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Abstract. Let g be the function which maps conformally a rectangle R onto a 
simply connected domain G so that the four vertices of R are mapped respectively 
onto four specified points z I, z 2, za, z4 on tgG. This paper is concerned with the 
study of a domain decomposition method for computing approximations to g and 
to an associated domain functional in cases where: (i) G is bounded by two parallel 
straight lines and two Jordan arcs. (ii) The four points zl, z2, z3, z4, are the 
corners where the two straight lines meet the two arcs. 

1. Introduction 

Let G be a simply connected Jordan  domain  in the complex z-plane (z = x + iy), 
and consider a system consisting of G and four distinct points z l ,  z2, z3, z4, in 
counterclockwise order  on  its boundary  aG, Such a system is said to be a 
quadrilateral  Q and is denoted by 

Q--= {G; zl, z2, z3, z,}. 
The conformal  module m(Q)  of  Q is defined as follows: 

Let R be a rectangle of  the form 

(1.1) R..= {(~, r/): a < ~ < b, c < r / <  d}, 

in the w-plane (w = r + it/), and let h denote its aspect ratio, i.e., 

h := (d - c)/(b - a). 

Then m(Q)  is the unique value of  h for which Q is conformally equivalent to a 
rectangle of  the form (1.1), in the sense that  for h = m(Q)  and for this value only 
there exists a unique conformal  map  R--* G which takes the four comers  
a + ic, b + ic, b + id, and a + id of  R respectively onto  the four points  z l ,  z2, z3, 
and z4. In particular, with h = m(Q), Q is conformally equivalent to a rectangle of  

the form 

(1.2) Rh{ct } ..= {(r t/): 0 < ~ < i, g < ~/< ~t + h}. 
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Consider now the case where Q is of the form illustrated in Fig. 1.1(b) and let the 
arcs (z I, z2) and (z3, z4) have cartesian equations y = zl(x) and y = ~2(x), where 
~ , j  = 1, 2, are positive in [0, 1]. Tha t  is, let 

Q,= {o; z~, z2, z~, z,}, (1.3a) 

where 

(1.3b) 

with 

and 

(1.3c) 

Also let 

(1.4a) 

and 

(l.5a) 

G ..= {(x, y): 0 < x < 1, - , , ( x )  < y < r=(x)}, 

%{x)>O,  j = l ,  2 for x e [ O , l ] ,  

zl = - i z l (0 ) ,  

z3 = 1 + i'c2(1), 

z 2 =  1 - i t 1 ( 1  ), 

z4 = i,2(0). 

G1 -'= {(x, y): 0 < x < 1, - z l ( x  ) < y < 0} 

G= := {(x, y): 0 < x < 1, 0 < y < r=(x)}, 

so that  G = •1 to G a, and let Q1 and Qz denote the quadrilaterals 

(1.4b) Q~ ..= {6 , ;  z, ,  z2, 1, 0} 

and 

(1.5b) {22 '= {G=; 0, 1, z 3, z,}. 

Finally, let 

(1.6) h,=m(Q) and hj:=m(Qs), j = 1,2, 
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and let g and gi, J = 1, 2, be the associated conformal maps 

g:R ~G, 

gl: R1 ~ Gt, 

(1.7) 

0.8)  

and 

(1.9) 

where, with the notation (1.2), 

(1.10) 

(1.11) 

and 

(1.12) 

#2:R2 ~ G2, 

R "-= Rh{-h l}  = {(~, ~/): 0 < ~ < 1, - h ~  < r /<  h - hi} , 

R 1 := R , , { - h l }  = {(~, r/): 0 < ~ < 1, - h  1 < r /<  0}, 

(l.13a) 

(l.13b) 

and 
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0.14)  
~g~(w): R2 ~ G2 for w ~ R2, 

~(w) := (g l (  w): RI ~ G1 for w ~ R 1. 

The motivation for considering this method emerges from the intuitive observation 
that if h* .-= min(hl, h2) is "large," then the segment 0 < x < 1 of the real axis is 
"nearly" an equipotential of the function u satisfying the following Laplaeian 
problem: 

A u - 0  inG, 

u = 0  on (Zl, Z2), u = l  on (z3, z,) ,  

an = 0 on (z2, z3) u (z4, z 0. 

This in turn indicates that if h* is large, then 

h -~ h I + h 2, 

R 2 , =  Rh2{0} = {(~, n): 0 < r < 1, 0 < n < h~}. 

(The conformal map g is illustrated in Fig. 1.1.) 
This paper is concerned with the study of a domain decomposition method for 

computing approximations to h ,= re(Q) and to the associated conformal map #, 
defined by (1.7), in cases where the quadrilateral Q is of the form (1.3). More 
specifically, the method under consideration is based on decomposing Q into the 
two smaller quadrilaterals Qt and Q2, given by (1.4) and (1.5), and then 
approximating h, R, and g respectively by 

~1 ..= h I + h2, 

,R:= Ri,{-hl} --- {(~, ~/): 0 < ~ < I, - h i  < r /<  h2} , 



352 N. Papamichael and N. S. Stylianopoulos 

and function (1.14) "approximates" the true conformal map g. (We note that 

(1.15) h ~ hx + h 2, 

and equality occurs only in the two trivial cases where: (a) G is a rectangle, and (b) 
zi(x) = z2(x), x e [0, 1]; seer e.g.p. 437 of [8].) 

The purpose of this paper is to provide a theoretical justification for the above 
decomposition method, and to show that (1.13), (1.14) are capable of producing 
close approximations to h and to 9, even when h* .-= min(hl, h2) is only moderately 
large. We do this by a method of analysis that makes extensive use of the theory 
given in Chapter 5, Section 3, of [2], in connection with the integral equation 
method of Garrick [6] for the conformal mapping of doubly connected domains. 
In particular, we derive estimates of 

(1.16a) Eh,= I h - h l  = h - ( h l  + h2), 

(1.16b) E~ '~ := max{Iv(w) - Vl(w)l : w e/~x}, 

(1.16,:) E~ 2~ "-= max{lv(w + iEh) - V2(w)[: w ~/~2}, 

and show that 

and 

E h ~ O{e-2xh*}~ 

Etl~ = 0{e -~} ,  Et21 = 0{e-~h,}, g ~g 

provided that the functions r~, j = 1, 2, in (1.3b), satisfy certain smoothness 
conditions. 

Although the main results of this paper are derived by considering quadrilaterals 
of the form (1.3), the domain decomposition method and the associated theory 
have a somewhat wider application. More specifically, it will become apparent 
from our work that both the method and the theory also apply to the mapping of 
quadrilaterals Q ..= {G; z~, z2, z3, z4}, in cases where the domain G and the crosscut 
c that decomposes Q into Q1 and Q2 are as described below: 

�9 G is of the form illustrated in Fig. 1.2. That is, G is bounded by a segment 
11 -'= (z4, zl) of the real axis, a straight line 12 .'= (z2, za) inclined at an angle ~rr, 
0 < ~ < 1, to 11, and two Jordan arcs Vl := (zt, z2) and ~2 '= (z3, z4) which are 
given in polar coordinates by 

(1.17) 7j '= {z: z = pj(O)e i~ 0 <_ 0 < ~Tr}, j = 1, 2. 

�9 The functions p~,j = 1, 2, in (1.17), are such that pl(O) > 1 and 0 < p2(O) < 1, 
for 0 e [0, gn], and the crosscut c is the arc z = e i~ 0 < 0 < gn, of the unit 
circle. 

Although the results of this paper apply only to quadrilaterals that have one of 
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the two special forms illustrated in Figs. 1.1 and 1.2, we note that the mapping 
of such quadrilaterals has received considerable attention recently; see, e.g., 
El,i, [5,1 E1 I,], [121, [15"], and [17]. In this connection the decomposition method is 
of practical interest for the following two reasons: 

(i) It can be used to overcome the "crowding" difficulties associated with the 
numerical conformal mapping of "thin" quadrilaterals of the forms illus- 
trated in Figs. 1.1 and 1.2. (Full details of the crowding phenomenon and its 
damaging effects on numerical procedures for the mapping of "thin" 
quadrilaterals can be found in [121, [131, and [9]; see also p. 179 of [3,1 
p. 428 of [81, and p. 4 of [16].) 

(ii) Numerical methods for approximating the conformal maps of quadrilaterals 
of the form (1.4) or (t.5) are often substantially simpler than those for 
quadrilaterals of the more general form (1.3); see, e.g., [5-] and Section 3.4 of 
[12,]. 

The paper is organized as follows: In Section 2 we state without proof some 
preliminary results which are needed for our work in Section 3. These concern well- 
known properties of three integral operators that occur in the integral equations of 
the method of Garrick. In Section 3 we consider the Garrick formulations for the 
conformal maps of three closely related doubly connected domains. Hence, by 
making use of the theory given in Chapter V of [21, we derive a number of results 
that provide certain comparisons between the three conformal maps. Section 4 
contains the main results of the paper. Here, we first identify certain well-known 
relationships between the conformal maps (1.7)-(1.9) and those considered in 
Section 3. Hence, by making use of the results of Section 3, we derive estimates of 
the errors (1.16) in the domain decomposition approximations (1.13)-(1.14). 
Finally, in Section 5 we present two numerical examples illustrating the theory of 
Section 4, and make a number of concluding remarks concerning this theory. 

2. Preliminary Results 

In Section 3 we make extensive use of the properties of three linear integral 
operators in the real function space 

(2.1) L 2 ,= {u: u is 2It-periodic and square integrable in [0, 2n]}. 
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These operators are denoted by K, Rq, and Sq and are defined as follows (see 
pp. 194-195 of [2]): 

�9 K is the well-known operator for conjugation on the unit circle. That is, for 
u e L2, the function Ku is defined by the Cauchy principal value integral 

K[u(cp,],=lpvf;ncot(~-~--~)u(t)dt. 

�9 The operators R a and S~ depend on a real parameter q, with 0 < q < 1, and are 
defined by 

RqEu(cp)] ,= 9q(q~ - Ou(t) dr, Sr ,= ~ hq(q~ - t)u(t) dt, 

where the kernels 9q and hq are given by the absolutely convergent series 

~1 q2k --4k~ qk 
9q(~) ---- 4 = 1 Z q2k sin k~, h~(~a) -- = 1 - q2k sin k~0. 

The properties of the above three operators are studied in detail on pp. 195-205 
of [2], where in particular the following basic results can be found: 

�9 If u E L2, then 

(2.2) 

and 

Ku, Rqu, Squ e L2, 

2q ~ 2q 
(2.3a) II Ku II -< II u II, II R~u II -< ~ tl u II, II S•U ]1 <--- ~ 1  -- q2 II u II. 

Also, for 0 < q2 < ql < 1, 

(2.3b) I[(R,, - R,2)ull < (1 --q-~)-0 ~)l{ull. 

(Throughout this paper we take ll u ll ".= { l f ~" u2(t) dt } m.) 

�9 Let W denote the space 

(2.4) 

W := {u: u is 2re-periodic and absolutely continuous in [0, 2r(] and u' ~ L2}. 

If u ~ W, then 

(2.5a) Ku, Rqu, Squ ~ W 

and 

(2.5b) (Ku)' = Ku', (Rqu)' = R~u', (Squ)' = Squ'. 
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We also need the following: 

~ I f u e W  and 

fo " u(O dt = O, 
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then u satisfies the Warschawski inequality 

(2.6) lu(~)l 2 < 2~llull Ilu'll; 

see p. 18 of [18,1 and p. 68 of I-2,1. In addition we have Wirtinger's inequality 
[7, p. 1851, i.e., 

(2.7) 11 u II < 11 u' IJ. 

�9 Let T denote any of the three operators K, Rq, or Sq. Then, for any function 
u ~ W ,  

(2.8) llTut[ < I[TI[ tru'I1. 

(This follows at once from (2.7) and (2.5), by observing that 

Io ~ = 0; Tu dt 

see, e.g., equation (2.6) of [5].) 

The significance of the results (2.2)-(2.8) in connection with our work in Section 
3 is that the method of Garrick for the mapping of doubly connected domains can 
be formulated in terms of the operators K, R a, and Sq. The details are as follows: 

Let F 1 and F 2 be two Jordan curves in the Z-plane which are starlike with 
respect to Z = 0 and are given in polar coordinates by 

(2.9) F i := {Z: Z = p~(O)e '~ 0 <_ 0 < 2n}, j = 1, 2, 

where 0 < p2(O)< p~(O), for 0 e [0, 2n,1. Also, let [2 be the doubly connected 
domain bounded externally and internally by F~ and F2, respectively, i.e., 

(2.10) [2 ..= (Int F1) n (Ext Fz). 

Then, for a certain value q, 0 < q < 1, the domain f2 is conformally equivalent to 
the annulus 

(2.11) ha :=  {W: q < IWI < 1}, 

and the reciprocal M := 1/q of the inner radius is called the conformal module o f~ .  
Let f denote the conformal map Ag ~ ~ Then the following are well known: 

�9 f can be extended continuously to A,. 
�9 On the boundaries I WI = 1 and I WI = q of Ag the function f is given by two 

continuous boundary correspondence functions | and ~ which are defined 
by 

(2.12) f ( e  i~') = pl(O(~))e ~~ f (qe  ~') = p2(O(tp))e ~~ ~o ~ [0, 2hi. 
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(2.14a) 

(2.14b) 

and 

N. Papamiehad and N. S. Stylianopoulos 

�9 The requirement that I WI = 1 is mapped onto F: defines f uniquely, apart 
from an arbitrary rotation in the W-plane. Here we normalize the mapping by 
requiring that 

I0 f? (2.13) {| - e} de  -- {~(e) - e} de  -- 0. 

�9 The outer and inner boundary correspondence functions | and ~ and the 
inner radius q of A~ satisfy the Garrick integral equations: 

O(e) = e + (K + R,)[log Px(O(e))] + S,Oog p2(("5(e))'l, 

OCe) = e - SqElog ptCOCe))3 - (K + R~)Elog P2COCe))], 

_ 1 12" 
(2.14c) log q - ~ 30 {log p2(O(e)) - log p~(| dc#; 

see pp. 198-199 of [2] and Section 3 of [5]. 

3. On the Conformal Maps of Three Doubly Connected Domains 

Let the curves F~, j = 1, 2, be given by (2.9) with 

(3.1) pl(O) > 1 and 0 </92(0 ) < I, 0 e [0, 2hi, 

and as in Section 2, let f ,  | and ~ denote respectively the conformal map 

(3.2) f :  A~ --* s (Int F1) c~ (Ext F2), 

and the associated outer and inner boundary correspondence functions defined by 
(2.12). Also, let C1 denote the unit circle 

(3.3) C x .'-- {Z: IZI - 1}, 

and let q~-: and q21 be respectively the conformal modules of the two doubly 
connected domains 

(3.4) s '= (Int FI) c~ (Ext C1) 

and 

(3.5) f~2 '= (Int C1) c~ (Ext F2). 

Finally, let f~, j = 1, 2, denote the eonformal maps 

(3.6) fj: A~ --* fix, j = I, 2, 

where 

(3.7) Aa~.'= {W: qi < I WI < 1}, j = 1, 2, 

and let | and Oj, j = 1, 2, be the associated outer and inner boundary correspon- 
dence functions, i.e., 

(3.8a) f l ( e  iq') = pt(Ol(e))e ~~ f1 (q le  i~') = e ~~ 



D o m a i n  D e c o m p o s i t i o n  357 

(3. lOa) 

(3.lOb) 

(3.10c) 

and 

(3.1 la) 

(3.11b) 

and 

(3.8b) f2(e i*) = e ~~162 fz(qze ~') = pz(( '~z(go))e io2(~). 

We recall that the conformal map f is normalized by the conditions (2.13) and, 
by analogy, we normalize the conformal maps fj, j = 1, 2, respectively by 

f/ f/ (3.9) {Oj(go) -- go} dgo = {~')j(go) - go} dgo = O, j = I, 2. 

We also recall that the boundary correspondence functions | 0 and the radius q, 
associated with f ,  satisfy the Garrick equations (2.14). Similarly, the boundary 
correspondence functions | 0j ,  j = 1, 2, and the radii q~, j = 1, 2, associated 
with ~,  j = 1, 2, satisfy the simplified Garrick equations: 

Or(go) = go + (K + R~)[log Pt(Ot(go))], 

O~(go) -- go - Sq,[log px(Ox(go))], 

I F 2~ 
log qt = -~-~ .Jo log p t ( |  dgo, 

| = go + s ,2Dog p2(0:(go))], 

O2(go) = go -- (K + R~)Flog/02((~2(go))3 , 

1 F z~ (3.11c) log q2 = ~ • log p2(~2(go)) do. 

(The above equations follow from (2.14), by setting respectively p2(O) = 1 and 
pl(O) = 1.) 

In this section we derive a number of results that provide estimates for the 
quantities: 

[log q - (log ql + log q2)1, 

max [O(go) - Ol(go)[, max Ilog px(@(go)) - logpl(@t(go))/, 
r e [0, 2x] r �9 [0, 2x] 

max IO(go)- 02(go)l, max Ilogp2(O(go))- logp2(Oz(go))l, 
r e [0, 2~] r e [0, 2z] 

max{llog f ( W )  - log fl(W)]: W ~ .Aq,}, 

max{llog f (qW/q2)  - log f2(W)l: W 6 , 4 J ,  

and also for the real and imaginary parts of the function log{ f (W)/W},  W e A~. All 
these estimates are given in terms of the radii q and q j, j = 1, 2, and are derived by 
making extensive use of the theory of the Garrick method given in Chapter V of 
[2]. The significance of the results ofthis section in connection with the domain 
decomposition method become apparent in Section 4, once certain well-known 
relationships between the conformal maps (3.2), (3.6), and (1.7)-( 1.9) are identified. 
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Our results are established by assuming that the two boundary curves F j , j  = 
1, 2, satisfy the conditions stated below. 

Assumptions A3.1. The curves 

F# .'= {Z: Z = pj(O)e 'e, 0 < 0 <_ 2re}, j = 1, 2, 

satisfy the following: 

(i) p~(O) > 1 and 0 < p2(O) < 1, 0 e [0, 2n]. 
(ii) pj.(O),j = 1, 2, are absolutely continuous in [0, 2n], and 

d.~,= ess suplp's(O)/p j(O)l < oo. 
O~O~2n  

(3.12) 

(iii) If 

(3.13a) 

then 

rnl-'= max {p['l(O)} and m2.'= max {p2(O)}. 
O<_O<_2n O<_O<_2n 

. f l  + % )  
(3.13b) ej ,= aJ}l _ - - - Z ~  < 1, j =  1,2. 

We note that the above assumptions resemble closely those that constitute the 
so-called eS-condition associated with the theory of the method of Garrick; see 
p. 200 of [2] and p. 266 of [5]. We also note the following elementary results which 
are needed for our analysis: 

�9 Assumption A3.1(ii) implies that 

(3.14a) lllog p t (O(ep)) -  log pt(Ot(~)) ,  = [ fo{.,ao,~,, p'l(t)/px(t ) dt 1 

___ d l IO(~)  - O~(~)1, 
Hence, also 

(3.14b) 

Similarly, 

(3.I4c) 

Illog 01(O) - log/)1(O1)11 _ d I IIO - O 1 II. 

e [13. 2=]. 

[log p2(~)(q~)) -- log p2(O2(q~))i 
___ ~2 JO(~) - 62(~)J, ~ ~ [o, 2hi, 

and 

(3.14d) I[ log pc(O) -- log P2(~2)l[ ~ d2 ]l ~ -- {~2 II. 

�9 Since q < qj, j = 1, 2, the Garrick equations (3.10c) and (3.11c) imply that 

(3.15a) O < q < q i < m . ~ < l ,  j =  1,2. 

Hence, also 

(3.15b) dJ~-C---2tO-q) #tl ---~iJ < ej, j - -  1,2. 
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Lemma 3.1. Let el denote any of  the boundary correspondence functions | (~ and 
| ~ j ,  j = 1, 2. I f  the curves l'j, j = l, 2, satisfy Assumptions A3.1, then: 

(i) W' ~ L2, i.e., tF(tp) - tp ~ W. 
(ii) 

(3.16a) IIq"ll < 1/(1 - /~2)I /2  

and 

(3.16b) [1 ~g' - 1 11 _< e/(1 -- e2) 1/2, 

where 

�9 e-'= max (el, e2), when tF := O, ~ ,  

and 

�9 ~ := ~, when W := O j, ~j ,  j = 1, 2. 

Proof. (i) This follows from the Garrick equations (2.14) and (3.10)-(3.I1), by 
modifying in an obvious manner the proof of Satz 3.5(b) on pp. 204-205 of [2]. 

(ii) The differentiation of (2.14a) gives 

p' p' 

This follows from (2.5), because log pl( |  e W and log p : (~)  e W. Hence, by using 
(2.3) and (3.12) we find that 

_ < l q - q 2  ( ~ ( ~ q 2 ) d 2 1 1  ~ '  1[ �9 _ (3.17a) 1[| 11[ \ l _ - - ~ ] d l  ]10'l[+ 

Similarly, the differentiation of (2.14b)leads to 

(3.17b) I1 |  111 < dall| + ~,1 _---~],,211@11. 

Therefore, if II 0 '  II -> II ~ '  II, then 

(3.18a) I1 |  111 <el lO' l l  and I 1 @ -  111 <~11| 

and if li 0 '  II < tl @ tl, then 

(3.18b) I1 |  111 <ell@'ll and U ~ ' -  111 -<ell~'ll, 

where e:= max (el, e2); see (3.13) and (3.15). 
The two cases W .-= | and ~P .'= ~ of (3.16) follow from inequalities (3.18), by 

recalling that e < 1 and observing that 

I1~/"112 = Ilte ' -  1112 + i; 

see p. 70 of [2-1. The other cases W ..= | and ~P := ~ j , j  = 1, 2, of (3.16) can be 
derived in a similar manner by differentiating the simplified Garrick equations 
(3.10a, b) and (3.1 la, b). I I  
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Remark 3.1. The bounds for I1| - 111 and 110' - 111, given by (3.16b), can be 
replaced respectively by 

(3.19a) 1119' - 1 ]l -< (~1 "l" 2e2q)/(1 - ~2) t /2  

and 

(3.19b) I10' - 1 II - (~2 + 2elq)/(1 - ~2)t/2, 

where as before e .'= max (el, ~2). These follow from inequalities (3.17), by substitut- 
ing the bounds for 1119'11 and I10' II given by (3.16a). Hence, from (3.19) and the 
bounds for II 19'! - 1 II and II Oh - 1 II given by (3.16b), we have that 

II 19' - O'1 II --- 2(el + e.2q)/(1 - -  e2) I/2 (3.20a) 

and 

(3.20b) 

L e m m a  3.2. 

(3.21a) 

and 

(3.21b) 

where 

II O'  - O~ II ~ 2(~2 + e lq) / (1  - ez) 1/2. 

I f  the curves F j, j = 1, 2, satisfy Assumptions A3.1, then 

tl| - Oa II < ~(*a, O" {~q~ + e2q} 

II 0 - Oe II --- ~(~, O- {~2q, ~ + ~lq}, 

(3.22) ct(e~, e) := 2/{(I - e)(1 - e2)t/2}, 

and e :=  max (el, 52). 

Proof .  

Hence, 

j =  1,2, 

The Garr ick equations (2.14a) and (3.10a) imply that  

0 ( 9 )  - Ol(q~) = (K + Rq)[log pl(| - log pl(19~(tp))] 

- (Rq ,  - Re)[log pl( |  + Sqllog p2(O(~))]. 

I t |  Ot[I  < tlK + R ~ [ I d t [ [ O -  |  

+ IIR,, - R,  LI ( O 1 ) - O i  + IIS, II 0 ) .  O'  , 
[Pl 

where we made  use of (2.8) and (3.14b). Therefore, by using (2.3), (3.12), (3.15), and 
(3.16a) we find that  

C +:) NO-| < ~ dxHO-| 

2(q12 _ q2 )  dx 2q d2 
+ (1 --  q~)(1 --  q2)" (1 --  e2) 1/2 + - -  (1 - -  e2) 1/2 

--< e~t l |  - | + 

(1 - q2) 

2 f 2 
~2q}" (1 -- e2) l /ft~lql 

+ 



Domain Decomposition 361 

Since st < 1, this yields inequality (3.21a). Inequality (3.21b) is derived in a similar 
manner from (2.14b) and (3.11b). �9 

Theorem 3.1. I f  the curves Fj , j  = 1, 2, satisfy Assumptions A3.1, then 

(3.23) Ilog q - (log ql + log q2)l 

< diet(el, ~)" {elq~ + ezq} + d2~t(e2, t~). {e2q2 2 + elq}, 

where ct(. , �9 ) is given by (3.22). 

Proof. Equations (2.140, (3.10e), and (3.11c) in conjunction with the Schwarz 
inequality and inequalities (3.14b, d) give 

I log q - (log ql + log q2)] < Illog pa(| - log p1(| + [llog p2(0)  - log p2(Oz)II 

<_ d~ I1 e - ox  I1 + d 2  II 0 - 0 2  II. 

The theorem then follows by substituting the bounds for [ I 0 -  Ol1[ and 
110 - 02  tl given in Lemma 3.2. �9 

Theorem 3.2. I f  the curves F ~ , j =  1,2, satisfy Assumptions A3.1, 
c# e [0, 2n], 

(3.24a) IO(o,) -- el(~p)l < x/~P(el, ~). {~i + ~2q} 1/2. {~q~ + ~2q} ~/2 

and 

(3.24b) 

where 

(3.25) 

10(cp) - 02(o,)1 _< x/-~,B(e2, e)- {~2 + ~lq} x:2. {~2q~ + elq} 1/2, 

fl(ej, e ) :=  x/ '8/{1 - ~j)(1 - ez)} 1/2, 

and ~ .'= max (~1, e2). 

j = 1,2, 

then, for 

Proof. The first part of [ .emma 3.1 and the normalizing conditions (2.13), (3.9), 
imply respectively that O - O1, 0 - 02  e W, and 

I; {| - e~ (o ' ) }  do, = {O(o, )  - 02 (o , ) }  ao, = 0. 

Thus, the Warschawski inequality (2.6) is applicable to the functions | - O1 and 
0 -  02. The theorem follows by applying this inequality to each of the two 
functions, and using the bounds for ]] 0 '  - |  II, [I 0 '  - O~ II and J] O - |  II, 
[10 - 0 2 [I ~ven  by (3.20) and (3.21). �9 

Remark 3.2. For  any O" e [0, 2hi, Ilog pi(| - log pl(Ol(o'))l  can be bounded 
by the fight-hand side of (3.24a) multiplied by di ,  and [log p2(O(tp))-  
log pz(02(o'))l can be bounded by the right-hand side of 3.24b) multiplied by d 2. 
This follows at once from inequalities (3.14a) and (3.14e). 
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Remark 3.3. If the outer boundary curve F~ of f~ is a circle of radius r~, i.e., if 
p~(0) = r 1 > 1, then the domain f~l reduces to a circular annulus of inner radius 1 
and outer radius r 1. Thus, in this case, f ~ ( W ) =  r~W and hence q~ = l i f t  and 
Ol(q0 = Ox(~ )=  q~. Therefore, since d t =~]  = 0  and ~=e~ ,  the results of 
Theorem 3.1 and 3.2 simplify to the following: 

Ilog q + log rt - log q21 < a(e2, e2)" e2dzq~, (3.26) 

and 

(3.27a) 

(3.27b) 

l| - tPl -< x/l~fl(O, e2)" a2q, 

I0(~)  - O~(~)l -< 4~#(s~, ~,). e~q~, 

where a( . , -  ) and f l ( - , .  ) are given by (3.22) and (3.25). Similarly, if the inner 
boundary curve F2 is a circle of radius r z, i.e., if p~(O) = r z < t, then the results of 
the two theorems simplify as follows: 

[log q - log ql -- log r2l _< 0~(~ l, el)" eidlq~, (3.28) 

and 

(3.29a) IO(,e) - Olq~l < ,,/~/~(~,, ~,)" ~1ql, 

(3.29b) [~(q~) - q~l < ,v/nil( 0, ~ l ) ' e t q  �9 

Furthermore, it is easy to see that the results (3.26)-(3.29) hold under the somewhat 
less restrictive assumptions obtained by replacing inequalities (3.13) of Assumption 
A3.1(iii) by 

(3.30a) 2--  2) 1 _--Z-~z j" < 1, when pl(O) = rl ,  

d S 1 (3.30b) e~'.- 1~1 _---Z-~2j- < 1, when p2(0) = r2. 

(This follows by modifying the analysis in an obvious manner, after first observing 
that in each of the two special cases under consideration the Garrick equations 
(2.14) take the simplified forms (3.10)-(3.11).) In addition, it is easy to see that the 
results (3.27) and (3.29) also hold in the limiting cases where r~ = 1 or r 2 = 1. Thus, 
in particular, (3.29b) and (3.27a) imply respectively that 

I0~(~o) - ~I -< , r  ~ ) ~ q l  (3.31a) 

and 

(3.31b) IO~(q0 - q>l - v/-nfl( 0, e2)e2qz, 

where ~)1 and 02 are the boundary correspondence functions defined by (3.8). 

Theorem 3.3. For any p, where q < p < 1, let 

(3.32) f (pe i~') = P(p, r ~~ ~'J, q~ ~ [0, 2r~]. 
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I f  the curves Fj, j =  1,2, satisfy Assumptions A3.1 
symmetric with respect to the real axis, then 

I@(P, ~o) -- rgl --< x//-~fl(O, e){exp + E2(q/p)}, (3.33) 

and 

(3.34a) 

363 

and, in addition, are both 

with 

(3.35a) 

and 

(3.35b) 

Uv(r = ~ ~k cos k~o and W(~ ~ = /~k sin kq~, 
k = l  k = l  

% = {ak(p2k _ q2k) + dkqk(1 -- p2k)}/{pk(1 -- q2k)} 

~k = {a~(P 2k + q2k) _ dkqk(1 + p2k)}/{pk(1 -- q2k)}. 

Ilog P(p, q~) - logp + log xil 

--< �89 E){tIP + e2(q/p)} + dj~(cj, *){ejq 2 + e 3_Jq}, j = 1, 2, 

with 

(3.34b) xl  '= ql and x2 '= q/q2, 

where ~( . , .  ) and fl( . , .  ) are #iven by (3.22) and (3.25) and e ..= max (el, e2). 

Proof. The symmetry of the curves Fj, j = 1, 2, implies that the Fourier series of 
the functions u(~o):= log px(| and fi(~o),= log p2(O(~0)) are of the form 

u(~P)=�89 ~ akcosk~p and a (q~)= �89  ~ akCOSk~o. 
k = l  k = l  

The symmetry also implies that the function 

F(W) .'= log{f(W)/W} 

has the Laurent series expansion 

F(BO = ~. ckW k, W ~ Aq, 
k ~ - -  o o  

where the coefficients ck are all real and are related to the Fourier coefficients a~, dk 
by 

1 f2,, 
Co = �89 = ~ Jo log pa(O(q~)) d~o, 

ck = {ak - dkq'}/(1 -- q2k) and c_, = {dkq k -- akqZk}/(1 -- q2,), k = 1, 2 . . . .  ; 

see p. 270 of 1-5]. It follows that, for any fixed p, q < p < 1, 

F(pe i~') = c o + Up(q~) + iVp(q~), ~o ~ l0, 2tO, 

where the functions Up and V v have the Fourier series representations 
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This implies that 

II U:,ll = �89 k ' ~  and II g;ll -- �89 k2fl  2 �9 1 k~l 
Hence, by substituting the values (3.35) of ak and flk and applying the Minkowski 
inequality to each of the resulting right-hand sides, we find that 

k = l  q I co [I U~,,< p{�89 ~ k2a[}t/2 + (p){~ k~l k2a2k} 112 

1 

< (1 -- e2) 112" {elp + e2(q/p)} 

and 

{ 2q tf "k2  t1'2 II v;It _< ,( ~--~.f . , t2 __l p(1 : q2) 

2 dl d2 q 

-<(1-e2)1/2' 8 1 P + e 2  

(In deriving the above we made use of the two inequalities 

( ,~ }z/:' _d1,~2)112 ( k~l } 112 (1 d2 �89 _ k~a[ < and �89 k~a~ < 
k=l - ( 1  - - 

82)112' 

which are obtained by recalling that u, fie W and using (3.12) and (3.16a~ 
i.e., ~ -_  x kZa2k = 2 II u' II a = 2 II (P~/P ~)(| |  II 2, etc.) 

To complete the proof, we observe that 

~" fo'" Up(o) do  = V~(o) do = 0, 

and recall Wirtinger's inequality (2.7). Hence, by applying the Warschawsk 
inequality (2.6) to each of the functions Up and V o we find that 

(3.36a) [ Up(o)l 2 < 2rt l[ U, J[ l[ U; II -< 2n ][ U; II 2 < - ~ ( 1  elp + e2 P 

and 

(i)} (3.36b) IVp(qOI2_<2rcllVpll IIV;ll -< 2rcll V;ll2 -< ----S-~(1 caP+t2 " 

Inequality (3.33) then follows at once from (3.36b) because 

vp(o) = e(p,  ~o) - o. 
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Similarly, inequality (3.34) follows easily from (3.36a) and (3.21) by observing that 

Uo(r = log P(p,  cp) - log p - Co 

= log  P(p, tp) - -  l og  p + log ql - (co + log ql) 

= log P(p, r - log p + log(q/q2)  - (Co + log(q/qz)) ,  

where from (3.10e) and (3.14b) 

[c o + log qll -< dl [lO - O1 U, 

and from (2.14c), (3.11c), and (3.14d) 

[Co + Iog(q/qz)l  < dz 11 ~ - Oz II. am 

Remark  3.4. If, as in Remark 3.3, the outer boundary curve F 1 is a circle of radius 
r 1 > 1, then (3.33) and the casej = 1 of (3.34) simplify respectively to 

(3.37) 

and 

(3.38) 

1 0,, - q'l <- t:)t q/p 

Ilog P(p,  tp) - log p - log rl I < �89 e2)e2q/p. 

In particular, in the limiting case p = 1 the function ~ coincides with the boundary 
correspondence function O and, as might be expected, (3.37) coincides with  the 
result (3.27a) of Remark 3.3. Similarly, if the inner boundary curve F2 is a circle of 
radius r z < 1, then (3.33) and the casej = 2 of (3.34) simplfy to 

(3.39) 

and 

(3.40) 

Io0,, q,) - r -< q) ,p 

Ilog P(p,  tp) - log p + log(q/r2) [ <_ �89 el )e lp  , 

and in the limiting case p = q, (3.39) coincides with (3.29b). 

Remark  3.5. The additional symmetry condition, under which Theorem 3.3 was 
proved, was imposed because our work of Section 4 is concerned only with the case 
where both the curves F~, j = 1, 2, are symmetric with respect to the real axis. 
However, the results of the theorem remain valid even when this condition is not 
fulfilled, except that in the nonsymmetric case the estimate in the right-hand side of 
(3.33) and the first term in the right-hand side of (3.34) must be multiplied by 2. 
(The details of the proof are the same, but in the nonsymmetric ease the Laurent 
series expansion of the function F must be replaced by that given on p. 264 of !"5"].) 

Remark  3.6. Estimates similar to those given by (3.33)-(3.34) can also be obtained 
under the less restrictive assumption that the functions Pi, J = 1, 2, are only 
continuous. For example, by modifying the details of the proof that come after the 
two equations (3.35), it is easy to show that 

_ 1 _  q - - - -  ~ + , 
q < p < l ,  
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Ilog P(P, qJ) - log p - coi <- l { l~Pp  + / ~ q q } ,  q < p < l ,  

'logP(.P,q~'-logp'<2~ l(q'~ksl-p~'~ {p _--~} 
- k=tkkp,Jtl+q2J, J ~2 

Theorem 3.4. I f  the curves Fj, j = 1, 2, satisfy Assumptions A3.1 and, in addition, 
are both symmetric with respect to the real axis, then 

(3.41a) 

and 

(3.41b) 

where 

(3.42a) 

max{llog f ( W )  - log fx(W)[: W ~ ,4q,} < max{M1, N1} 

max{ilog f (qW/q2) -- log f2(W)l: W e ,4q~} _< max{M 2, N2}, 

M i := x/~(1 + d2) 1/2 fl(e~, ~){ej + ea_jq } l/2{eiq2 + e a _/1} 1/2, 

(3.42b) Nj .'= �89 e){5efl~ + 3e a_J(q/qj)} + dfx(e;, e){e~q] + e 3_/1}, 

and where o~(.,. ), fl(.,.  ) are given by (3.22), (3.25), and e'.= max(el,  e2). 

Proof. Let 

E .'= max{llog f ( W )  - log fl(W)l:  W ~ ,~q,}, 

and observe that the function log f ( W )  - log f l (W)  is regular and single-valued in 
A~, and continuous on Aq. Therefore, by the principle of maximum modulus, 

E < max I max I logf(e  '~ ' ) -  logf~(ei~)l, max Ilog f (qte '~)- logf~(qlei~) l  l ,  
~.~, ~ [0.  2x]  ~ ~ [0, 2~1 

j =  1,2, 

j =  1,2, 

In the special case where pt(0) = 1 estimates of the above form can also be 
deduced directly from the so-called distortion theorems of Gaier and Huckemann 
[4] and Menke [10]. For example, if p1(0) = I and P2 is continuous, then Theorem 
2 (ii) of [10] implies that 

(i) Co has the same meaning as in Theorem 3.3. 
(ii) 8j  == maxeE[0, 2~i {log pj(0)} - min0Eto.2~l {log p~(O)}, j = 1, 2. 

(iii) l = 1 when the curves F j, j = 1, 2, are both symmetric with respect to the 
real axis and l --- 2 otherwise. 
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where, for ~o e [0, 2~], 

(3.43a) Ilog f ( e  ~') - log fl(ei~*)[ 
= I { log  p~(o(~o))  - log m ( o , ( ~ o ) ) }  + i {o(~o)  - o , (~o)}1 

_< ( l  + d~) ' :=lO(~o) - O,(~o)1 

< M z ,  

and, with the notation of Theorem 3.3, 

(3.43b) Ilog f ( q t e  '~') - log fa(q~e~')l 

= Ilog P(qz, q~) + i{~(qz,  ~o) - 01(q~)}l 

< Ilog P(q,, tp)l + I~ (q , ,  tp) - ~ol + 101(~o) - ~ol 

_< N z . 

( In deriving (3.43a) we made use of (3.14a) and (3.24a), and in deriving (3.43b) we 
made use of (3.33)-(3.34), with p = q~ and j = 1, and of (3.31a).) 

Inequality (3.41a) follows at once from the above. Inequality (3.41b) is 
established in a similar manner, by observing that the function 
log f (qW/q2)  - log f 2 ( W )  is regular and single-valued in Aq2, and continuous on 
.4q: and then showing that 

Ilog f(qeiq'/q2) - log fz(ei~')l < Nz 

and 

Ilog f ( q e  ~') -- log f2(q2e~')l <_ M2.  �9 

4. Decomposition of Quadrilaterals 

We recall the notations (1.2)-(1.12) concerning the quadrilaterals Q and 
Qs, J = I, 2, defined by (1.3)-(1.5), their conformal modules 

(4.1) h ,= m(Q) and h s.'= rn(Qs), j = 1, 2, 

and the three associated conformal maps 

(4.2) g : R - - * G ,  g l : R x ~ G x ,  and g 2 : R 2 ~ G  2, 

where R , = R h { - h z } ,  R1 .'= R~,{-hx}, and R2.'= Rh2{0} are the three rectangles 
defined by (1.10)-(1.12). We also recall that the decomposition method outlined in 
Section 1 consists of the following: 

�9 Decomposing the quadrilateral Q into the two smaller quadrilaterals Qx and 
Q2. 

~ Approximating the conformal module of Q by the sum of the conformal 
modules of Qz and Q,, i.e., approximating h by 

(4.3) /~-'= hz + hz. 



368 N. Papamichael and N. S. Stylianopoulos 

�9 Approximating the rectangle R and the conformal map g respectively by 
�9 - -  Rg{ - h i }  and 

~g2(w): R2 ~ G2 for w e R2, 
(4.4) g(w) .'= [gl(w): R1 ~ GI for w ~ R t. 

In this section we study the errors (1.16) of the domain decomposition 
approximations (4.3)-(4.4), and show that estimates of these errors can be deduced 
directly from our results of Section 3. We do this by first making the following 
elementary observations, which establish a well-known connection between the 
conformal maps (4.2) and those studied in Section 3; see, e.g., Section 5 of 15]. 

�9 By using the Schwarz reflection principle, the conformal map g can be 
extended to map the infinite strip {(~, r/): - o o <  ~ < oo, - h  1 < r /<  h - hi} 
onto the infinite domain bounded by the two curves y =-r~Pl(x)  and 
y = z~P~(x), where z~P~,j = 1, 2, are the periodic functions defined by 

T}~( _+ x) = ~j(x), x ~ [0, 13, and ~PJ(2 + x) = ~P~(x). 

Similarly, the eonformal maps g~ and g2 can be extended to map 
respectively the infinite strips {(~,t/): - o o  < r < oo, -h~  < r /<0}  and 
{(~, t/): - -  O0 < ~ < 00, 0 < r/ < h2) onto the infinite domains bounded by the 
real axis and the curve y = - zt~P~(x), and the real axis and the curve y = z~"~(x). 
The above also show that the functions g(w) - w and g~(w) - w,j = 1, 2, are 
periodic with period 2. 

�9 The exponential function Z = e **~ maps the domain G conformally onto the 
upper half of the symmetric doubly connected domain 

(4.5) 

where 

(4.6a) 

with 

(4.6b) 

and 

f~ : =  (Int Ft)  c~ (Ext F2), 

F i :=  {Z: Z = p~{O)e '~, 0 < 0 < 2n}, j = 1, 2, 

exp{( -  o e EO, 

p,<O) = - 0), 0 (re, 2 r0 .  

Thereby the domains GI and G2 go respectively onto the upper halves of the 
symmetric doubly-connected domains 

(4.7) 

and 

(4.8) 

f~l '= (Int F1) c~ (Ext C1) 

~q2 '= (Int C1) c~ (Ext F]), 

where C 1 is the unit circle (3.3) and Fj, j = 1, 2, are the curves (4.6). 
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�9 Let q-  t and q~ t , j  = 1, 2, be respectively the conformal modules of the doubly 
connected domains f~ and f~#, j = 1, 2, given by (4.5)-(4.8), and let f and 
f j , j  = 1, 2, denote the associated conformal maps 

(4.9) f :  Aq + fZ and fi: A~j ~ fZj, j = 1, 2. 

Also, let h--= - {log q}/n and h~-'= - {log q.i}/rc, j = 1, 2. Then, the exponential 
function W = e ~=(~+~*') maps the rectangles R and R, conformally onto the 
upper halves of the annuli Aq and A~,, respectively. Similarly, the function 
W = e *=w maps the rectangle R a conformally onto the upper half of A~. 

It follows from the Sehwarz reflection principle that the conformal modules (4.1) 
and the mapping functions (4.2) are related to the modules q-* and q~ 1 and the 
mapping functions (4.9) respectively by 

(4.10) 

and 

(4.1 l a) 

(4.11b) 

(4.11c) 

q = e-  =h, qj = e-'*~, j = 1, 2, 

e',,a(w) = f { e"(~' + ~h, , }, 

e,~,a,~) = ft{e"(w+'h,,}, 

e',,a=tw) = fa{e"~w}. 

In other words the problem of determining the three conformal maps (4.2) is 
essentially equivalent to that of determining three conformal maps of the type 
studied in Section 3. 

Let 
X(~) ..= Re g(~ - ihl), X'(O-'= Re g(~ + i(h - h~)), 

XI( 0 := Re g1(r - ihl), ~'1(~) := Re gt(O, 

and 

X=(O ,= Re g2(O, ~'2(0-'= Re ga({ + ih2). 
Also, let 0 ,  0~, j = 1, 2, and O, O j, j = 1, 2, be respectively the outer and inner 
boundary correspondence functions associated with the conformal maps f, f~, 
j--- 1, 2, of the three doubly connected domains (4.6)-(4.8). Then the relations 
(4.1 I) imply that 

(4.12a) X( 0 =-10(n{) ,  

(4.12b) 2({)  = 1_ O(r~{), 
7~ 

and 

(4.12c) %(X(~)) = 1 log p l ( |  

(4.12d) ~2(2(0)  = _ 1  log P2(~(~O), 

1 
Xj(O = ~ e~(rcO, j = 1, 2, 

1 
g / O  = ~ 6,<~r j = 1, 2, 

i(xi(~)) = I log p1(O1(r:O), 

~ ( x 2 ( o  = - _1 log p2(O2(n~)). 
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It is now easy to express the main results of Section 3 in terms of the notations 
associated with the conformal maps (4.2). We do this below, after first observing 
that the conditions of Assumptions A3.1 can be expressed in terms of the functions 
zj, j = 1, 2, as follows: 

Assumpt ions  A4.1. The functions Ti, j = I, 2, satisfy the following: 

(i) zj(x) > 0 , j  = 1, 2, x ~ E0, 1"1. 
(ii) z~,j = 1, 2, are absolutely continuous in [0, 1], and 

(4.13) di.'= ess supl~'~Kx)l < oo. 
O<x__l 

(iii) If 

(4.14a) 

then 

mj..= max{e-~,(~)}, j = 1, 2, 
O<x<l  

d/t +m4 
(4.14b) ej ~= j ~ l - - ' - ~ j j  < 1, j = 1, 2. 

Theorem 4.1. I f  the functions z j , j  = 1, 2, satisfy Assumptions A4.1, then 

(4.15) Eh,= h - (h 1 + h2) _< n-ldl~(e  1, e){ele -2~hi + ~2 e-~*} 

+ re- ld2~(~ 2, ~){~2e -2~h2 + ale-~h}, 

where or( . , .  ) is given by (3.22) and e--= max(e~, e2). 

Proof. At once from Theorem 3.1, by recalling the relations (4.10). I!1 

Remark 4.1. Since h > hi + h2, the theorem implies that 

(4.16a) Eh'.= h -- (h 1 q- h2) = O{e-2~h*}, 

where 

(4.16b) 

Theorem 4.2. 
Ce Eo, 1I, 
(4.17a) IX(e) - XI(r < n- l /2 f l (~ l ,  g){/31 + e.2e-nh}ll2{e.,e -2,h' "Jr ~2e-~h} I/2 

and 

(4.17b) I.~(r - X2(~)I < re-1/2fl(e 2, e){e2 + e~e-*h}l/2{aze-2~h" + ele-~h} ~/2, 

where [3( . , .  ) is given by (3.25) and e .'= max(el, e2). 

Proof. At once from Theorem 3.2, by reealling the relations (4.12a, b). �9 

h* ~= min(hl, h2). 

I f  the functions zj, j = 1, 2, satisfy Assumptions A4.1, then, for 
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Remark 4.2. For any ( e [0, 1], Iza(X(0 ) - q(Xt(~))l and 1~2(2(r - ~2(22(r 
can be bounded respectively by the right-hand side of (4.17a) multiplied by d a and 
the right-hand side of (4.17b) multiplied by d2. This follows from the relations 
(4.12c, d), by recalling the comment made in Remark 3.2. 

Theorem 4.3. For any point ~ + irl e R := Rh{-ha}, let 

x(~, q),= Re g(~ + irl) and y(~, q):= Im g(~ + iq). 

I f  the functions zi, j = 1, 2, satisfy Assumptions A4.1, then 

Ix(~, r/) - ~l < n-a/2fl(O, e){eae-"(h'+~ + ~2e - ' (h-h ' -~} (4.18a) 

and 

(4.18b) lY((, q) - r/I _< �89 e){eae -"~h' +'~ + e~,e - ~o'-I', -,o} 

+ n-  a,:q~(~l,~){~e-Z,,h, + ~2e-'h}, 
where ~( . , .  ) and f l ( . , .  ) are given by (3.22) and (3.25) and ~ := max(~x,  e2). 

Proos 

then 

see (4.11 a). 

Remark 4.3. 

At once from (3.33) and the casej  = 1 of (3.34), by obser-,ing that if 

p = e  -~th,+"~ and ~0=n~, 

tO(p, (p) = nx(~, q) and log P(p, q)) = -ny(~ ,  r/); 

and 

Theorem 4.4. Let 

EI,~ ..= max{Ig(w) - ga(w)l: w e Ra} g 

E~ 2~ .'= max{ Ig(w + iEh) -- g2(w)l : w e R2}, 

where E h == h - (hz + h2). I f  the functions T~, j = 1, 2, satisfy Assumptions A4.1, then 

(4.I9a) 

where 

(4.19b) 

E u3 < max {M j, N j}, j = 1, 2, 

M r,= = -  "~(1 + a~)a/2,a(~i, ~) 
• {ej + ~3_,.e-"}l~2{e.,.e- 2"~ + ~3_, .e -"}"  :~, j =  1,2, 

In particular, the theorem implies that 

Ix(~,0) - r = O{e -~h'} and lY(~.,0)l = O{e-"~'}, 

where h* ,= min(h 1, h2). More generally, the theorem implies that if Qa and Q~ are 
"long" quadrilaterals then, at points sufficiently far from the two sides r /=  - h i  
and r /=  h - h a of Rh{ --ha} , the conformal map g can be approximated closely by 
the identity map. 
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Ni := �89 1:2fl(0, 8,){5e: -"~' + 38. 3 _fl--~(h-hs)} 

+ re-td:(8,s, 8,){8,:-2,h~ + 8,3_:-~th}, j = 1, 2, 

and where  c t ( . ,  . ), f l ( . , .  ) are 9iven by  (3.22), (3.25), and e .-= max (8,t, e2). 

At once from Theorem 3.4, by recalling the relations (4.11) and observing Proof. 
that  

w ~  R t =~. 

and 

w ~  R 2 =~ 

R e m a r k  4.4. Theorem 4.4 implies that  

e i~(w+i.hl) ~ Aqt 

e inw E Aq2. 

(4.20) E~ jl = O{e-"r} ,  j = I, 2, 

where, as in (4.16), h* .-= min(hx, h2). In other words, the error in the domain  
decomposit ion approximation (4.4) is O{e-=n'}, whilst the error in (4.3) is 
O{e-2-~'}. 

R e m a r k  4.5. Considerable simplifications occur in the ease where one of the two 
subdomains Gx or G2 is a rectangle. For  example, if zl(x ) = c > 0, x E [13, i], i.e., if 

G x'.= {(x ,y) :0  < x < 1, - -c  < y < 0} = Rc{-c} ,  

then 9z (w)  = w, h 1 = c, dx = 8,1 = 0, and the results of Theorems 4.1-4.4 simplify 
respectively as follows: 

(4.21) 

(4.22a) 

and 

(4.22b) 

(4.23a) 

and 

(4.23b) 

(4.24a) 

and 

(4.24b) 

where 

and 

Eh,= h - (c + h2) ~ 7z-ld2Gt(~2, 8,2),~2e - 2~t~2 

[X(~) - E l -  '~-1/2fl( 0, e2)82 e-nh 

12(~.) - 22(~)1 ~ 7r- x/2~(~2, e2)e2e-'~h2. 

IX(~, '7) - ~1 <- = - ~ / 2 / ~ ( 0 ,  ~ 2 ) a : e  - ~ < " - + - ' '  

lY(~, rt) - ~71 ~ �89  1/2fl(0, ~2)82 e-a<h-c-~). 

E~ 1~ .'= max{ I9(w) - wl: w ~ g~{ - c } }  < ~n-1/2fl(0, a2)e2e -'<h-~) 

Etg 2~ -'= max(Ig(w + iEh) --  g2(w)l: w ~/~2} --< max{M2, N2}, 

M2 ;= r~- I/2(I + d~)I/2fl(t2, ~;2)e2e-~h~, 

N 2 ..= ~- I/2fl(0, e2)e2e -'h" + rt- Id2ct(e2, e2)e2e- 2~h~. 
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Furthermore, all the above results hold under the less restrictive assumptions 
obtained by replacing inequalities (4.14) of Assumptions A4.1 by 

d f l  + 
(4.25) 2.'= 2~1---S-~ J- < 1; 

see Remark 3.3. 
The results (4.23) are of particular interest. These results show that, for any point 

w , =  + e g , ( - c } ,  

(4.26) {g(w) - w} = O{e-"("- ,)};  

see also (4.22a) and (4.24a). In other words, if Q2 is a "long" quadrilateral, then in 
the rectangle R , { -  c} the conformal map g can be approximated closely by the 
identity map. 

Remark 4.6. The observations concerning the identity map, which were made in 
Remarks 4.3 and 4.5, suggest the use of a more general decomposition procedure 
where the original quadrilateral Q is subdivided into a quadrilateral of the form 
(1.4) at the lower end, a rectangle in the middle, and a quadrilateral of the form 
(1.5) at the top. This procedure can be described as follows: 

Let 

G..= {(x, y): 0 < x < 1, - ~ l ( x )  < y < z2(x ) + c}, 

where c < 0, let 

and 

so that 

and let 

G I -'= {(x, y): 0 < x < 1, - z l ( x  ) < y < 0} 

G2 -'= {(x, y): 0 < x < 1, c < y < r2(x) + c}, 

zl = - izt(0), z 2 = 1 -- i'q(1), 

Z 3 = 1 q- i(~'2(1) a t- C), Z 4 = i(lr2(0 ) "b C). 

Then the procedure under consideration consists of the following: 

�9 Subdividing the quadrilateral Q ,= {G; z 1, z2, z3, z4} into three 
quadrilaterals, i.e., 
{G2; ic, 1 + ic, z3, z4} 
quadrilateral 

smaller 
the quadrilaterals QI "= (GI; z 1, z 2, 1, O} and Q2 := 

at the lower and upper ends, and the rectangular 

{Re{O}: 0 , 1, 1 + ie, ic} 

in the middle. 
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�9 Approximating the conformal module h ~= re(Q) by 

(4.27) h..= h, + h2 + c, 

where h~ := m(Q~),j = 1, 2. 
�9 Approximating the rectangle R .'= R~,{- h~} and the conformal map g: R --, G 

respectively by R ,= R~{ - h ~ } and 

I'O2(w): Rh~{c} --* G2 for w e Rh~{c}, 

O(w) for w ~ R,{0}, 

1.0~(w):R~ --,G~ for w e R e .  

Let E ~ , E ~ , j =  1,2, and E~ ~ denote the errors in the approximations 
(4.27)-(4.28). That  is, 

Eh := h - (h~ + h 2 + c), 

E~ ~) := max{ 1O(w) - O~(w)l: w ~ /~} ,  

E~ 21 ,= max{19(w + iE~) - O2(w)l: w ~ /~{c}} ,  

and 

E~, c~ :-- m a x { I g ( ~ )  - wl:  w E g o { 0 } } .  

Then estimates of the above errors can be deduced easily from those given in 
Theorems 4.1, 4.3, and 4.4 and in Remark 4.5. For  example, if the functions 
~,  j --- 1, 2, satisfy Assumptions A4.1, then by using (4.15) and (4.21) it is easy to 
show that, for any c > 0, 

Eh < re-ldl~(e 1, e){ele -2~h' + ~2e -~h} 
+ n- ld2g(e  2, e){e2e - 2~(h2+r + ele -~h} 

+ n -  ~d2~(e2, ~2)~2e- 2,h~. 

More generally, it is easy to show that if the functions z~,j = 1,2, satisfy 
Assumptions A4.1 then, for any c > 0, 

Eh = O { e - 2 ~ h ' } ,  

E~ ~ = O{e-~h'}, j = 1, 2, and E~ ~1 = O{e-~h'}, 

where h* := min(hl, h2). 

Remark  4.7. Let Q ~= {G; Zl, z2, z3, z4} be of the form illustrated in Fig. 1.2. That 
is, let Q consist of a domain G bounded by a segment 11 .-= (z4, zl) of the real axis, a 
straight line 12 -'= (z2, z3) inclined at an angle ccr~, 0 < ~ _< 1, to 11, and two Jordan 
arcs ~1 := (Zl, z2) and 72 := (z3, z4) where 

~ == {z: z = pj(O)e i~ 0 <_ 0 <_ =~}, j = 1, 2, 

with pl(O) > 1 and 0 < p2(O) < 1. 
It is easy to see that the domain decomposition method and the associated 

theory can also be applied to quadrilaterals of the above form, provided that the 
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crosscut of subdivision is taken to be the arc c .-= {z: z = e ~e, 0 < 0 < art} of the unit 
circle. For example, this can be seen by observing that the transformation 

1 
z ---, 7--- log z 

10c~ 

maps the quadrilaterals Q and 

zl, z2, 1}, 1, 

illustrated in Fig. 1.2, onto three quadrilaterals of the form (1.3)-(1.5), with 

(_l)J-, 
rj(x) = - -  log pl(~tnx), j = 1, 2. 

5. Numerical Examples and Discussion 

Each of the two examples given below involves the mapping of a quadrilateral Q of 
the form (1.3) and, in each case, the decomposition is performed by subdividing Q 
into two quadrilaterals Q~,j = 1, 2, of the form (1.4)-(1.5). In each example, we use 
the following notations for the presentation of the results: 

�9 Eh and E~ 3, j = 1, 2: As before, these denote the actual errors (1.16) in the 
domain decomposition approximations to the module h.-= re(Q) and the 
conformal map O: R --, G. More precisely, the values E, and Ea ~ listed in the 
examples are reliable estimates of the actual errors. They are determined from 
accurate approximations to h, h i, j = 1, 2, and 9, 9~, J = 1, 2, which are 
computed by using the iterative algorithms described in 1-5]. In particular, E~ ~, 
j = 1, 2, are the maxima of two sets of values, which are obtained by sampling 
respectively the approximations to the functions O(w)-g l (w  ) and 
9(w + i E , ) -  92(w) at a number of test points on the boundary segments 
r /=  - h i ,  0 of R 1 ~= Rh~{-hl} and ~/= 0, h 2 of R 2 := Rh2{0}. 

�9 T(Eh) and T(E~I),j = 1, 2: These denote the theoretical estimates of the errors 
Eh and E~ ~, j = 1, 2, which are given respectively by the expressions on the 
right-hand sides of (4.15) and (4.19). 

Example 5.1. 

and 

Let Q and Qj, j = 1, 2, be defined by (1.3)-(1.5) with 

ra(x) = 1.5 + 0.2 sech2(2.5x) + l 

Zz(X) = 0.25x 4 - 0.375x 2 + 0.333x + 1.25 + l, 

where 1 >_ 0. 
In this ease d 1 = 0.3849, dz = 0.5830, and the largest values of ej, j = 1, 2, i.e., 

el = 0.3918 and e2 = 0.6064, occur when 1 = 0. Therefore, the functions Ti, j = I, 2, 
satisfy Assumptions A4.1, for all l > 0. 



376 N. P a p a m i c h a e l  a n d  N.  S. S t y t i a n o p o u l o s  

T a b l e  5.1 

(a) 

l h I h 2 h 

0.00 1.565 514 72 1.333 348 92  2.898 870  58 

0.25 1.815 515 54 1.583 350 99 3.398 867 97 

0.50 2 .065 515 71 1.833 351 42  3.898 867  43 

0.75 2.315 515 74 2.083 351 51 4 .398 867 31 

1.00 2 .565 515 75 2.333 351 53 4.898 867 29 

(b)  

l Es, T(Eh) E~ lj T(F,~ ~) E~ 2~ T(E~ 2~) 

0.00 7 .0E - 6 2 .6E - 4 2 .1E - 3 4 .2E  - 2 2 .1E - 3 5.5E - 2 

0.25 1.5E - 6 5.1E - 5 9 .6E - 4 1.9E - 2 9 .6E - 4 2 .4E - 2 

0 .50 3 .0E - 7 1.0E - 5 4 .4E  - 4 8 .4E - 3 4 .4E  - 4 I . I E  - 2 

0.75 6 .3E - 8 2 .1E - 6 2 .0E - 4 3 .8E - 3 2 .0E - 4 5 .0E - 3 

1.00 1.3E - 8 4 .4E  - 7 9 .1E - 5 1.TE - 3 9 .0E  - 5 2 .2E - 3 

The numerical results corresponding to the values l = 0.0(0.25)1.0 are listed in 
Table 5.1(a) and (b). This table contains respectively the computed values of the 
conformal modules, which are expected to be correct to seven significant figures, 
and the values of the error estimates Eh, T(Eh) and E~ ~, T(E~J3), j = 1, 2. 

Example 5.2. Let Q and Q~,j = I, 2, be defined by (1.3) - (1.5) with 

zl(x) = c > 0 and z2(x) = 0.25x 4 - 0.5x 2 + 2.0 + l, l _> 0. 

In this case Q is of the special form considered in Remark 4.5, i.e., gl(w) = w, 
h 1 .-= re(Q1) = c, and d 1 = e 1 = 0. Also, d 2 = 0.3849 and, for all l > 0, m 2 < 4.1 x 
10-3. Hence, (4.25) gives 

�9 f l  + 
,2-'= a2 1 i, < 0.385, vt >__ o, 

i.e., the simplified results (4.21)-(4.24) hold for all l > 0. 
The numerical results corresponding to the values c --- 1 and l = 0.0(0.5)2.0 are 

listed in Table 5.2(a) and (b). As in Example 5.1, the table contains respectively the 
computed values of the conformal modules h and h2, and the values of the error 
estimates Eh, T(Eh) and E~ 3, T(E~ j = 1, 2. 

We recall that h~ = 1, and observe that the values of h and h 2 listed in Table 
5.2(a) are expected to be correct to the number of figures quoted. (The algorithms 
of [5] achieve this remarkable accuracy because, in this case, the curve F2: Z = 
p2(O)e ~~ corresponding to the arc y = zz(x) is analytic; see the comment made in 
Remark 3, p. 279, of 15].) We also observe that the estimates given in Table 5.2(b) 
remain unchanged for any value c > 0; see Remark 4.5. 
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(a) 

1 h2 h 

0.0 1.859 568 647 615 2.859 569 034 971 

0.5 2.359 569 018 925 3.359 569 035 644 

1.0 2.859 569 034 971 3.859 569 035 694 

1.5 3.359 569 035 664 4.359 569 035 695 

Z 0  3.859 569 035 694 4.859 569 035 695 

(b) 

t E~ T(e~) F~C, ~ r ( g " )  E~, ~j r(E~ 2~) 

0.0 3.9E - 7 t .4E  - 6 5.0E - 4 2.9E - 3 5.0E - 4 4 .8E - 3 

0.5 1.7E - 8 6.1E - 8 1.0E - 4 6.0E - 4 1.0E - 4 1.0E - 3 

1.0 7.2E - 10 2.6E - 9 2.2E - 5 1.3E - 4 2.1E - 5 2.1E - 4 

1.5 3.1E - 11 1.1E - 10 4.5E - 6 2.6E - 5 4.5E - 6 4.4E - 5 

2.0 1.4E - 12 4.9E - 12 9.3E - 7 5.4E - 6 9.3E - 7 9.0E - 6 

We end this section by making the following concluding remarks: 

R e m a r k 5 . 1 .  The results of the two examples given above illustrate the remarkable 
accuracy that can be achieved by the domain decomposition method, even when 
the quadrilaterals involved are only moderately long. Furthermore, the results 
confirm the theory of Section 4 and show that the error estimates given in 
Theorems 4.1 and 4.4 reflect closely the actual errors in the domain decomposition 
approximations. 

R e m a r k  5.2. We recall the method used for computing the values Eg ~) a n d  Eg 2j 
listed in Tables 5.1(b) and 5.2(b), and note that in both examples the maxima of 
Ig(w) - #l(w)l and Ig(w + iEh) -- 02(w)l occur on the common boundary segment 
r /= 0 of R~ and R2. The errors on the sides !/= -h~ of Rt and r /= h 2 of R2 are 
much smaller, indicating that the estimates of 

E~ ) := max IX(C) - X~(r and E~ }.-= max I.,~(~) - .X'2(~)I, 

given in Theorem 4.2, are pessimistic. In fact, there is strong experimental evidence 
which suggests that E~ ) and E~ ) are both O{e-2~h'}, rather than O{e -~h*} as 
predicted by (4.17). (Of course, exactly the same remark applies to the estimates 
referred to in Remark 4.2.) 

The very close agreement between the values _gE ~1) and E~ 2~ listed in the tables is 
related to the above observations, and can be explained by the results of Theorem 
4.3 and those given in Remark 4.5. 
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Remark 5.3. Since h >_ h 1 + h2, the results of Theorems 4.1-4.4 provide comput- 
able error estimates, i.e., estimates that can be computed easily once the approxi- 
mations to the conformal modules h 1 and h 2 are determined. In addition the results 
of the theorems can be used to provide a priori error estimates, i.e., estimates that 
can be determined before the approximations to hi and h2 are computed. This can 
be done by observing that 

hi___ 

and 

min T~(x).'= b), j - 1, 2, 
O_<x<l 

h > b 1 + b2.'= b, 

and replacing the values of h and hi, j = I, 2, respectively by the lower bounds b 
and b~, j = t, 2. 

Remark  5.4. Our final remark concerns Assumptions A4.1 under which the 
theoretical results of Section 4 were established. The most restrictive of these 
assumptions is, of course, condition (4.14) which requires that the quantities ej, 
j = 1, 2, are less than unity. In practice, (4.14) is more or less equivalent to requiring 
that the slopes of the two curves y = zj(x), j = I, 2, are numerically less than unity 
in [0, 1]. This is so because the values m j , j  = 1, 2, given by (4.14a) are "small," even 
when the two quadrilaterals Q j, j = 1, 2, are only moderately "long." 

Condition (4.14) is certainly needed for our method of proof. However, the 
results of the example considered in Section 5 of [12] and those of several other 
numerical experiments given in [14] indicate clearly that 

(5.1 a) E h = 0 {e -  25,.} 
and 

(5.1b) E~ ~ = O{e-"h*}, j = 1, 2, 

with h* = min(h 1, h2) , e v e n  when (4.14) is not fulfilled. In fact there is very strong 
experimental evidence which suggests that the results (5.1) hold when the functions 
zj, j = 1, 2, satisfy only the first two conditions of Assumptions A4.1. 
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