Fine Asymptotics for Bergman Orthogonal Polynomials over Domains with Corners

Nikos Stylianopoulos,
University of Cyprus

CMFT 2009
Ankara, June 2009

Definition

Γ : bounded Jordan curve, $G:=\operatorname{int}(\Gamma)$

$$
\langle f, g\rangle:=\int_{G} f(z) \overline{g(z)} d A(z), \quad\|f\|_{L^{2}(G)}:=\langle f, f\rangle^{1 / 2}
$$

The Bergman polynomials $\left\{p_{n}\right\}_{n=0}^{\infty}$ of G are the orthonormal polynomials w.r.t. the area measure:

$$
\left\langle p_{m}, p_{n}\right\rangle=\int_{G} p_{m}(z) \overline{p_{n}(z)} d A(z)=\delta_{m, n}
$$

with

$$
p_{n}(z)=\lambda_{n} z^{n}+\cdots, \quad \lambda_{n}>0, \quad n=0,1,2, \ldots
$$

Minimal property

$$
\frac{1}{\lambda_{n}}=\left\|\frac{p_{n}}{\lambda_{n}}\right\|_{L^{2}(G)}=\min _{z^{n}+\cdots}\left\|z^{n}+\cdots\right\|_{L^{2}(G)} .
$$

The Bergman space

$$
L_{a}^{2}(G):=\left\{f \text { analytic in } G,\|f\|_{L^{2}(G)}<\infty\right\},
$$

is a Hilbert space with reproducing kernel $K(z, \zeta)$: For any $\zeta \in G$,

$$
f(\zeta)=\langle f, K(\cdot, \zeta)\rangle, \forall f \in L_{a}^{2}(G) .
$$

Approximation Property

$\left\{p_{n}\right\}_{n=0}^{\infty}$ is a complete ON system of $L_{a}^{2}(G)$ and

$$
K(z, \zeta)=\sum_{n=0}^{\infty} \overline{p_{n}(\zeta)} p_{n}(z), \quad z, \zeta \in G .
$$

Associated conformal maps

If $\varphi_{\zeta}(\zeta)=0$ and $\varphi_{\zeta}^{\prime}(\zeta)>0$ then

$$
K(z, \zeta)=\frac{1}{\pi} \varphi_{\zeta}^{\prime}(\zeta) \varphi_{\zeta}^{\prime}(z)
$$

This leads to the Bergman kernel method for approximating φ_{ζ}^{\prime} (and thus φ_{ζ}) in terms of Bergman polynomials.

Basic Asymptotics Estimates Applications

Weak asymptotics for λ_{n} and p_{n} in G

Papamichael, Saff \& Gong, JCAM (1991)

If Γ is a bounded Jordan curve then:

$$
\lim _{n \rightarrow \infty}\left\|p_{n}\right\|_{\frac{1}{G}}^{1 / n}=1, \quad \text { and } \quad \lim _{n \rightarrow \infty} \lambda_{n}^{1 / n}=\gamma(=1 / \operatorname{cap}(\Gamma))
$$

Also, let $L_{R}:=\{z:|\Phi(z)|=R\}(R \geq 1)$. Then φ_{ζ} is analytic in $\operatorname{int}\left(L_{R}\right)$ if and only if

$$
\limsup _{n \rightarrow \infty}\left|p_{n}(\zeta)\right|^{1 / n}=1 / R
$$

With $\|\cdot\|_{\bar{G}}$ we denote the sup-norm on \bar{G}.

Weak asymptotics for p_{n} in Ω

If Γ is a bounded Jordan curve then:

$$
\limsup _{n \rightarrow \infty}\left|p_{n}(z)\right|^{1 / n}=|\Phi(z)|, \quad z \in \bar{\Omega} \backslash\{\infty\}
$$

In particular, if $z \in \Omega$ is not a limit point of zeros of p_{n} 's,

$$
\lim _{n \rightarrow \infty}\left|p_{n}(z)\right|^{1 / n}=|\Phi(z)| .
$$

The above are based on

- Stahl \& Totik, General Orthogonal Polynomials, CUP (1992),
- Ambroladze, JAT (1995).
- Saff \& Totik, Logarithmic Potentials, Springer (1997),

Fine asymptotics when Γ is analytic

Carleman, Ark. Mat. Astr. Fys. (1922)
If $\rho<1$ is the smallest index for which Φ is conformal in $\operatorname{ext}\left(L_{\rho}\right)$, then

$$
\begin{aligned}
& \frac{n+1}{\pi} \frac{\gamma^{2(n+1)}}{\lambda_{n}^{2}}=1-\alpha_{n}, \quad \text { where } 0 \leq \alpha_{n} \leq c_{1}(\Gamma) \rho^{2 n}, \\
& p_{n}(z)=\sqrt{\frac{n+1}{\pi}} \Phi^{n}(z) \Phi^{\prime}(z)\left\{1+A_{n}(z)\right\}, \quad n \in \mathbb{N},
\end{aligned}
$$

where

$$
\left|A_{n}(z)\right| \leq c_{2}(\Gamma) \sqrt{n} \rho^{n}, \quad z \in \bar{\Omega} .
$$

Fine asymptotics when Γ is smooth

We say that $\Gamma \in C(p, \alpha)$, for some $p \in \mathbb{N}$ and $0<\alpha<1$, if Γ is given by $z=g(s)$, where s is the arclength, with $g^{(p)} \in \operatorname{Lip} \alpha$. Then both Φ and $\psi:=\Phi^{-1}$ are p times continuously differentiable on Γ and $\partial \mathbb{D}$ respectively, with $\Phi^{(p)}$ and $\Psi^{(p)} \in \operatorname{Lip} \alpha$.
P.K. Suetin, Proc. Steklov Inst. Math. AMS (1974)

Assume that $\Gamma \in C(p+1, \alpha)$, with $p+\alpha>1 / 2$. Then

$$
\frac{n+1}{\pi} \frac{\gamma^{2(n+1)}}{\lambda_{n}^{2}}=1-\alpha_{n}, \quad \text { where } 0 \leq \alpha_{n} \leq c_{1}(\Gamma) \frac{1}{n^{2(p+\alpha)}}
$$

$$
p_{n}(z)=\sqrt{\frac{n+1}{\pi}} \Phi^{n}(z) \Phi^{\prime}(z)\left\{1+A_{n}(z)\right\}, \quad n \in \mathbb{N}
$$

where

$$
\left|A_{n}(z)\right| \leq c_{2}(\Gamma) \frac{\log n}{n^{p+\alpha}}, \quad z \in \bar{\Omega}
$$

Fine asymptotics for Γ non-smooth ?

Does it hold $\lim _{n \rightarrow \infty} \alpha_{n}=0 \quad ?$
We are not aware of a single case of non-smooth 「 for which the leading coefficients $\lambda_{n}, n=0,1, \ldots$, are known explicitly.

Luckily, we have plenty of ...

Fine asymptotics for Γ non-smooth ?

Does it hold $\lim _{n \rightarrow \infty} \alpha_{n}=0 \quad ?$
We are not aware of a single case of non-smooth Γ for which the leading coefficients $\lambda_{n}, n=0,1, \ldots$, are known explicitly.

Luckily, we have plenty of ...

Fine asymptotics for Γ non-smooth ?

Does it hold $\lim _{n \rightarrow \infty} \alpha_{n}=0 \quad ?$
We are not aware of a single case of non-smooth Γ for which the leading coefficients $\lambda_{n}, n=0,1, \ldots$, are known explicitly.

Luckily, we have plenty of ...

Fine asymptotics for Γ non-smooth: Numerical data

$$
\gamma=\frac{1}{\operatorname{cap}(\Gamma)}=\frac{3 \sqrt{3}}{4}
$$

We compute, by using the Gram-Schmidt process (in finite precision), the Bergman polynomials $p_{n}(z)$ for the unit half-disk, for n up to 60 and test the hypothesis

$$
\alpha_{n}:=1-\frac{n+1}{\pi} \frac{\gamma^{2(n+1)}}{\lambda_{n}^{2}} \approx C \frac{1}{n^{s}}
$$

Fine asymptotics for Γ non-smooth: Numerical data

n	α_{n}	s
51	0.003263458678	-
52	0.003200769764	0.998887
53	0.003140444435	0.998899
54	0.003082351464	0.998911
55	0.003026369160	0.998923
56	0.002972384524	0.998934
57	0.002920292482	0.998946
58	0.002869952027	0.998957
59	0.002821401485	0.998968
60	0.002774426207	0.998979

The numbers indicate clearly that
Accordingly, we have
made coniectures regarding fine asymptotics in Oberwolfach Reports (2004) and ETNA (2006)

Fine asymptotics for 「 non－smooth：Numerical data

n	α_{n}	s
51	0.003263458678	-
52	0.003200769764	0.998887
53	0.003140444435	0.998899
54	0.003082351464	0.998911
55	0.003026369160	0.998923
56	0.002972384524	0.998934
57	0.002920292482	0.998946
58	0.002869952027	0.998957
59	0.002821401485	0.998968
60	0.002774426207	0.998979

The numbers indicate clearly that $\alpha_{n} \approx C \frac{1}{n}$ ．Accordingly，we have made conjectures regarding fine asymptotics in Oberwolfach Reports （2004）and ETNA（2006）．

Main actors

Recall: $\Phi(z)=\gamma z+\gamma_{0}+\frac{\gamma_{1}}{z}+\frac{\gamma_{2}}{z^{2}}+\cdots \quad$ and let

$$
\Phi^{n}(z)=F_{n}(z)-E_{n}(z) \quad \text { and } \quad \Phi^{n}(z) \Phi^{\prime}(z)=G_{n}(z)-H_{n}(z)
$$

where

- $F_{n}(z)=\gamma^{n} z^{n}+\cdots \in \mathbb{P}_{n}$, is the Faber poly of G,
- $E_{n}(z)=\frac{c_{1}}{z}+\frac{C_{2}}{z^{2}}+\frac{C_{3}}{z^{3}}+\cdots$, is the singular part of Φ^{n},
- $G_{n}(z)=\gamma^{n+1} z^{n}+\cdots \in \mathbb{P}_{n}$, is the Faber poly of the 2 nd kind of G,
- $H_{n}(z)=\frac{d_{2}}{z^{2}}+\frac{d_{3}}{z^{3}}+\frac{d_{4}}{z^{4}}+\cdots$, is the singular part of $\Phi^{n} \Phi^{\prime}$.

Note:

$$
G_{n}(z)=\frac{F_{n+1}^{\prime}(z)}{n+1} \quad \text { and } \quad H_{n}(z)=\frac{E_{n+1}^{\prime}(z)}{n+1} .
$$

Fine asymptotics for λ_{n}

Theorem (I)

Assume that Γ is piecewise analytic without cusps, then

$$
\frac{n+1}{\pi} \frac{\gamma^{2(n+1)}}{\lambda_{n}^{2}}=1-\alpha_{n}
$$

where

$$
0 \leq \alpha_{n} \leq c(\Gamma) \frac{1}{n}, \quad n \in \mathbb{N}
$$

and $C(\Gamma)$ depends on Γ only.

Fine asymptotics for p_{n} in Ω

Theorem (II)

Assume that Γ is piecewise analytic w/o cusps. Then, for any $z \in \Omega$,

$$
p_{n}(z)=\sqrt{\frac{n+1}{\pi}} \Phi^{n}(z) \Phi^{\prime}(z)\left\{1+A_{n}(z)\right\}
$$

where

$$
\left|A_{n}(z)\right| \leq \frac{c(\Gamma)}{\operatorname{dist}(z, \Gamma)\left|\Phi^{\prime}(z)\right|} \frac{1}{\sqrt{n}}, \quad n \in \mathbb{N}
$$

A lower bound for α_{n}－Coefficient estimates

Let Ψ denote the inverse conformal map $\Phi^{-1}:\{w:|w|>1\} \rightarrow \Omega$ ． Then

$$
\Psi(w)=b w+b_{0}+\frac{b_{1}}{w}+\frac{b_{2}}{w^{2}}+\cdots, \quad|w|>1
$$

Theorem（III）

Assume that Γ is quasiconformal and rectifiable．Then，

$$
\alpha_{n} \geq \frac{\pi\left(1-k^{2}\right)}{A(G)}(n+1)\left|b_{n+1}\right|^{2}
$$

The above provides a connection with the well－studied problem of estimating coefficients of univalent functions．

Quasiconformal curves

In Theorem (II), $\quad k:=\frac{K-1}{K+1}<1$, where $K \geq 1$, is the characteristic constant of the quasiconformal reflection defined by Γ.

Definition

A Jordan curve Γ is quasiconformal if there exists a constant $M>0$, such that

$$
\operatorname{diam} \Gamma(a, b) \leq M|a-b|, \text { for all } a, b \in \Gamma
$$

where $\Gamma(a, b)$ is the arc (of smaller diameter) of Γ between a and b.
Note: A piecewise analytic Jordan curve is quasiconformal if and only if has no cusps (0 and 2π angles).

A Bernstein-Walsh type lemma

Recall:
Lemma (Bernstein-Walsh)
For any $P \in \mathbb{P}_{n}$,

$$
|P(z)| \leq\|P\|_{\bar{G}}|\Phi(z)|^{n}, \quad z \in \Omega .
$$

We can replace $\|P\|_{\bar{G}}$ by $\|P\|_{L^{2}(G)}$:

Lemma (I)

Assume that Γ is quasiconformal and rectifiable. Then, for any $P \in \mathbb{P}_{n}$,

$$
|P(z)| \leq \frac{c(\Gamma)}{\operatorname{dist}(z, \Gamma)} \sqrt{n}\|P\|_{L^{2}(G)}|\Phi(z)|^{n+1}, \quad z \in \Omega
$$

Decay of Faber polynomials in G

Recall: $\left\{F_{n}\right\}$ are the Faber polynomials of G.
Theorem (Gaier, Analysis, 2001)
Assume that Γ is piecewise analytic w/o cusps and let $\lambda \pi(0<\lambda<2)$ be the smallest exterior angle of Γ. Then, for any $z \in G$,

$$
\left|F_{n}(z)\right| \leq \frac{c(\Gamma)}{\operatorname{dist}(z, \Gamma)} \frac{1}{n^{\lambda}}, \quad n \in \mathbb{N} .
$$

For the Faber polynomials of the 2 nd kind $\left\{G_{n}\right\}$ we have:
Theorem (IV)
Assume that Γ is piecewise analytic w/o cusps. Then, for any $z \in G$,

$$
\left|G_{n}(z)\right| \leq \frac{c(\Gamma)}{\operatorname{dist}(z, \Gamma)} \frac{1}{n}, \quad n \in \mathbb{N} .
$$

Ratio asymptotics

From Thm (I) we have immediately:
Corollary (Ratio asymptotics for λ_{n})

$$
\sqrt{\frac{n+1}{n+2}} \frac{\lambda_{n+1}}{\lambda_{n}}=\gamma+\xi_{n}
$$

where

$$
\left|\xi_{n}\right| \leq c(\Gamma) \frac{1}{n}, \quad n \in \mathbb{N}
$$

We note however that numerical evidence suggests that $\left|\xi_{n}\right| \approx C \frac{1}{n^{2}}$.
Since $\operatorname{cap}(\Gamma)=1 / \gamma$, the above relation provides the means for computing approximations to the capacity of Γ, by using only the leading coefficients of the associated orthonormal polynomials.

Ratio asymptotics

Similarly, from Thm (II) we have:
Corollary (Ratio asymptotics for p_{n})

$$
\sqrt{\frac{n+1}{n+2}} \frac{p_{n+1}(z)}{p_{n}(z)}=\Phi(z)+B_{n}(z), \quad z \in \Omega
$$

where

$$
\left|B_{n}(z)\right| \leq \frac{C(\Gamma)}{\operatorname{dist}(z, \Gamma)\left|\Phi^{\prime}(z)\right|} \frac{1}{\sqrt{n}}, \quad n \in \mathbb{N}
$$

The above relation provides the means for computing approximations to the conformal map Φ in Ω, by simply taking the ratio of two consequent orthonormal polynomials. This leads to an efficient algorithm for recovering the shape of G, from a finite collection of its power moments $\left\langle z^{m}, z^{n}\right\rangle, m, n=0,1, \ldots, N$.

Only ellipses carry finite-term recurrences for p_{n}

Definition

We say that the polynomials $\left\{p_{n}\right\}_{n=0}^{\infty}$ satisfy a $(N+1)$-term recurrence relation, if for any $n \geq N-1$,

$$
z p_{n}(z)=a_{n+1, n} p_{n+1}(z)+a_{n, n} p_{n}(z)+\ldots+a_{n-N+1, n} p_{n-N+1}(z)
$$

Theorem (Putinar \& St. CAOT, 2007)

Assume that:

- $\Gamma=\partial G$, where G is a Caratheodory domain;
- the Bergman polynomials $\left\{p_{n}\right\}_{n=0}^{\infty}$ satisfy a $(N+1)$-term recurrence relation, with some $N \geq 2$;
- $\Gamma \subset B:=\left\{(x, y) \in \mathbb{R}^{2}: \psi(x, y)=0\right\}$, where B is bounded.

Then $N=2$ and Γ is an ellipse.

An application of the Suetin's asymptotics for p_{n} leads to:
Theorem (Khavinson \& St., 2009)
Assume that:

- $\Gamma=\partial G$ is a C^{2}-smooth Jordan curve;
- the Bergman polynomials $\left\{p_{n}\right\}_{n=0}^{\infty}$ satisfy a $(N+1)$-term recurrence relation, with some $N \geq 2$.
Then $N=2$ and Γ is an ellipse.
However, by using the ratio asymptotics corollary above:

Theorem (V)

Assume that:

- $\Gamma=\partial G$ is piecewise analytic without cusps;
- the Bergman polynomials $\left\{p_{n}\right\}_{n=0}^{\infty}$ satisfy a $(N+1)$-term recurrence relation, with some $N \geq 2$.
Then $N=2$ and Γ is an ellipse.

Where are the zeros of p_{n} ?

Fejer

All the zeros of p_{n} lie in the convex hull of \bar{G}.

Saff
All the zeros of p_{n} lie in the interior convex hull of \bar{G}.

Widom

For any $n \in \mathbb{N}, p_{n}$ has at most a bounded number of zeros (independent of n) on any closed set $E \subset \Omega$.

A result about the zeros of p_{n}

Since for any $z \in \Omega,|\Phi(z)|>1$ and $\left|\Phi^{\prime}(z)\right| \neq 0$, Thm II yields:

Theorem (VI)

Assume that Γ is piecewise analytic w/o cusps. Then for any closed set $E \subset \Omega$, there exists $n_{0} \in \mathbb{N}$, such that for $n \geq n_{0}, p_{n}(z)$ has no zeros on E.

This leads at once to the refinement:

Corollary

Assume that Γ is piecewise analytic w/o cusps. Then

$$
\lim _{n \rightarrow \infty}\left|p_{n}(z)\right|^{1 / n}=|\Phi(z)|, \quad z \in \Omega \backslash\{\infty\}
$$

A sharp estimate for $\left\|p_{n}\right\|_{\bar{G}}$

Theorem (VII)
Assume that Γ is piecewise analytic w/o cusps and let $\lambda \pi$ denote the largest exterior angle of $\Gamma(1 \leq \lambda \leq 2)$. Then

$$
\left\|p_{n}\right\|_{\bar{G}} \leq c(\Gamma) n^{\lambda-1 / 2}, \quad n \in \mathbb{N} .
$$

Note:

- The order $\lambda-1 / 2$ is sharp for Γ smooth (hence $\lambda=1$). This follows immediately from the fine asymptotic formula of Suetin.

A sharp estimate for $\left\|p_{n}\right\|_{G}$

Theorem (VII)

Assume that Γ is piecewise analytic w/o cusps and let $\lambda \pi$ denote the largest exterior angle of $\Gamma(1 \leq \lambda \leq 2)$. Then

$$
\left\|p_{n}\right\|_{\bar{G}} \leq c(\Gamma) n^{\lambda-1 / 2}, \quad n \in \mathbb{N} .
$$

Note:

- The order $\lambda-1 / 2$ is sharp for Γ smooth (hence $\lambda=1$). This follows immediately from the fine asymptotic formula of Suetin.
- The above should be compared with the "norm comparison" estimate (holding for any $P \in \mathbb{P}_{n}$)

$$
\|P\|_{\bar{G}} \leq c(\Gamma) n^{\lambda}\|P\|_{L^{2}(G)}, \quad n \in \mathbb{N}
$$

of Pritsker, J. Math. Anal. Appl. (1997) and Abdulayev, Ukrain. Math. J. (2000).

