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Abstract Let G be a bounded Jordan domain in the complex plane. The Bergman
polynomials {pn}∞n=0 of G are the orthonormal polynomials with respect to the
area measure over G. They are uniquely defined by the entries of an infinite upper
Hessenberg matrix M . This matrix represents the Bergman shift operator of G. The
main purpose of the paper is to describe and analyze a close relation between M and
the Toeplitz matrix with symbol the normalized conformal map of the exterior of the
unit circle onto the complement of G. Our results are based on the strong asymptotics
of pn . As an application, we describe and analyze an algorithm for recovering the
shape of G from its area moments.
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1 Introduction

Let G be a bounded simply-connected domain in the complex plane C, whose bound-
ary � := ∂G is a Jordan curve and let {pn}∞n=0 denote the sequence of Bergman
polynomials of G. This is the unique sequence of polynomials

pn(z) = λnzn + · · · , λn > 0, n = 0, 1, 2, . . . , (1.1)

that are orthonormal with respect to the inner product

〈 f, g〉 :=
∫

G

f (z)g(z)d A(z),

where d A stands for the area measure. We denote by L2
a(G) the Hilbert space of all

functions f analytic in G for which

‖ f ‖L2(G) := 〈 f, f 〉1/2 < ∞,

and recall (cf. [6]) that the polynomials {pn}∞n=0 form a complete orthonormal system
for L2

a(G).
Let � := C \ G denote the complement of G in C and let � denote the conformal

map � → � := {w : |w| > 1}, normalized so that near infinity

�(z) = γ z + γ0 + γ1

z
+ γ2

z2 + · · · , γ > 0. (1.2)

Finally, let 	 := �−1 : � → � denote the inverse conformal map. Then,

	(w) = bw + b0 + b1

w
+ b2

w2 + · · · , |w| > 1, (1.3)

with

b = 1/γ = cap(�), (1.4)

where cap(�) denotes the (logarithmic) capacity of �.
On L2

a(G) we consider the multiplication by z operator (also known as the Bergman
shift operator) M : f → z f . Note that M defines a bounded, noncompact, linear
operator on L2

a(G) and that

σess(M) = �; (1.5)
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see [1], where we use σess(L) to denote the essential spectrum of a bounded linear
operator L; that is, the set of all λ ∈ C for which L − λI is not a Fredholm operator.
For the operators we consider, the essential spectrum is the same as the continuous
spectrum.

We also consider the matrix representation of M in terms of the orthonormal basis
{pn}∞n=0. This induces the upper Hessenberg matrix

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

b00 b01 b02 b03 b04 · · ·
b10 b11 b12 b13 b14 · · ·
0 b21 b22 b23 b24 · · ·
0 0 b32 b33 b34 · · ·
0 0 0 b43 b44 · · ·
...

...
...

. . .
. . .

. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (1.6)

where

bk, j = 〈zp j , pk〉, k ≥ 0, j ≥ 0. (1.7)

Note that bk, j = 0 for k ≥ j + 2 and that

zpn(z) =
n+1∑
k=0

bk,n pk(z). (1.8)

In particular,

bn+1,n = λn

λn+1
> 0, n = 0, 1, . . . . (1.9)

It follows

bn+1,n pn+1(z) = zpn(z) −
n∑

k=0

bk,n pk(z) (1.10)

and, hence, the entries of M define uniquely the sequence of Bergman polynomials of
G, in the sense that pn+1, n = 0, 1, . . ., can be computed recursively from (1.10).

It is shown in [9,11] (see also [12, Thm 2.4]) that except for some trivial cases, the
matrix (1.6) is not banded; i.e., the pn’s do not satisfy a recurrence relation of bounded
length. It is also well-known that the eigenvalues of the n × n principal submatrix of
M coincide with the zeros of pn(z).

Our goal is to investigate the asymptotic behavior of the entries in the matrix M .
In particular, we show that if the boundary of G is piecewise analytic without cusps,
then all the diagonals (sub, super and main) have limits which are the coefficients of
the Laurent expansion (1.3) of the inverse conformal map 	:

lim
n→∞ bn+1,n = b and lim

n→∞ bn−k,n = bk, k = 0, 1, . . . . (1.11)
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A potential application of (1.11) is in the area of geometric tomography, where the
following inverse problem arises: Given a finite number of complex moments

μk j := 〈zk, z j 〉 =
∫

G

zk z j d A(z), k, j = 0, 1, . . . , (1.12)

how can one approximate the region G that generated these moments? Regarding exis-
tence and uniqueness, we note a result of Davis and Pollak [4] stating that the infinite
matrix [μm,k]∞m,k=0 defines uniquely the curve �. By utilizing the given moments to
compute Bergman polynomials, and thereby a principal submatrix of M , the subdi-
agonals of the submatrix will provide an approximation to the Laurent coefficients of
the mapping of the unit circumference onto the boundary of G. We will discuss this
procedure in Sect. 3.

We note that there is a one-to-one correspondence between the complex moments
(1.12) and the real moments

τmn :=
∫

G

xm yn dxdy, m, n = 0, 1, . . . . (1.13)

Namely,

μm,n =
m∑

j=0

n∑
k=0

im− j i n−k
(

m

j

)(
n

k

)
τ j+k,m+n− j−k, i := √−1, (1.14)

or, in the inverse direction,

τm,n = (−i)n2−m−n
m∑

j=0

n∑
k=0

(
m

j

)(
n

k

)
μ j+k,m+n− j−k; (1.15)

see [4]. Thus, the moments in (1.12) will uniquely determine the moments in (1.13)
and vice-versa.

The Faber polynomials {Fn}∞n=0 of G are defined as the polynomial part of the
expansion of �n(z), n = 0, 1, . . ., near infinity, that is,

�n(z) = Fn(z) − En(z), z ∈ �, (1.16)

where

Fn(z) = γ nzn + · · · and En(z) = O

(
1

z

)
, z → ∞. (1.17)

The Faber polynomial of the second kind, Gn(z), is defined as the polynomial part of
�n(z)�′(z), that is,

Gn(z) = �n(z)�′(z) − Hn(z), z ∈ �, (1.18)
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where

Gn(z) = γ n+1zn + · · · and Hn(z) = O

(
1

z2

)
, z → ∞. (1.19)

It follows immediately from (1.16) and (1.18) that

Gn(z) = F ′
n+1(z)

n + 1
and Hn(z) = E ′

n+1(z)

n + 1
. (1.20)

It is well-known that the Faber polynomials of the 2nd kind satisfy the following
recurrence relation (see [5, p. 52]):

zGn(z) = bGn+1(z) +
n∑

j=0

b j Gn− j (z), G0(z) ≡ b. (1.21)

Consider now the Toeplitz (and upper Hessenberg) matrix T	 defined by the con-
tinuous function 	(w) on T := {w : |w| = 1}, that is,

T	 :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

b0 b1 b2 b3 b4 · · ·
b b0 b1 b2 b3 · · ·
0 b b0 b1 b2 · · ·
0 0 b b0 b1 · · ·
0 0 0 b b0 · · ·
...

...
...

. . .
. . .

. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (1.22)

It follows from (1.21) that the eigenvalues of the n × n principal submatrix of T	

coincide with the zeros of Gn(z); see also [15]. This is a relation similar to the one
connecting the upper Hessenberg matrix M with the Bergman polynomials {pn}∞n=0.

In [13, Sect. 7.8] it is shown that if � is piecewise analytic without cusps, then

|bn| ≤ c1(�)
1

n1+ω
, n ∈ N, (1.23)

where ωπ (0 < ω < 2) is the smallest exterior angle of �. (Hereafter, we use
ck(�), k = 1, 2, . . ., to denote a non-negative constant that depends only on �.)
Therefore, in this case, the symbol 	 of the Toeplitz matrix T	 belongs to the Wiener
algebra, which leads to the conclusion that T	 defines a bounded linear operator on
the Hilbert space l2 and that

σess(T	) = �; (1.24)

see e.g. [2, pp. 1–10].
We end this section by noting a result, regarding a property of Hn , that we are going

to use in Sect. 5. A proof can be found in [13, Lem. 2.1].

Lemma 1.1 For any n ∈ N, Hn is analytic and square integrable in �.
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2 Main Results

In this section we state and discuss our main results. Their proofs are given in Sect. 5.
Section 3 contains applications of our results to the recovery of planar regions.

From (1.5) and (1.24) it follows that

σess(M) = σess(T	). (2.1)

The next theorem shows that the connection between the matrices M and T	 is much
more substantial.

Theorem 2.1 Assume that � is piecewise analytic without cusps. Then, it holds as
n → ∞,

√
n + 2

n + 1
bn+1,n = b + O

(
1

n

)
, (2.2)

and for k ≥ 0,

√
n − k + 1

n + 1
bn−k,n = bk + O

(
1√
n

)
, (2.3)

where O depends on k. (See (5.17) for more precise estimates.)

Improvements in the order of convergence occur in cases when � is smooth. In
order to state the corresponding results we need to introduce the smoothness class
C(q, α) of Jordan curves. We say that � belongs to C(q, α), q ∈ N, if � is defined
by z = g(s), where s denotes arclength, with g(q) ∈ Lip α, for some 0 < α < 1.
Then both � and 	 := �−1 are q times continuously differentiable in � \ {∞} and
� \ {∞} respectively, with �(q) and 	(q) in Lip α: see, e.g., [14, p. 5].

Theorem 2.2 Assume that � ∈ C(p + 1, α), with p + α > 1/2. Then, it holds as
n → ∞,

√
n + 2

n + 1
bn+1,n = b + O

(
1

n2(p+α)

)
, (2.4)

and for k ≥ 0,

√
n − k + 1

n + 1
bn−k,n = bk + O

(
1

n p+α

)
, (2.5)

where O depends on k. (See (5.29) for more precise estimates.)

For the case of an analytic boundary � further improved asymptotic results can be
obtained. To state these results we need to introduce some notation. For an analytic
curve � the mapping 	 can be analytically continued as a conformal map to the



Asymptotics for Hessenberg Matrices for the Bergman Shift Operator

exterior of some disk {w : |w| < �}, where 0 < � < 1. We denote by Lσ the image
of the circle {w : |w| = σ } under the map 	. In other words,

Lσ := {z ∈ C : |�(z)| = σ }.

Theorem 2.3 1Assume that the boundary � is analytic and let � < 1 be the smallest
index for which � is conformal in the exterior of L�. Then, it holds as n → ∞,

√
n + 2

n + 1
bn+1,n = b + O(�2n), (2.6)

and for k ≥ 0,

√
n − k + 1

n + 1
bn−k,n = bk + O(

√
n log n�n), (2.7)

where O depends on k. (See (5.39)–(5.40) for more precise estimates.)

In the converse direction we have:

Theorem 2.4 Assume that � is a Jordan curve without zero interior angles. If

lim sup
n→∞

∣∣∣∣∣
√

n + 2

n + 1
bn+1,n − b

∣∣∣∣∣
1/n

< 1, (2.8)

then � is analytic.

The following example shows that the inverse statement does not make sense for
the main diagonal of M .

Example 2.1 Consider the case where the domain G has m-fold rotational symmetry
about the origin, for some m ≥ 2.

This means that ei2π/m z ∈ �, whenever z ∈ �. Then, it is easy to see that

b0 = 0 and bn,n = 0, n ≥ m. (2.9)

Indeed, by using symmetry arguments it follows

	(ei2π/mw) = ei2π/m	(w), w ∈ �, (2.10)

and for n = km + j , with j = 0, 1, . . . , m − 1,

pn(z) = z j qk(z
m), deg(qk) = k. (2.11)

1 This theorem, along with a sketch of its proof given in Sect. 5.3, was presented by the first author at the
Joint Meeting of the AMS and MAA in Phoenix, January 2004.
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The first relation in (2.9) follows at once from (2.10). For the second relation in (2.9),
observe that (2.11) implies for n ≥ m that

pn(z) = λnzn + O(zn−m),

which, in turn, yields 〈zn+1, pn〉 = 0 and therefore bn,n = 〈zpn, pn〉 = 0.

3 A Recovery Algorithm

Reconstruction Algorithm

1. Start with a finite set of complex moments μk j , k, j = 0, 1, . . . , n; see (1.12), or,
equivalently from a finite set of real moments τk j , k, j = 0, 1, . . . , n; see (1.13).

2. Use the Arnoldi version of the Gram-Schmidt (GS) process, in the way indi-
cated in [13, Sect. 7.4], to construct the Bergman polynomials {pk}n

k=0 from the
moments μk j , k, j = 0, 1, . . . , n. This involves at the k-step the orthonormal-
ization of the set {p0, p1, . . . , pk−1, zpk−1}, rather than the set of monomials
{1, z, . . . , zk−1, zk}, as in the conventional GS. This process, in particular, yields
the inner products

bk, j = 〈zp j , pk〉, j = 0, 1, . . . , n, k = 0, . . . , j + 1.

3. Choose a number m, 1 < m < n, and set

b(n) :=
√

n + 2

n + 1
bn+1,n, b(n)

k :=
√

n − k + 1

n + 1
bn−k,n, k = 0, 1, . . . , m. (3.1)

(See Theorem 3.1 and Remark 3.2 below, for a suitable choice of m.)
4. Form

	(n)
m (w) := b(n)w + b(n)

0 + b(n)
1

w
+ · · · + b(n)

m

wm
. (3.2)

5. Approximate � by �
(n)
m , where

�(n)
m := 	(n)

m (w), w ∈ T. (3.3)

Remark 3.1 We refer to [13, Sect. 7.4] for a discussion regarding the stability prop-
erties of the Arnoldi GS. In particular, we note that the Arnoldi GS does not suffer
from the severe ill-conditioning associated with the conventional GS as reported, for
instance, by theoretical and numerical evidence in [10].

The following result justifies the use of the algorithm for analytic curves.

Theorem 3.1 Assume that � is analytic, and let � < 1 be the smallest index for which
� is conformal in the exterior of L�. Set n = 2m. Then, for any |w| ≥ 1 it holds that

|	(w) − 	(n)
m (w)| ≤ c1(�)

√
m log m �m + c2(�)|w|�4m, (3.4)

where the constants c1(�) and c2(�) depend on � only.
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Remark 3.2 Similar estimates, as in the above theorem, can be obtained for the case
where � is piecewise analytic without cusps. However, these estimates are too pes-
simistic compared with actual numerical evidence; see Fig. 2. We were only able to
rigorously show that for an uniform error of order O(1/

√
m) we require the compu-

tation of the orthonormal polynomials up to degree m4+ω, where ωπ is the smallest
exterior angle of �.

For applications to the 2D image reconstruction arising from tomographic data we
refer to [8]. Here we highlight the performance of the reconstruction algorithm by
applying it to the recovery of three curves, coming from different classes: an analytic
curve, one curve with corners and one curve with cusps. For providing matter for
comparison with the reconstruction algorithm of [13, Sect. 7.7] we have chosen to
present results for exactly the same curves as in [13]. We note that the reconstruction
algorithm of [13] is based on approximating first the exterior conformal mapping
w = �(z) in terms of the ratio pn+1(z)/pn(z), cf. the estimates (5.3)–(5.4) below, and
then on inverting the so-formed Laurent series in order to compute an approximation
of the inverse map z = 	(w).

In each case we start by computing a finite set of complex moments (1.12) up to
degree n, and then follow the steps 2–5 of the algorithm, taking m = n/2. In all three
examples the complex moments are known explicitly. All computations were carried
out on a desktop PC, using the computing environment MAPLE.

In Figs. 1, 2, and 3 we depict the computed approximation �
(n)
m against the original

curve �. The presented plots indicate that the above reconstruction algorithm con-
stitutes a valid method for recovering a shape from its partial moments. Even in the
cusped case, pictured in Fig. 3, the fitting is remarkably close, despite the low degree
of the moment matrix used.

In Fig. 1 we illustrate the reconstruction of an ellipse, where, with the notation of
Theorem 3.1, � = 1/3.

In Fig. 2 we reconstruct a square by using the complex moments up to the degree
16. We have chosen n = 16, so that the result can be compared with the recovery of a
square, as shown on [7, p. 1067], obtained using the Exponential Transform Algorithm.
This is another reconstruction algorithm based on moments.

Fig. 1 Recovery of an ellipse, with n = 10 (left) and n = 20 (right)
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Fig. 2 Recovery of a square,
with n = 16

Fig. 3 Recovery of a 3-cusped hypocycloid, with n = 20 (left) and n = 30 (right)

In order to show that the proposed reconstruction algorithm works equally well for
domains where the results of neither Theorem 3.1 nor that of Remark 3.2 apply, we
use it for the recovery of the boundary of the 3-cusped hypocycloid defined by

� :=
{

z = 	(w) = w + 1

2w2 , w ∈ T

}
.

The application of the algorithm with n = 20 and n = 30 is depicted in Fig. 3.
Comparing the performance of the above algorithm with that of [13] for the cases of

the ellipse and the hypocycloid, it appears that the latter algorithm performs slightly
better. On the other hand, both algorithms perform better than the reconstruction
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algorithms of [7] for the case of the square. More definitive comparisons will require
further experimentation and analysis of all three reconstruction algorithms.

4 Numerical Results

In this section we employ the first three steps of the reconstruction algorithm in order to
present numerical results that illustrate the order of convergence in (2.2) and (2.3), that
is the order in approximating b and b2 by b(n) and b(n)

2 , respectively. We consider the
case where � is the equilateral triangle �3 with vertices at 1, e2iπ/3, and e4iπ/3. Then,
by using the Schwarz-Christoffel formula it is not difficult to see that the coefficients
bn of the associated conformal map (1.3) are given by b0 = 0 and

bn =
⎧⎨
⎩

cap(�3)(−1)m+1
(

2/3
m

)
1
n , if l = 1,

0, if l = 1,

(4.1)

for n = 3m − l, m ∈ N and l ∈ {0, 1, 2}, where
(2/3

m

)
denotes the binomial coef-

ficient; see, e.g., [13, Sect. 7.8]. Furthermore, it follows by using the properties of
hypergeometric functions that

b = cap(�3) = 3

2

�(1/3)3

4π2 = 0.730499243103 . . . , (4.2)

where �(x) denotes the Gamma function with argument x .
By using the rotational property of the equilateral triangle, as this is reflected in the

relation (2.11), it is easy to see that

bn−k,n = 0, if k /∈ {2, 5, 8, . . .}.

This is actually the reason why we consider the two approximations b(n) and b(n)
2 .

Accordingly, we let t (n) and t (n)
2 denote the two errors

t (n) := b − b(n) and t (n)
2 := b2 − b(n)

2 . (4.3)

Then, from Theorem 2.1 we have that

|t (n)| ≤ c(�)
1

n
and |t (n)

2 | ≤ c(�)
1√
n
, n ∈ N. (4.4)

In Tables 1 and 2 we report the computed values of b(n), t (n) and b(n)
2 , t (n)

2 , with
n varying from 100 to 200. We also report the values of the parameter s, which is
designed to test the two hypotheses

|t (n)| ≈ 1/ns and |t (n)
2 | ≈ 1/ns .
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Table 1 Equilateral triangle:
Errors and rates in
approximating
b = 0.730499243103 . . . by b(n)

n b(n) t(n) s

100 0.730487539 1.17e−05 1.9627

110 0.730489536 9.70e−06 1.9659

120 0.730491062 8.18e−06 1.9685

130 0.730492255 6.98e−06 1.9708

140 0.730493204 6.03e−06 1.9728

150 0.730493973 5.26e−06 1.9745

160 0.730494603 4.63e−06 1.9761

170 0.730495127 4.11e−06 1.9774

180 0.730495567 3.67e−06 1.9786

190 0.730495940 3.30e−06 1.9799

200 0.730496259 2.98e−06 –

Table 2 Equilateral triangle:
Errors and rates in
approximating
b2 := 0.243499747701 . . .

by b(n)
2

n b(n)
2 t(n)

2 s

100 0.243555903 −5.61e−05 1.9873

110 0.243546213 −4.64e−05 1.9886

120 0.243538830 −3.90e−05 1.9897

130 0.243533076 −3.33e−05 1.9907

140 0.243528504 −2.87e−05 1.9914

150 0.243524812 −2.50e−05 1.9921

160 0.243521788 −2.20e−05 1.9926

170 0.243519280 −1.95e−05 1.9931

180 0.243517177 −1.74e−05 1.9936

190 0.243515396 −1.56e−05 1.9939

200 0.243513875 −1.41e−05 –

This was done by estimating s by means of the two formulae

sn := log

(
|t (n)|

|t (n+10)|

)/
log

(
n + 10

10

)
and sn := log

(
|t (n)

2 |
|t (n+10)

2 |

)/
log

(
n + 10

10

)
.

In view of Remark 3.1, regarding the stability properties of the Arnoldi GS process,
we expect all the figures quoted in the tables to be correct.

It is interesting to note the following regarding the presented results:

• The values of b(n) decay monotonically to b.
• The values of b(n)

2 increase monotonically b2.
• The values of the parameter s indicate clearly that

|t (n)| ≈ 1/n2 and |t (n)
2 | ≈ 1/n2.
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This suggests that the two estimates

|t (n)| ≤ c(�)
1

n
and |t (n)

2 | ≤ c(�)
1√
n
, n ∈ N,

predicted by Theorem 2.1 are pessimistic.

5 Proofs

5.1 Proof of Theorem 2.1

The derivation in the case where � is piecewise analytic without cusps is based
on results from [12] and [13]. In particular, we utilize the following fact (see
[12, Thm 1.1]):

n + 1

π

γ 2(n+1)

λ2
n

= 1 − αn, (5.1)

where

0 ≤ αn ≤ c1(�)
1

n
. (5.2)

We also note the following estimate [12, Thm 1.2]:

pn(z) =
√

n + 1

π
�n(z)�′(z) {1 + An(z)}, z ∈ �, (5.3)

where

|An(z)| ≤ c2(�)

dist(z, �) |�′(z)|
1√
n

+ c3(�)
1

n
. (5.4)

Recall that we use ck(�), k = 1, 2, . . ., to denote a non-negative constant that depends
on � only.

The result (2.2) follows immediately from (1.9) and (5.1)–(5.2). For the general
case (2.3), our proof relies on the use of the auxiliary polynomial

qn−1(z) := Gn(z) − γ n+1

λn
pn(z), n ∈ N. (5.5)

This is a polynomial of degree at most n − 1, but it can be identically zero, as the
special case when G is a disk shows.



E. B. Saff, N. Stylianopoulos

Next we fix k = 0, 1, 2, . . .. Then from (1.21), in conjunction with (5.5) and the
orthogonality of pn , we deduce for any n = k, k + 1, k + 2, . . ., that

γ n+1

λn
bn−k,n =

〈
z
γ n+1

λn
pn, pn−k

〉
= 〈zGn − zqn−1, pn−k〉

= 〈zGn, pn−k〉 − 〈zqn−1, pn−k〉

= b 〈Gn+1, pn−k〉 +
k∑

j=0

b j
〈
Gn− j , pn−k

〉− 〈zqn−1, pn−k〉. (5.6)

Thus, it remains to estimate the two different types of inner products appearing
in (5.6), namely 〈pl , Gm〉 and 〈zqm, pl〉. This is the objective of the following two
lemmas.

Lemma 5.1 Assume that � is piecewise analytic without cusps. Then, for l =
0, 1, 2, . . ., it holds that

〈pl , Gm〉 =
{

γ m+1/λm, m = l,
ξm, m = l + 1, l + 2, . . . ,

(5.7)

where

|ξm | ≤ c1(�)
1

m
. (5.8)

Proof For the special case where m = l the result is a trivial consequence of the
orthonormality property of the polynomial pm and the fact that Gm is a polynomial
of exact degree m with leading coefficient γ m+1. That is,

〈pm, Gm〉 =
〈
pm, γ m+1zm + · · ·

〉
=
〈
pm, γ m+1zm

〉

= γ m+1
〈

pm,
1

λm
pm

〉
= γ m+1

λm
. (5.9)

Assume now that m ∈ {l + 1, l + 2, . . .}. Then, an application of Green’s formula, the
splitting (1.18) and the residue theorem give:

〈pl , Gm〉 =
∫

G

pl(z)Gm(z)d A(z) =
∫

G

pl(z)
F ′

m+1(z)

m + 1
d A(z)

= π

m + 1

⎧⎨
⎩

1

2π i

∫

�

pl(z)Fm+1(z)dz

⎫⎬
⎭

= π

m + 1

⎧⎨
⎩

1

2π i

∫

�

pl(z)�m+1(z)dz + 1

2π i

∫

�

pl(z)Em+1(z)dz

⎫⎬
⎭
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= π

m + 1

⎧⎨
⎩

1

2π i

∫

�

pl(z)

�m+1(z)
dz + 1

2π i

∫

�

pl(z)Em+1(z)dz

⎫⎬
⎭

= 1

2(m + 1)i

∫

�

pl(z)Em+1(z)dz. (5.10)

To conclude the proof we use the estimate given in [13, Lem. 2.5], to obtain

∣∣∣∣∣∣
1

2i

∫

�

pl(z)Em+1(z)dz

∣∣∣∣∣∣ ≤ c2(�)‖pl‖L2(G)

⎡
⎣
∫

�

|E ′
m+1(z)|2d A(z)

⎤
⎦

1/2

, (5.11)

where we made use of the fact that E ′
m+1 ∈ L2(�) (see Lemma 1.1) and that a piecewise

analytic without cusps Jordan curve is quasiconformal and rectifiable.
Therefore, from (5.10), the second relation in (1.20) and (5.11), we have

|〈pl , Gm〉| ≤ c3(�)

⎡
⎣
∫

�

|Hm(z)|2d A(z)

⎤
⎦

1/2

, (5.12)

and the required result follows, because the last integral is O(1/m2); see [13, Thm 2.4].
��

Lemma 5.2 Assume that � is piecewise analytic without cusps. Then, for every m ∈ N

and l = 0, 1, 2, . . ., it holds that

|〈zqm, pl〉| ≤ c1(�)
1

m
. (5.13)

Proof The result is a simple consequence of Corollary 2.1 in [13] which states

‖qm‖L2(G) ≤ c2(�)
1

m
,

and the Cauchy–Schwarz inequality:

|〈zqm, pl〉| ≤ ‖zqm‖L2(G)‖pl‖L2(G) ≤ max{|z| : z ∈ �} ‖qm‖L2(G).

��
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Returning to the proof of Theorem 2.1, we apply the results of the two previous
lemmas to (5.6) and use (1.23) to obtain:

γ n+1

λn
bn−k,n = b〈Gn+1, pn−k〉 +

k−1∑
j=0

b j 〈Gn− j , pn−k〉 + bk
γ n−k+1

λn−k
− 〈zqn−1, pn−k〉

= O

(
1

n

)
+

k−1∑
j=1

O

(
1

(n − j) j1+ω

)
+ bk

γ n−k+1

λn−k
, (5.14)

where 0 < ω < 2, and O does not depend on n or k. Furthermore, from (5.1) to (5.2)
we have:

γ n+1

λn
=
√

π

n + 1

[
1 + O

(
1

n

)]
(5.15)

and

λn−k

γ n−k+1 =
√

n − k + 1

π

[
1 + O

(
1

n − k + 1

)]
. (5.16)

Thus, by multiplying both sides of (5.14) by λn−k/γ
n−k+1 we get

λn−k

γ n−k+1

γ n+1

λn
bn−k,n = bk + λn−k

γ n−k+1

⎡
⎣O

(
1

n

)
+

k−1∑
j=1

O

(
1

(n − j) j1+ω

)⎤
⎦ ,

which, in view of the estimates (5.15)–(5.16), yields for n ≥ k ≥ 0, n ≥ 1, that

√
n − k + 1

n + 1
bn−k,n = bk

[
1 + O

(
1

n − k + 1

)]

+O(
√

n − k + 1)

⎡
⎣O

(
1

n

)
+

k−1∑
j=1

O

(
1

(n − j) j1+ω

)⎤
⎦ , (5.17)

where an empty sum equals zero. This leads, for fixed k and n → ∞, to the required
estimate (2.3), where now O depends on k.

5.2 Proof of Theorem 2.2

If � ∈ C(p + α), with p + α > 1/2, then the following asymptotic formulas hold as
n → ∞, see [14, pp. 19–20]:

√
n + 1

π

γ n+1

λn
= 1 + O

(
1

n2(p+α)

)
(5.18)
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and

pn(z) =
√

n + 1

π
�n(z)�′(z)

{
1 + O

(
log n

n p+α

)}
, z ∈ �. (5.19)

The proof of the theorem goes along similar lines as the proof of Theorem 2.1 given
above. More precisely, for deriving the result for bn+1,n we use the estimate (5.18) in
the place of (5.1)–(5.2).

For the general case k = 0, 1, . . ., we need estimates for the inner products 〈pl , Gm〉
and 〈zqm, pl〉. This is done in the following two lemmas, which play the role of
Lemmas 5.1 and 5.2 in the proof of Theorem 2.1.

Lemma 5.3 Assume that � ∈ C(p+1, α), with p+α > 1/2, then for l = 0, 1, 2, . . .,
it holds that

〈pl , Gm〉 =
{

γ m+1/λm, m = l,
ξm, m = l + 1, l + 2, . . . ,

(5.20)

where

|ξm | ≤ c1(�)
1

m p+α+1/2 . (5.21)

Proof The result for m = l is established in Lemma 5.1. Hence, we only consider the
case m = l + 1, l + 2, . . ..

The following estimate has been obtained by Suetin for � ∈ C(p + α); see [14,
Lem. 1.5]:

∣∣∣∣∣∣
1

2π i

∫

�

Hm(z)Em+1(z)dz

∣∣∣∣∣∣ ≤ c2(�)
1

m2(p+α)
. (5.22)

By using Green’s formula in the unbounded domain �, together with (1.20), it is
readily seen that

1

2π i

∫

�

Hm(z)Em+1(z)dz = −m + 1

π

∫

�

|Hm(z)|2d A(z). (5.23)

Hence, from (5.22),

∫

�

|Hm(z)|2d A(z) ≤ c3(�)
1

m2(p+α)+1
, (5.24)

and the result (5.21) follows from the estimate (5.12), which is applicable in this case
because any smooth Jordan curve is also quasiconformal and rectifiable. ��
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Lemma 5.4 Assume that � ∈ C(p+1, α). Then for every m ∈ N and l = 0, 1, 2, . . .,
it holds that

|〈zqm, pl〉| ≤ c1(�)
1

m p+α+1/2 . (5.25)

Proof As in the proof of Lemma 5.2 we have

|〈zqm, pl〉| ≤ max{|z| : z ∈ �} ‖qm‖L2(G).

The result of the lemma then follows from (5.24) and the estimate

‖qm‖L2(G) ≤ c2(�)

⎡
⎣
∫

�

|Hm(z)|2d A(z)

⎤
⎦

1/2

,

established in [13, Thm 2.1] for domains bounded by a quasiconformal and rectifiable
boundary. ��

In order to conclude the proof of the theorem, we need an estimate for the decay
of the coefficients bn , when the boundary � belongs to the class C(p + 1, α), with
p + α > 1/2. This is done in [13, Cor. 1.1], where it is shown that

|bn| ≤ c3(�)
1

n p+α+1/2 , n ∈ N. (5.26)

Therefore, by using the results for 〈pl , Gm〉 and 〈zqm, pl〉, obtained in the previous
two lemmas, together with (5.18) and (5.6), we see that

γ n+1

λn
bn−k,n = O

(
1

n p+α+1/2

)
+

k−1∑
j=1

O

(
1

( j (n − j))p+α+1/2

)
+ bk

γ n−k+1

λn−k
,

where O does not depend on n or k. Furthermore, from (5.18) we get

γ n+1

λn
=
√

π

n + 1

[
1 + O

(
1

n2(p+α)

)]
(5.27)

and

λn−k

γ n−k+1 =
√

n − k + 1

π

[
1 + O

(
1

(n − k + 1)2(p+α)

)]
. (5.28)
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The above yield, for n ≥ k ≥ 0, n ≥ 1, that

√
n − k + 1

n + 1
bn−k,n = bk

[
1 + O

(
1

(n − k + 1)2(p+α)

)]
+ O(

√
n − k + 1)

×
⎡
⎣O

(
1

n p+α+1/2

)
+

k−1∑
j=1

O

(
1

( j (n − j))p+α+1/2

)⎤
⎦ , (5.29)

where a empty sum equals zero. This leads, for fixed k and n → ∞, to the required
estimate (2.5), where now O depends on k.

5.3 Proof of Theorem 2.3

Assume that � := ∂G is an analytic Jordan curve. Then the conformal map � has an
analytic and univalent continuation across � in G. Let � < 1 be defined by

� := inf{r : � is analytic and univalent in ext(L�)\∞}.

Then the following asymptotic formulas of Carleman [3] hold as n → ∞:

√
n + 1

π

γ n+1

λn
= 1 + O(�2n) (5.30)

and

pn(z) =
√

n + 1

π
�n(z)�′(z)

{
1 + O(

√
n�n)

}
, z ∈ �, (5.31)

see [6, p. 12]. In particular,

pn(z) = λn

γ n+1 �n(z)�′(z) {1 + ωn(z)}, (5.32)

where

ωn(z) =
n∑

ν=1

ν Aνw
ν−1−n −

∞∑
ν=1

νaνw
−ν−1−n, w = �(z), (5.33)

with

n∑
ν=1

ν|Aν |2 +
∞∑

ν=1

ν|aν |2�−2ν ≤ �2n+2

(n + 1)(1 − �2n)
, n ∈ N; (5.34)

see [6, p. 15].
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We fix two different points z and z0 on � and define

Q j+1(z) :=
z∫

z0

p j (ζ )dζ + λ j

( j + 1)γ j+1 � j+1(z0).

Then, by using integration by parts and the change of variable w = �(ζ), we have
from (5.32) and (5.33) that, for any j ∈ N,

Q j+1(z) = λ j

( j + 1)γ j+1 � j+1(z) + λ j

γ j+1

z∫

z0

� j (ζ )�′(ζ )ω j (ζ )dζ

= λ j

( j + 1)γ j+1 � j+1(z) + λ j

γ j+1

�(z)∫

w0

w jω j (	(w))dw

= λ j

( j + 1)γ j+1 � j+1(z) + λ j

γ j+1

⎡
⎣

j∑
ν=1

Aνw
ν +

∞∑
ν=1

aνw
−ν

⎤
⎦

�(z)

w0

, (5.35)

where w0 = �(z0). We claim that for |w| = 1 there holds

∣∣∣∣∣∣
j∑

ν=1

Aνw
ν +

∞∑
ν=1

aνw
−ν

∣∣∣∣∣∣ = O

(√
log( j + 1)

j + 1
� j

)
. (5.36)

Indeed,

∣∣∣∣∣∣
j∑

ν=1

Aνw
ν +

∞∑
ν=1

aνw
−ν

∣∣∣∣∣∣ ≤
j∑

ν=1

|Aν | +
∞∑

ν=1

|aν |

≤
√√√√ j∑

ν=1

ν|Aν |2
√√√√ j∑

ν=1

1

ν
+
√√√√ ∞∑

ν=1

ν|aν |2�−2ν

√√√√ ∞∑
ν=1

�2ν

ν

≤ c1(�)
√

log( j + 1)

√√√√ j∑
ν=1

ν|Aν |2 + c2(�)

×
√√√√ ∞∑

ν=1

ν|aν |2�−2ν ≤ c3(�)

√
log( j + 1)

j + 1
� j , (5.37)

by (5.34), which establishes the claim.
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Hence, using the estimate (5.30) we get

Q j+1(z) = � j+1(z)√
π( j + 1)

{
1 + O

(√
( j + 1) log( j + 1)

)
� j
}

, z ∈ �. (5.38)

Next, by Green’s formula we have for fixed k = 0, 1, . . . and n ≥ k + 1:

2π i

√
n − k + 1

n + 1
bn−k,n = 2π i

√
n − k + 1

n + 1
〈zpn, pn−k〉

= 2π i

2i

√
n − k + 1

n + 1

∫

�

zpn(z)Qn−k+1(z)dz

=
∫

�

z�n(z)�′(z)�n−k+1(z)dz + hn

=
∫

�

�n(z)

�n−k+1(z)
�′(z)zdz + hn

=
∫

|w|=1

wn

wn−k+1 	(w)dw + hn

= 2π ibk + hn, (5.39)

where

hn = O(
√

n)�n + O
(√

(n − k + 1) log(n − k + 1)
)

�n−k{1 + O(
√

n)�n}.
(5.40)

Thus, for k ≥ 0 fixed and � < 1,

√
n − k + 1

n + 1
bn−k,n = bk + O(

√
n log n�n), as n → ∞. (5.41)

It remains to prove (2.6). This follows at once from the strong asymptotics for the
leading coefficient (5.30) and the relation (1.9).

5.4 Proof of Theorem 2.4

We first note that our assumption (2.8), combined with (1.9), implies that

lim sup
n→∞

∣∣∣∣∣
√

n + 2

n + 1

λn

λn+1
− b

∣∣∣∣∣
1/n

< 1. (5.42)
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Now set

ξn :=
√

n + 2

n + 1

λn

λn+1

1

b
− 1,

so that

lim sup
n→∞

|ξn|1/n < 1. (5.43)

At the other hand, we have from (5.1) and (1.4) that

(1 + ξn)2 = 1 − αn+1

1 − αn
.

Hence,

ξn = αn − αn+1

(1 − αn)(2 + ξn)
,

and by using the fact that ξn → 0, as n → ∞ together with 0 ≤ αn < 1 and αn → 0,
as n → ∞, we obtain the double inequality

c1|αn − αn+1| ≤ |ξn| ≤ c2|αn − αn+1|, (5.44)

for some positive constants c1 and c2.
Now, by expanding αn in the telescoping series

αn = (αn − αn+1) + (αn+1 − αn+2) + · · · ,

we conclude, in view of (5.43)–(5.44), that

lim sup
n→∞

α
1/n
n < 1, (5.45)

and this, in view of Theorem 1.3 in [13] leads to

lim sup
n→∞

|bn|1/n < 1.

The last inequality implies that the conformal map 	(w) has an analytic contin-
uation across T into D (see (1.3)) and thus � is the analytic image of T. Therefore,
around any w0 ∈ T, the map 	 can be represented by a Taylor series expansion of the
form

	(w) = 	(w0) + a1(w − w0) + a2(w − w0)
2 + a3(z − z0)

3 · · · .
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If we had 	 ′(w0) = 0, then

	(w) = 	(w0) + a2(w − w0)
2 + · · · ,

with a2 = 0, because 	 is univalent in �. These show that w0 would be mapped by
	 onto an exterior pointing cusp on �. Since, by assumption, this cannot happen, we
see that 	 ′(w) = 0, w ∈ T, which yields the required property that � is an analytic
Jordan curve.

5.5 Proof of Theorem 3.1

Recall that n := 2m. On |w| = R, where � < 1 ≤ R < ∞, we have from (1.3) and
(3.2)

|	(w) − 	(n)
m (w)| ≤ |b(n) − b|R +

m∑
k=0

|b(n)
k − bk |

Rk
+

∞∑
k=m+1

|bk |
Rk

.

Therefore, by using the result of Theorem 2.3 (see also (5.39)) and the estimate

|bk | ≤ c1(�)
�k

√
k
, k ∈ N;

see [13, Cor. 1.1] we get

|	(w) − 	(n)
m (w)| ≤ c2(�)�4m R + c3(�)

√
m log m�m + c4(�)

( �

R

)m
, (5.46)

which yields the desired estimate.
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