ = ‖q(A)ξ‖2, q ∈ C[z],

and the zeros of Pn (whenever Pn exists) coincide with the spectrum
of An.
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Theorem (Gustafsson & Putinar, Springer 2017)

Let A,B ∈ L(H) with A− B of finite trace: A− B ∈ C1(H). Then for
every polynomial p ∈ C[z] we have

lim
n→∞

Tr(p(An))− Tr(p(Bn))

n
= 0.

Corollary

Let an,bn denote the counting measures of the spectra of An and Bn,
respectively. Then,

lim
n→∞

[

∫
dan(ζ)

ζ − z
−
∫

dbn(ζ)

ζ − z
] = 0,

uniformly on compact subsets which are disjoint of the convex hull of
σ(A) ∪ σ(B).
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Conclusion

All the results in this section yield information for the analytic
moments:

lim
n→∞

∫
zk dνn =

∫
zk dν, k = 0,1,2, . . . ,

where ν is a known positive measure and {νn} are a sequence of
positive measures (all supported on the same compact set K in the
complex plane) we want to describe its weak limit points. Note that
the measures being positive implies the same information for the
anti-analytic moments:

lim
n→∞

∫
zk dνn =

∫
zk dν, k = 1,2, . . . .
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Conclusion

However, according to the complex Stone-Weierstrass theorem, in
order to establish

νn
∗−→ ν,

we need the limits of all the complex moments

lim
n→∞

∫
zk z jdνn =

∫
zk z jdν, k , j = 0,1,2, . . . ,

unless K is of a special form (Mergelyan, Walsh), where the analytic
moments constitute sufficient information.
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