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Abstract

Growth estimates of complex orthogonal polynomials with respect to the area measure supported by
a disjoint union of planar Jordan domains (called, in short, an archipelago) are obtained by a combination
of methods of potential theory and rational approximation theory. The study of the asymptotic behavior of
the roots of these polynomials reveals a surprisingly rich geometry, which reflects three characteristics: the
relative position of an island in the archipelago, the analytic continuation picture of the Schwarz function
of every individual boundary and the singular points of the exterior Green function. By way of explicit
example, fine asymptotics are obtained for the lemniscate archipelago |zm − 1| < rm, 0 < r < 1, which
consists of m islands. The asymptotic analysis of the Christoffel functions associated to the same orthogonal
polynomials leads to a very accurate reconstruction algorithm of the shape of the archipelago, knowing only
finitely many of its power moments. This work naturally complements a 1969 study by H. Widom of Szegő
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orthogonal polynomials on an archipelago and the more recent asymptotic analysis of Bergman orthogonal
polynomials unveiled by the last two authors and their collaborators.
© 2009 Elsevier Inc. All rights reserved.
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1. Introduction

The study of orthogonal polynomials, resurrected recently by many groups of scientists, some
departing from the classical framework of constructive approximation to fields as far as quantum
computing or number theory, does not need an introduction. Maybe only our predilection in the
present work for complex analytic orthogonal polynomials on disconnected open sets needs some
justification.

Complex orthogonal polynomials naturally came into focus quite a few decades ago in con-
nection with problems in rational approximation theory and conformal mapping. The major
result, providing strong asymptotics for Bergman orthogonal polynomials in a domain with an-
alytic Jordan boundary, goes back to 1923 to a landmark article by T. Carleman [3]. About the
same time S. Bernstein discovered that the analogue of Taylor series in non-circular domains
(specifically ellipses in his case) is a Fourier expansion in terms of orthogonal polynomials that
are well adapted to the boundary shape, a phenomenon later elucidated in full generality by J.L.
Walsh [40]. Then, it came as no surprise that good approximations of conformal mappings of
simply-connected planar domains bear on the Bergman orthogonal polynomials, that is those
with respect to the area measure supported by these domains. By contrast, the theory of orthogo-
nal polynomials on the line or on the circle has a longer and glorious history, a much wider area
of applications and has attracted an order of magnitude more attention. For history and details
the reader can consult the surveys [26] and [36] or the monographs [8,28,30,34].

Bergman orthogonal polynomials provide a canonical orthonormal basis in the Bergman space
of square summable analytic functions associated to a bounded Jordan domain of the complex
plane. Contrary to the Hardy space H 2 (cf. [5]), that is roughly speaking the closure of poly-
nomials in the L2-space with respect to the arc-length measure on a smooth Jordan curve, the
functions belonging to the Bergman space do not possess non-tangential values on the boundary.
This makes their study much more challenging, and less complete as of today. For instance, it is
of recent date that the analogues of Blaschke products associated to the Hardy space of the disk
have been discovered: the so-called contractive divisors in the Bergman space of the disk, see the
monographs by Hedenmalm, Korenblum and Zhu [12] and by Duren and Schuster [6].

It is our aim to discuss in the present work nth-root and strong estimates for Bergman orthogo-
nal polynomials on an archipelago, the asymptotics of their zero distribution, and a reconstruction
algorithm of the archipelago from a finite set of the associated power moments. The specific
choice of the above problems and degree of generality were dictated by the present status of the
theory of complex orthogonal polynomials.

A brief description of the subjects touched in this article follows. Let G = ⋃N
j=1 Gj be an

archipelago, that is a finite union of mutually disjoint bounded Jordan domains of the complex
plane. The Bergman orthonormal polynomials with respect to the area measure supported on G:

Pn(z) = λnz
n + · · · , λn > 0, n = 0,1,2, . . . ,
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carry in a refined (one would be inclined to say, aristocratic) manner the information about G. For
instance, simple linear algebra provides a constructive bijection between the sequence {Pn}∞n=0
and the power moments (correlation matrix entries)

μmn(G) :=
∫
G

znzm dA, m,n � 0, (1.1)

where dA stands for the area measure on C. Three major features distinguish Bergman orthogo-
nal polynomials:

(i) An extremality property: Pn/λn is the minimum L2(G,dA)-norm monic polynomial of
degree n,

(ii) the Bergman kernel K(z, ζ ) = ∑∞
j=0 Pj (ζ )Pj (z) collects into a condensed form the

(derivatives of the) conformal mappings from the disk to every connected component Gj ,
(iii) the square root of the Christoffel function Λn(z) := {∑n

j=0 |Pj (z)|2}−1/2 is the extremum
value min‖q‖L2(G,dA), q(z) = 1, degq � n.

We repeatedly use the above characteristic properties, by combining them with general meth-
ods of potential theory and function theory. An important object in our work is the multi-valued
function

Φ(z) = exp
{
gΩ(z,∞) + ig∗

Ω(z)
}
, z ∈ C \ G,

where gΩ(z,∞) is the Green function of the exterior domain Ω := C \ G, with a pole at infin-
ity, and g∗

Ω is any harmonic conjugate of gΩ . We designate the name Walsh–Riemann function
for Φ . At a critical moment in our proofs, we rely on the pioneering work of Widom [42] that
refers to Szegő’s orthogonal polynomials on G and their intimate relation to the Walsh–Riemann
function Φ . Our Bergman space setting, however, departs in quite a few essential points from the
Hardy space scenario. Both estimates of the growth of Pn(z) and the limiting distribution of the
zero sets of {Pn}∞n=1 depend heavily on Φ and its analytic continuation across ∂G.

While the estimates for Pn(z) are more or less expected, and only how to prove them might
bring new turns, the zero distribution picture on an archipelago is full of surprises. The uncover-
ing of this rich geometry began a few years ago, in the work of two of us and collaborators, on the
zero distribution of Bergman orthogonal polynomials on specific Jordan domains, cf. [15,20,27].
For example, for the single Jordan region consisting of the interior of a regular m-gon, all the
zeros of Pn, n = 1,2, . . . , lie on the m radial lines joining the center to the vertices, for m = 3
and m = 4 (see [17]), while for m � 5 every boundary point of the m-gon attracts zeros of Pn, as
n → ∞ (see [2, Theorem 5]).

As a byproduct of the estimates we have obtained for Λn(z), we propose a very accurate
reconstruction-from-moments algorithm. In general, moment data can be regarded as the archety-
pal, indirect discrete measurements available to an observer, of a complex structure. To give a
simple indication how moments appear in geometric tomography, consider a density function
ρ(x, y) with compact support in the complex plane. When performing parallel tomography along
a fixed direction θ , one encounters the values of the Radon transform along the fixed screen

R(ρ)(t, θ) = (
ρ(x, y), δ(x cos θ + y sin θ − t)

)
,
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where δ stands for Dirac’s distribution and (·,·) is the pairing between test functions and distri-
butions. Computing then the moments with respect to t yields

ak(θ) =
∫
R

tkR(ρ)(t, θ) dt =
∫
R2

(x cos θ + y sin θ)kρ(x, y) dx dy.

Denoting the power moments (with respect to the real variables) by

σj,k =
∫
R2

xjykρ(x, y) dx dy, i, j � 0,

we obtain a linear system

ak(θ) =
k∑

i=0

(
k

i

)
cosi θ sink−i θσi,k−i .

After giving θ a number of distinct values, and noticing that the determinant of the system is
non-zero, one finds by linear algebra the values {σj,k}nj,k=0. This procedure was used by the first
two authors of this paper in an image reconstruction algorithm based on a different integral trans-
form of the original measure, see [9] and [10]. In a forthcoming work we plan to compare, both
computationally and theoretically, these two different reconstruction-from-moments algorithms.

The paper is organized as follows: Sections 2 and 3 are devoted to necessary background
information. We introduce there the notation, conventions and recall certain facts from potential
theory and function theory of a complex variable that needed for the rest of the work. Sections 4
(Growth Estimates), 5 (Reconstruction of the Archipelago from Moments) and 6 (Asymptotic
Behavior of Zeros) contain the statements of the main results. In Section 7 we enter into the only
computational details available among all archipelagoes: disconnected lemniscates with central
symmetry. Finally, Section 8 contains proofs of previously stated lemmata, propositions and
theorems.

2. Basic concepts

2.1. General notations and definitions

The unit disk, the exterior disk and the extended complex plane are denoted, respectively,

D := {
z ∈ C: |z| < 1

}
, � := {

z ∈ C: |z| > 1
} ∪ {∞}, C := C ∪ {∞}.

For the area measure in the complex plane we use dA = dA(z) = dx dy, and for the arc-length
measure on a curve we use |dz|. By a measure in general, we always understand a positive Borel
measure which is finite on compact sets. The closed support of a measure μ is denoted by suppμ.

As to curves in the complex plane, we shall use the following terminology: a Jordan curve is
a homeomorphic image of the unit circle into C. (Thus, every Jordan curve in the present work
will be bounded.) An analytic Jordan curve is the image of the unit circle under an analytic
function, defined and univalent in a neighborhood of the circle. Thus an analytic Jordan curve
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is by definition smooth. We shall sometimes need to discuss also Jordan curves which are only
piecewise analytic. The appropriate definitions will then be introduced as needed.

If L is a Jordan curve, we denote by int(L) and ext(L) the bounded and unbounded, respec-
tively, components of C \ L. By a Jordan domain we mean the interior of a Jordan curve. If
E ⊂ C is any set, Co(E) denotes its convex hull.

The set of polynomials of degree at most n is denoted by Pn.

2.2. Bergman spaces and polynomials

The main characters in our story are the Bergman orthogonal polynomials associated to an
archipelago G := ⋃N

j=1 Gj , where G1, . . . ,GN are Jordan domains with mutually disjoint clo-

sures. Set Γj := ∂Gj and Γ := ⋃N
j=1 Γj . For later use we introduce also the exterior domain

Ω := C \ G. Note that Γ = ∂G = ∂Ω .
Let {Pn}∞n=0 denote the sequence of Bergman orthogonal polynomials associated with G. This

is defined as the sequence of polynomials

Pn(z) = λnz
n + · · · , λn > 0, n = 0,1,2, . . . ,

that are obtained by orthonormalizing the sequence 1, z, z2, . . . , with respect to the inner product

〈f,g〉 :=
∫
G

f (z)g(z) dA.

Equivalently, the corresponding monic polynomials Pn(z)/λn, can be defined as the unique
monic polynomials of minimal L2-norm over G:

∥∥∥∥ 1

λn

Pn

∥∥∥∥
L2(G)

= mn(G,dA) := min
r∈Pn−1

∥∥zn + r(z)
∥∥

L2(G)
, (2.1)

where ‖f ‖L2(G) := 〈f,f 〉1/2. Thus,

1

λn

= mn(G,dA).

Let L2
a(G) denote the Bergman space associated with G and 〈·,·〉:

L2
a(G) := {

f analytic on G and ‖f ‖L2(G) < ∞}
.

Note that L2
a(G) is a Hilbert space that possesses a reproducing kernel which we denote by

K(z, ζ ). That is, K(z, ζ ) is the unique function K(z, ζ ) : G × G → C such that, for all ζ ∈ G,
K(·, ζ ) ∈ L2

a(G) and

f (ζ ) = 〈
f,K(·, ζ )

〉
, ∀f ∈ L2

a(G). (2.2)
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Furthermore, due to the reproducing property and the completeness of polynomials in L2
a(G)

(see Lemma 3.3 below), the kernel K(z, ζ ) is given in terms of the Bergman polynomials by

K(z, ζ ) =
∞∑

j=0

Pj (ζ )Pj (z).

We single out the square root of the inverse of the diagonal of the reproducing kernel of G

Λ(z) := 1√
K(z, z)

, z ∈ G,

and the finite sections of K(z, ζ ) and Λ(z):

Kn(z, ζ ) :=
n∑

j=0

Pj (ζ )Pj (z), Λn(z) := 1√
Kn(z, z)

. (2.3)

We note that the Λn(z)’s are square roots of the so-called Christoffel functions of G.

2.3. Potential theoretic preliminaries

Let Q be a polynomial of degree n with zeros z1, z2, . . . , zn. The normalized counting mea-
sure of the zeros of Q is defined by

νQ := 1

n

n∑
k=1

δzk
, (2.4)

where δz denotes the unit point mass at the point z. In other words, for any subset A of C,

νQ(A) = number of zeros of Q in A

n
.

Next, given a sequence {σn} of Borel measures, we say that {σn} converges in the weak-star

sense to a measure σ , symbolically σn
∗→ σ , if∫

f dσn →
∫

f dσ, n → ∞,

for every function f continuous on C.
For any finite positive Borel measure σ of compact support in C, we define its logarithmic

potential by

Uσ (z) :=
∫

log
1

|z − t | dσ(t).

In particular, if Qn is a monic polynomial of degree n, then

UνQn (z) = −1
log

∣∣Qn(z)
∣∣.
n
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Let Σ ⊂ C be a compact set. Then there is a smallest number γ ∈ R ∪ {+∞} such that there
exists a probability measure μΣ on Σ with UμΣ � γ in C. The (logarithmic) capacity of Σ is
defined as cap(Σ) = e−γ (interpreted as zero if γ = +∞). If cap(Σ) > 0, then μΣ is unique
and is called the equilibrium measure of Σ . For the definition of capacity of more general sets
than compact sets see, e.g., [24,28] and [14]. A property that holds everywhere, except on a set
of capacity zero, is said to hold quasi-everywhere (q.e.). For example, it is known that UμΣ = γ ,
q.e. on Σ .

Let W denote the unbounded component of C \ Σ . It is known that supp(μΣ) ⊂ ∂W ,
μΣ = μ∂W and cap(Σ) = cap(∂W). If cap(Σ) > 0, then the equilibrium potential is related
to the Green function gW (z,∞) of W , with pole at infinity, by

UμΣ (z) = log
1

cap(Σ)
− gW (z,∞), z ∈ W. (2.5)

In our applications ∂W will be a finite disjoint union of mutually exterior Jordan curves (typ-
ically Σ = G or Σ = Γ , W = Ω , ∂W = Γ = ∂Σ , in the notations of Section 2.2). Then, every
point of ∂W is regular for the Dirichlet problem in W [24, Theorem 4.2.2] and therefore:

(i) suppμΣ = ∂W, (2.6)

(ii) UμΣ (z) = log
1

cap(Σ)
, z ∈ Σ. (2.7)

If μ is a measure on a compact set Σ with cap(Σ) > 0, the balayage (or “swept measure”) of
μ onto ∂Σ is the unique measure ν on ∂Σ having the same exterior potential as μ, i.e., satisfying

Uν = Uμ in C \ Σ. (2.8)

The potential Uν of ν can be constructed as the smallest superharmonic function in C satisfying
Uν � Uμ in C \ Σ . Since Uμ itself is competing it follows that, in addition to (2.8), Uν � Uμ

in all C.

2.4. The Green function and its level curves

Returning to the archipelago, let gΩ(z,∞) denote the Green function of Ω = C\G with pole
at infinity. That is, gΩ(z,∞) is harmonic in Ω \ {∞}, vanishes on the boundary Γ of G and near
∞ satisfies

gΩ(z,∞) = log|z| + log
1

cap(Γ )
+ O

(
1

|z|
)

, |z| → ∞. (2.9)

We consider next what we call the Walsh–Riemann function associated with Ω . This is defined
as the exponential of the complex Green function,

Φ(z) := exp
{
gΩ(z,∞) + ig∗

Ω(z,∞)
}
, (2.10)

where g∗
Ω(z,∞) is a (locally) harmonic conjugate of gΩ(z,∞) in Ω . In the single-component

case N = 1, (2.10) defines a conformal mapping from Ω onto �. In the multiple-component
case N � 2, Φ is a multi-valued analytic function in Ω . However, |Φ(z)| is single-valued. We
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refer to Walsh [40, §4.1] and Widom [42, §4] for comprehensive accounts of the properties of Φ .
We note in particular that Φ is single-valued near infinity and, since g∗

Ω is unique apart from a
constant, that it can be chosen so that Φ has near infinity a Laurent series expansion of the form

Φ(z) = 1

cap(Γ )
z + α0 + α1

z
+ α2

z2
+ · · · . (2.11)

We also note that Φ ′(z)/Φ(z) = 2∂gΩ(·,∞)/∂z is single-valued and analytic in Ω , with periods

bj := 1

2πi

∫
Γj

Φ ′(z)
Φ(z)

dz = 1

2π

∫
Γj

∂gΩ(z,∞)

∂n
ds, j = 1,2, . . . ,N. (2.12)

Here Γj is oriented as the boundary of Gj and the normal derivative is directed into Ω . If Γj is
not smooth the path of integration in (2.12) is understood to be moved slightly into Ω . Note that∑N

j=1 bj = 1.

Next we consider for R � 1 the level curves (or equipotential loci) of the Green function,

LR := {
z ∈ Ω: gΩ(z,∞) = logR

} = {
z ∈ Ω:

∣∣Φ(z)
∣∣ = R

}
(2.13)

and the open sets

ΩR := {
z ∈ Ω: gΩ(z,∞) > logR

} = {
z ∈ Ω:

∣∣Φ(z)
∣∣ > R

} = ext(LR),

GR := C \ ΩR = int(LR).

Note that L1 = Γ , Ω1 = Ω , G1 = G. It follows from the maximum principle that ΩR is always
connected. The Green function for ΩR is given by

gΩR
(z,∞) = gΩ(z,∞) − logR, (2.14)

hence the capacity of LR (or GR) is

cap(LR) = R cap(Γ ). (2.15)

Unless stated to the contrary, we hereafter assume that N � 2, i.e. G consists of more than one
island. For small values of R > 1, GR consists of N components, each of which contains exactly
one component of G, while for large values of R, GR is connected (with G ⊂ GR). Consequently,
we introduce the following sets and numbers:

Gj,R := the component of GR that contains Gj, j = 1,2, . . . ,N.

Lj,R := ∂Gj,R, j = 1,2, . . . ,N.

Rj := sup{R: Gj,R contains no other island than Gj }.
R′ := min{R1, . . . ,RN } = sup{R: GR has N exactly components}.
R′′ := inf{R: GR is connected} = inf{R: ΩR is simply connected}.
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Fig. 1. Green level curves.

Thus, when 1 < R < R′, GR is the disjoint union of the domains Gj,R , j = 1,2, . . . ,N and
LR consists of the N mutually exterior analytic Jordan curves Lj,R , j = 1,2, . . . ,N , while for
R > R′′, we have G1,R = G2,R = · · · = GN,R = GR and LR is a single analytic curve.

It is well known that gΩ(z,∞) has exactly N − 1 critical points (multiplicities counted), i.e.,
points where the gradient ∇gΩ(z,∞), or equivalently Φ ′/Φ = 2∂gΩ(·,∞)/∂z, vanishes. These
critical points show up as singularities of some LR’s, which are points of self-intersection. Such
singularities must appear when LR changes topology. It follows that there are no critical points
in GR′ \ G, at least one critical point on each LRj

, j = 1,2, . . . ,N (one of them is LR′ ), at least
one on LR′′ and no critical point in ΩR′′ . Any Lj,R that does not contain a critical point is an
analytic Jordan curve. In particular, this applies whenever 1 < R < R′ or R′′ < R < ∞.

When R � R′′, Φ is the unique conformal map of ΩR onto �R := {w: |w| > R} that satisfies
(2.11) near infinity.

In Fig. 1 we illustrate the three different types of level curves LR′ , LR′′ and LR with R > R′′,
introduced above.

Remark 2.1. The level curves in Fig. 1 were computed by means of Trefethen’s MATLAB code
manydisks.m [38]. This code provides an approximation to the Green function gΩ(z,∞) in
cases when G consists of a finite number of disks, realizing an algorithm given in [7].

Consider now the N Hilbert spaces L2
a(Gj ) defined by the components Gj , j = 1,2, . . . ,N ,

and let KGj (z, ζ ), j = 1,2, . . . ,N , denote their respective reproducing kernels. Then, it is easy
to verify that the kernel K(z, ζ ) is related to KGj (z, ζ ) as follows:

K(z, ζ ) =
{

KGj (z, ζ ) if z, ζ ∈ Gj,

0 if z ∈ Gj, ζ ∈ Gk, j �= k.
(2.16)

In view of (2.16), we can express K(z, ζ ) in terms of conformal mappings ϕj : Gj → D,
j = 1,2, . . . ,N . This will help us to determine the singularities of K(·, ζ ) and, in particular,
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whether or not this kernel has a singularity on ∂Gj . This is so because, as it is well known (see
e.g. [8, p. 33]),

KGj (z, ζ ) = ϕ′
j (z)ϕ

′
j (ζ )

π[1 − ϕj (z)ϕj (ζ )]2
, z, ζ ∈ Gj, j = 1,2, . . . ,N. (2.17)

By saying that a function analytic in Gj has a singularity on ∂Gj , we mean that there is no open
neighborhood of Gj in which the function has an analytic continuation.

3. Preliminaries

3.1. The Schwarz function of an analytic curve and extension of harmonic functions

Let Γ be a Jordan curve. Then Γ is analytic if and only if there exists an analytic function
S(z), the Schwarz function of Γ , defined in a full neighborhood of Γ and satisfying

S(z) = z for z ∈ Γ ;
see [4] and [29]. The map z �→ S(z) is then the anticonformal reflection in Γ , which is an invo-
lution (i.e., is its own inverse) on a suitably defined neighborhood of Γ . In particular, S′(z) �= 0
in such a neighborhood.

If u is a harmonic function defined at one side of an analytic Jordan curve Γ and u has
boundary values zero on Γ , then u extends as a harmonic function across Γ by reflection. In
terms of the Schwarz function S(z) of Γ the extension is given by

u(z) = −u
(
S(z)

)
(3.1)

for z on the other side of Γ (and close to Γ ). Conversely we have the following:

Lemma 3.1. Let Γ be a Jordan curve and let u be a (real-valued) harmonic function defined in
a domain D containing Γ such that, for some constant c > 0, there holds:

(i) u = 0 on Γ,

(ii) |u| → c as z → ∂D,

(iii) ∇u �= 0 in D,

where ∇u denotes the gradient of u. Then Γ is an analytic curve, the Schwarz function S(z) of Γ

is defined in all D, and z �→ S(z) maps D onto itself. Moreover, u and S(z) are related by (3.1).
In particular z �→ S(z) maps a level line u = α of u onto the level line u = −α.

We note that the Schwarz function is uniquely determined by Γ , but u is not; there are many
different harmonic functions that vanish on Γ . A domain which is mapped into itself by z �→ S(z)

will be called a domain of involution for the Schwarz reflection.

Example 3.1. Assume that, under our main assumptions, one of the components of Γ , say Γ1,
is analytic. Then the Green function u(z) = gΩ(z,∞) extends harmonically, by the Schwarz
reflection (3.1), from Ω into G1. We keep the notation gΩ(z,∞) for so extended Green function.
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Recall that the level lines reflect to level lines, so that for R > 1 close enough to one, L1,R is
reflected to the level line

L1, 1
R

= {
z ∈ G1: gΩ(z,∞) = − logR

} =
{
z ∈ G1:

∣∣Φ(z)
∣∣ = 1

R

}

of the extended Green function (and extended Φ). Generally speaking, whenever applicable we
shall keep notations like Lj,ρ , Gj,ρ , Lρ , Ωρ , etc., for values ρ < 1 in case of analytic boundaries.

As was previously remarked, u(z) = gΩ(z,∞) has no critical points in the region G1,R1 \ G1.
It follows then from (3.1) that if the Green function extends harmonically to a region G1 \ G 1,ρ

with 1
R1

� ρ < 1, then it has no critical points there, and the region D = G1, 1
ρ
\ G 1,ρ is symmetric

with respect to Schwarz reflection and is a region of the kind D discussed in Lemma 3.1.

3.2. Regular measures

The class Reg of measures of orthogonality was introduced by Stahl and Totik [31, Defini-
tion 3.1.2] and shown to have many desirable properties. Roughly speaking, μ ∈ Reg means
that in an “nth root sense”, the sup-norm on the support of μ and the L2-norm generated by μ

have the same asymptotic behavior (as n → ∞) for any sequence of polynomials of respective
degrees n. It is easy to see that area measure enjoys this property.

Lemma 3.2. The area measure dA|G on G belongs to the class Reg.

Lemma 3.2 yields the following nth root asymptotic behavior for the Bergman polynomials
Pn in Ω .

Proposition 3.1. The following assertions hold:

(a) lim
n→∞λ

1/n
n = 1

cap(Γ )
. (3.2)

(b) For every z ∈ C \ Co(G) and for any z ∈ Co(G) \G not a limit point of zeros of the Pn’s, we
have

lim
n→∞

∣∣Pn(z)
∣∣1/n = ∣∣Φ(z)

∣∣. (3.3)

The convergence is uniform on compact subsets of C \ Co(G).

(c) lim sup
n→∞

∣∣Pn(z)
∣∣1/n = ∣∣Φ(z)

∣∣, z ∈ Ω, (3.4)

locally uniformly in Ω .

(d) lim
n→∞

1

n

P ′
n(z)

Pn(z)
= Φ ′(z)

Φ(z)
, (3.5)

locally uniformly in C \ Co(G).
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The first three parts of the proposition follow from Theorems 3.1.1, 3.2.3 of [31] and from
Theorem III.4.7 of [28], in combination with the results of [1], because Ω is regular with respect
to the Dirichlet problem; see e.g. [24, p. 92]. The last assertion (d) is immediate from (b).

Another fundamental property of Bergman polynomials, whose proof involves a simple exten-
sion of the simply-connected case treated in Theorem 1, Section 1.3 of Gaier [8] is the following.

Lemma 3.3. Polynomials are dense in the Hilbert space L2
a(G). Consequently, for fixed ζ ∈ G,

K(z, ζ ) =
∞∑

n=0

Pn(ζ )Pn(z), (3.6)

locally uniformly with respect to z in G.

The analytic continuation properties of K(z, ζ ) play an essential role in the analysis. The
following notation will be useful in this regard. If f is an analytic function in G, we define

ρ(f ) := sup{R: f has an analytic continuation to GR}. (3.7)

Note that 1 � ρ(f ) � ∞. The following important lemma, which is an analogue of the Cauchy–
Hadamard formula, is due to Walsh.

Lemma 3.4. Let f ∈ L2
a(G). Then,

lim sup
n→∞

∣∣〈f,Pn〉
∣∣1/n = 1

ρ(f )
. (3.8)

Moreover,

f (z) =
∞∑

n=0

〈f,Pn〉Pn(z),

locally uniformly in Gρ(f ).

The result is given in Walsh [40, pp. 130–131] (see also [23, Theorem 2.1]) for a single Jordan
region and, as Walsh asserts, is immediately extendable to several Jordan regions.

By applying Lemma 3.4 to f = K(·, ζ ), and by using the reproducing property (2.2), in
conjunction with (2.16) and (3.6), we obtain:

Corollary 3.1. Let j be fixed, 1 � j � N . Then for any ζ ∈ Gj ,

lim sup
n→∞

∣∣Pn(ζ )
∣∣1/n = 1

ρ(K(·, ζ ))
= 1

min{ρ(KGj (·, ζ )),Rj }
, (3.9)

where (as previously defined) Rj > 1 is the largest R such that the component Gj,R of GR con-
taining Gj contains no other Gk . In particular,

lim sup
n→∞

∣∣Pn(ζ )
∣∣1/n = 1 (3.10)

if and only if KGj (·, ζ0) has a singularity on ∂Gj , for some (and then for every) ζ0 ∈ Gj .
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The last statement is based on the observation, from (2.17), that the property of KGj (·, ζ0)

having a singularity on ∂Gj is independent of the choice of ζ0 (within Gj ). We remark also that
the appearance of Rj in (3.9) is essential since, for R > Rj , the component Gj,R contains an
open set where K(·, ζ ) is identically zero (recall (2.16)) and hence not an analytic continuation
of KGj (·, ζ ). Corollary 3.1 will be further elaborated in Theorem 6.1.

Corollary 3.1 describes a basic relationship between the orthogonal polynomials {Pn(ζ )}∞n=0
and the kernel function K(·, ζ ) which will play an essential role in deriving our zero distribution
results for the sequence {Pn}∞n=1.

Remark 3.1. A well-known result by Fejér asserts that the zeros of orthogonal polynomials
with respect to a compactly supported measure σ are contained in the closed convex hull of
suppσ . This result was refined by Saff [26] to the interior of the convex hull of suppσ , provided
this convex hull is not a line segment. Consequently, we see that all the zeros of the sequence
{Pn}∞n=1 are contained in the interior of convex hull of G. This fact should be coupled with a
result of Widom [41] to the effect that, on any compact subset E of Ω and for any n ∈ N, the
number of zeros of Pn on E is bounded independently of n.

3.3. Carleman estimates

We continue this section by recalling certain results due to T. Carleman and P.K. Suetin,
regarding the asymptotic behavior of the Bergman polynomials in the case where G consists of
a single component (i.e. for N = 1). In this case the Walsh–Riemann function (2.10) coincides
with the unique conformal map Φ : Ω → � satisfying (2.11).

The first result requires the boundary Γ to be analytic (hence the conformal map Φ has an
analytic and univalent continuation across Γ inside G) and is due to Carleman [3]; see also [8,
p. 12].

Theorem 3.1. Assume that Γ is an analytic Jordan curve and let ρ, 0 < ρ < 1, be the smallest
index for which Φ is conformal in Ωρ . Then,

λn =
√

n + 1

π

1

cap(Γ )n+1

{
1 + O

(
ρ2n

)}
, (3.11)

and

Pn(z) =
√

n + 1

π
Φ ′(z)Φn(z)

{
1 + An(z)

}
, (3.12)

where

An(z) =
{

O(
√

n)ρn, if z ∈ Ω,

O(1/
√

n)(ρ/r)n, if z ∈ Lr, ρ < r < 1.
(3.13)

The second result which is due to Suetin [34, Theorems 1.1 and 1.2], requires that Γ can
be parameterized with respect to the arc-length, so that the defining function has a pth order
derivative (where p is a positive integer) in a Hölder class of order α. We express this by saying
Γ is Cp+α-smooth. (In particular, this implies that Γ can have no corners.)
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Theorem 3.2. Assume that Γ is C(p+1)+α-smooth, with p + α > 1/2. Then,

λn =
√

n + 1

π

1

cap(Γ )n+1

{
1 + O

(
1

n2p+2α

)}
, (3.14)

and

Pn(z) =
√

n + 1

π
Φ ′(z)Φn(z)

{
1 + O

(
logn

np+α

)}
, z ∈ Ω. (3.15)

We emphasize that the above two theorems concern only the case when N = 1. We also
remark that for the case when Γ is analytic, E. Miña-Díaz [19] has recently derived an improved
version of Carleman’s theorem for the special case when Lρ is a piecewise analytic Jordan curve
without cusps.

3.4. Comparison of area and line integrals of polynomials

The following observation is due to Suetin [33]; see also [34, p. 38].

Lemma 3.5. Let G be a Jordan domain with C1+α-smooth boundary. Then there exists a positive
constant C, with the property that, for every polynomial Qn of degree at most n, there holds

‖Qn‖L2(Γ ) � C
√

n + 1‖Qn‖L2(G),

where ‖ · ‖L2(Γ ) denotes the L2-norm on Γ with respect to |dz|.

The proof in [33] uses the following analogue of Bernstein’s inequality (a result Suetin at-
tributes to S.Yu. Al’per):

∥∥Q′
n

∥∥
L2(G)

� Cn‖Qn‖L2(G)

and leads to similar inequalities for Lp , 1 < p < ∞, or uniform norms.

4. Growth estimates

The main results of this article are stated in this and the next three sections. Their proofs are
given in Section 8.

We recall the notation and definitions in Section 2, in particular the definition of the
archipelago G := ⋃N

j=1 Gj consisting of the union of N Jordan domains in C, with boundaries

Γj := ∂Gj . We also recall that Ω := C \ G and note Γ := ⋃N
j=1 Γj = ∂G = ∂Ω .

Theorem 4.1. Assume that every curve Γj constituting Γ is C2+α-smooth. Then there exists a
positive constant C1 such that

λn � C1

√
n + 1 1

n+1
, n ∈ N. (4.1)
π cap(Γ )
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In addition, if every Γj is analytic, j = 1,2, . . . ,N , then there exists a positive constant C2 such
that

C2

√
n + 1

π

1

cap(Γ )n+1
� λn � C1

√
n + 1

π

1

cap(Γ )n+1
, n ∈ N. (4.2)

The following estimate for the diagonal K(z, z), z ∈ G, of the reproducing kernel follows
from classical estimates for the boundary growth of the Bergman kernel of a simply-connected
domain, obtained via conformal mapping techniques. More precisely, by using the results for
the hyperbolic metric presented by Hayman in [11, pp. 682–692], which require no smoothness
for the boundary curve, and recalling (2.17), it is easy to verify the following double inequality,
holding for every j , j = 1,2, . . . ,N :

1

16π

1

dist2(z,Γj )
� KGj (z, z) � 1

π

1

dist2(z,Γj )
, z ∈ Gj . (4.3)

Thus K(z, z) = KGj (z, z), z ∈ Gj , inherits the same estimates and, clearly, the function Λ(z) :=
1/

√
K(z, z) satisfies

√
π dist(z,Γj ) � Λ(z) � 4

√
π dist(z,Γj ), z ∈ Gj . (4.4)

(Above and throughout this article dist(z,Γj ) stands for the Euclidean distance of z from the
boundary Γj .)

It is always useful to recall that the monic orthogonal polynomials Pn(z)/λn, n = 0,1, . . . ,
satisfy a minimum distance condition with respect to the L2-norm on G, in the sense that

1

λn

=
∥∥∥∥Pn

λn

∥∥∥∥
L2(G)

= min
a0,a1,...,an−1

∥∥zn + an−1z
n−1 + · · · + a0

∥∥
L2(G)

. (4.5)

Similarly, the square root of the Christoffel functions Λn(z), n = 0,1, . . . , defined by (2.3), can
be described as

Λn(z) = min
p∈Pn
p(z)=1

‖p‖L2(G); (4.6)

cf. Lemma 8.1 below. Based on the above two simple extremal properties, we derive the follow-

ing comparison between Λn(z) and the functions Λ
Gj
n (z) := 1/

√
K

Gj
n (z, z) associated with each

individual island Gj .

Theorem 4.2. For every j = 1,2, . . . ,N and any n ∈ N,

Λ
Gj
n (z) � Λn(z), z ∈ C. (4.7)

In addition, if Γj is analytic, then there exist a sequence {γn}∞n=0, with 0 < γn < 1 and
limn→∞ γn = 0 geometrically, and a number m ∈ N, m � 1, such that for any n ∈ N,

1 − γn

2
Λmn(z) � Λ

Gj
n (z), z ∈ Gj . (4.8)
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Let Φj denote the normalized, like (2.11), exterior conformal map Φj : C \ Gj → �. The

growth of Λ
Gj
n (z) inside the island Gj is described as follows.

Theorem 4.3. Fix j , j = 1,2, . . . ,N, and assume that Γj is analytic. Then there exist positive
constants C1 and ρ < 1 such that for any n ∈ N,

0 < Λ
Gj
n (z) − ΛGj (z) � C1

∣∣Φj(z)
∣∣n(dist(z,Γj ) + 1

n

)
, z ∈ Gj \ Gj,ρ . (4.9)

Moreover,

lim
n→∞nΛ

Gj
n (z) =

√
2π

|Φ ′
j (z)|

, (4.10)

uniformly for z ∈ Γj .
Furthermore, if every curve constituting Γ is analytic then

C2 � nΛn(z) � C3, z ∈ Γ, (4.11)

and

C4 dist(z,Γ )δ(z) � Λn(z) � C5√
n|Φ(z)|n , n ∈ N, z /∈ G, (4.12)

where C2, C3, C4, C5 are positive constants and

δ(z) = |Φ(z)|2 − 1

|Φ(z)|
1√

(n + 1)|Φ(z)|2n(|Φ(z)|2 − 1) + 1
.

An estimate for Λn(z) on Γ which is finer than (4.11), in the sense that it coincides with
(4.10) for the case of a single island, and under weaker smoothness conditions on Γ , is presented
in [37], where asymptotics of Christoffel functions defined by more general measures on C are
considered.

Finally, we derive the following exterior estimates for Bergman polynomials.

Theorem 4.4. Assume that every curve constituting Γ is analytic. Then the following hold:

(i) There exists a positive constant C, so that

∣∣Pn(z)
∣∣ � C

dist(z,Γ )

√
n
∣∣Φ(z)

∣∣n, z /∈ G. (4.13)

(ii) For every ε > 0 there exist a constant Cε > 0, such that∣∣Pn(z)
∣∣ � Cε

√
n
∣∣Φ(z)

∣∣n, dist
(
z,Co(G)

)
� ε.

Note that in the region Co(G) \ G the orthogonal polynomials may have zeros (as the case of
the lemniscates considered in Section 7 illustrates).
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5. Reconstruction of the archipelago from moments

The present section contains a brief description of a shape reconstruction algorithm. This
algorithm is motivated by the estimates established in the previous sections. The comparison of
the speed of convergence and accuracy of this approximation scheme with other known ones (see
e.g. [10]) will be analyzed in a separate work.

The algorithm is based on the following observations:

Remark 5.1.

(i) From (4.4) we see that the function Λ(z) is bounded from below and above in G by con-
stants times the distance of z to the boundary. Consequently, its truncation

Λn(z) = 1√∑n
k=0 |Pk(z)|2

(5.1)

approximates the distance function to Γ in G. Furthermore, on Γ and in Ω , Λn decays to
zero at certain rates, as n → ∞. More precisely, a close inspection of the inequalities in
Theorems 4.2 and 4.3, in conjunction with (4.4), reveals the following asymptotic behavior
of Λn(z) in C:
(a)

√
π dist(z,Γ ) � Λn(z), z ∈ G;

(b) Λn(z) � C dist(z,Γ ), z ∈ G ∩ Ωρ , for some 0 < ρ < 1 and C � √
π ;

(c) Λn(z) � 1
n

, z ∈ Γ ;
(d) Λn(z) � 1√

n|Φ(z)|n , z ∈ Ω .
(ii) In order to construct Λn we need to have available the finite section {P0,P1, . . . ,Pn} of

Bergman polynomials, and this can be determined by means of the Gram–Schmidt process,
requiring only the power moments (1.1), of degree less or equal than n in each variable.

(iii) For any n = 1,2, . . . , all the zeros of Pn(z) lie in the interior of the convex hull of G; see
Remark 3.1.

The expression A � B means that C1B � A � C2B for positive constants C1 and C2.

Consequently, Remark 5.1 supports the following algorithm for reconstructing the archipela-
go G, by using a given finite set of the associated power moments

μij := 〈
zi, zj

〉 = ∫
G

zizj dA(z), i, j = 0,1, . . . , n.

Reconstruction Algorithm.

1. Use an Arnoldi version of the Gram–Schmidt process, in the way indicated in [32], to con-
struct the Bergman polynomials {Pk}nk=0 from μij , i, j = 0,1, . . . , n. This involves at the
k-step the orthonormalization of the set {P0,P1, . . . ,Pk−1, zPk−1}, rather than the set of
monomials {1, z, . . . , zk−1, zk}, as in the standard Gram–Schmidt process.

2. Plot the zeros of Pn, n = 1,2, . . . , n.
3. Form Λn(z) as in (5.1).
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Fig. 2. Level curves of Λ100(x + iy), on {(x, y): −2 � x � 5, −2 � y � 2}, with G as in Example 6.1.

Fig. 3. Level curves of Λ100(x + iy), on {(x, y): −4 � x � 4, −2 � y � 2}, with G as in Example 6.2.

Fig. 4. Level curves of Λ100(x + iy), on {(x, y): −2 � x � 8, −2 � y � 2}, with G as in Example 6.3, case (i).

4. Plot the level curves of the function Λn(x + iy) on a suitable rectangular frame for (x, y)

that surrounds the plotted zero set.

Regarding the stability of the Gram–Schmidt process in the Reconstruction Algorithm, we
note a fact that pointed out in [32]. That is the Arnoldi version of the Gram–Schmidt does not
suffer from the severe ill-conditioning associated with its ordinary use; see, for instance, the
theoretical and numerical evidence reported in [22]. This feature of the Arnoldi Gram–Schmidt
has enabled us to compute accurately Bergman polynomials for degrees as high as 160. We also
note that the use of orthogonal polynomials in a reconstruction-from-moments algorithm, was
first employed in [32]. However, the algorithm of [32] is only suitable for the single island case
N = 1.

Applications of the Reconstruction Algorithm are illustrated in Figs. 2–7. In each example, the
only information used from the associated archipelago G was its power moments. The resulting
plots indicate a remarkable fitting, even in the case of non-smooth boundaries, for which our
theory, as stated in Section 4, does not apply.

6. Asymptotic behavior of zeros

6.1. General statements

The first result of this section is our general theorem on the asymptotic behavior of the zeros
of the Bergman polynomials {Pn}∞ , on an archipelago of N Jordan domains. It is established
n=1
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Fig. 5. Level lines of Λ100(x + iy), on {(x, y): −1 � x � 6, −2 � y � 2}, with G as in Example 6.4.

Fig. 6. Level lines of Λ100(x + iy), on {(x, y): −1 � x � 4, −2 � y � 2}, with G as in Example 6.5.

under the general assumptions made at the beginning of Section 2.2. In particular we note that,
unlike the theory presented in Section 4, no extra smoothness is required for the boundary curves
Γj here. The result below, which is valid for any N � 1, requires some special attention for the
single island case N = 1.

Theorem 6.1. Consider the following extension of the Green function gΩ(·,∞) to all C:

h(z) =
{

gΩ(z,∞), z ∈ Ω,

− logρ(K(·, z)), z ∈ G,
(6.1)

(recall (3.7)) and define

β = βG := 1

2π
�h, (6.2)

where the Laplacian is taken in the sense of distributions. Let C denote the set of weak-star
cluster points of the counting measures {νPn}∞n=1, i.e., the set of measures σ for which there

exists a subsequence Nσ ⊂ N such that νPn

∗→ σ , as n → ∞, n ∈ Nσ . The following assertions
hold.

(i) The function h is harmonic in Ω , subharmonic in all C; hence β is a positive unit measure
with support contained in G. In addition, if N � 2, then h is continuous and bounded from
below. If N = 1, then h can take the value −∞ at most at two points, and outside these
points h is continuous.

(ii) Uβ(z) = log
1 − h(z), z ∈ C, (6.3)
cap(Γ )
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Fig. 7. Level lines of Λn(x + iy), for the values of n (from left two right) 25, 50, 75 and 100, on {(x, y): −3 � x � 4,
−2 � y � 3}, with G formed by the three disjoint disks of Example 6.6.

and balayage of β onto Γ gives the equilibrium measure μΓ of Γ :{
Uβ � UμΓ in C,

Uβ = UμΓ in Ω.
(6.4)

(iii) lim sup
n→∞

1

n
log

∣∣Pn(z)
∣∣ = h(z), z ∈ C, (6.5)

lim inf
n→∞ UνPn (z) = Uβ(z), z ∈ C. (6.6)

Moreover, in C \ Co(G) these equalities hold with lim sup and lim inf replaced by lim.
(iv) The set of cluster points C is non-empty, and for any σ ∈ C ,{

Uσ � Uβ in C,

Uσ = Uβ in the unbounded component of C \ suppβ.
(6.7)

(v) The measure β is the lower envelope of C in the sense that

Uβ = lsc
(

inf Uσ
)
,

σ∈C
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where “lsc” denotes lower semicontinuous regularization. (This means that Uβ is the supre-
mum of all lower semicontinuous functions that are � infσ∈C Uσ .) In addition, if D is any
component of C \ suppβ , then for any σ ∈ C either Uσ > Uβ in D or Uσ = Uβ in D; and
there exists a σ ∈ C such that the latter holds.

(vi) If C has only one element, then this is β and

νPn

∗→ β, n → ∞, n ∈ N, (6.8)

i.e., the full sequence converges to β .
(vii) Assume that β satisfies

(a) suppβ is a nullset with respect to area measure,
(b) C \ suppβ is connected.
Then β is the unique element in C ; hence (6.8) holds. If (a) holds and (in place of (b))
(c) C \ suppβ has at most two components,
then β ∈ C .

Remark 6.1. The measure β = βG is canonically associated to G via the Bergman kernel. Con-
structive formulas for βG (or rather its potential) will be given in the proof (e.g. (8.20)–(8.22))
and will be further elaborated in the examples of Section 6.2.

Remark 6.2. Well-known properties for any σ ∈ C follow immediately from (ii) and (iv): That
is, Uσ = UμΓ in Ω , suppσ ⊂ G and balayage of σ onto Γ gives the equilibrium distribution μΓ

(see e.g. [28, Theorem III.4.7]).

Remark 6.3. We know of no example where β isn’t itself in C . However it remains an open
question whether it is always so.

Remark 6.4. A measure β satisfying (6.4) together with (a) and (b) in (vii) may be viewed as a
potential theoretic skeleton for μΓ (or “Madonna body”, in view of a common shape of suppβ;
cf. [15,20]).

Remark 6.5. When N = 1, h may take the value −∞ at one or two points. Note that, by (6.1),
h(a) = −∞ if and only if K(z, a) is an entire function of z. With G = D we have h(z) = log |z|,
i.e., one pole for h. An example with two poles is the following.

Choose a number A > 1 and let G be the image of the unit disk under the conformal map

ψ(w) = 1

2
log

A + w

A − w
,

the branch chosen so that ψ(0) = 0. The inverse map is

ϕ(z) = A tanh z,

which is meromorphic in the entire complex plane. Here ψ maps the disk |w| < A onto the strip
|Im z| < π

4 . Hence G, which is the image of |w| < 1, is a subdomain of that strip (a kind of an
oval).
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The function ϕ does not attain the values ±A anywhere in the complex plane and the
set ϕ|−1

C
(1/ϕ(ζ )), which will play an important role in the proof of the theorem, may there-

fore be empty for up to two values of ζ ∈ G. In fact, this occurs for ζ = ±a ∈ G, where

a = 1
2 log A2+1

A2−1
> 0. At these points, h(±a) = −∞, K(z,±a) = A4−1

π
e±2z. One also finds that

β is a measure supported on the line segment [−a, a] and hence is a Madonna body.

We call a boundary curve Γj singular if some conformal map ϕj : Gj → D does not extend
analytically to a full neighborhood of Gj , i.e., if ρ(ϕj ) = 1, or equivalently if ρ(K(·, z)) = 1,
z ∈ Gj ; see (2.16) and (2.17). Clearly, this property is independent of the choice of the conformal
map ϕj . Note that a boundary component that is not singular in the above sense still need not be
fully smooth: it may be piecewise analytic but have certain kinds of corners so that ϕj extends
analytically across Γj but the extension is not univalent. This would be the case, for instance, if
Gj is a rectangle.

Corollary 6.1. For each j = 1, . . . ,N , the following statements are equivalent:

(i) Γj is singular.
(ii) β|Gj

= μΓ |Gj
.

(iii) There is a subsequence N = Nj ⊂ N such that, with V any neighborhood of Gj not meeting
the other islands (e.g., V = Gj,Rj

),

νPn |V ∗→ μΓ |V , n → ∞, n ∈ N . (6.9)

Clearly, under the conditions of the above corollary a certain proportion of the zeros of the
Bergman polynomials converge to the part of the equilibrium measure located on Γj . By a rea-
soning as in deriving (8.24) in the proof of Theorem 6.1 below, we conclude that this proportion
is ∫

Γj

dμΓ = bj ,

where bj is the period in (2.12). Thus, we easily deduce the following:

Corollary 6.2. If, for a particular j = 1, . . . ,N , Γj is singular, then there exists a subsequence
{Pn}n∈N , such that Pn = QkRk , deg(Qk) = nk , where

nk

n
νQk

∗→ μΓ |Γj
, as n → ∞, n ∈ N (6.10)

and

nk

n
→ bj .

As stated in (iv) of Theorem 6.1, if σ is a weak-star cluster point of the measures {νPn}∞n=1
then: (a) suppσ ⊂ G and (b) the balayage of σ onto Γ equals the equilibrium distribution μΓ .
The following corollary shows that the equilibrium distribution is also obtained if weak-star
convergence and balayage are applied in the opposite order.
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Corollary 6.3. Let Bal(νPn) denote the measure obtained by balayage of νPn |G onto Γ while
keeping νPn |C\G unchanged. Then

Bal(νPn)
∗→ μΓ as n → ∞.

6.2. Case studies

In this subsection we make more explicit Theorem 6.1 and its corollaries, and we illustrate
them by means of a number of representative cases and examples.

Case I. Two singular boundaries.
Here N = 2 and ρ(ϕj ) = 1, j = 1,2, for any two conformal maps ϕj : Gj → D. By Corol-

lary 6.1, β equals the equilibrium measure μΓ of G and there exists, for each island Gj , a
subsequence of νPn which converges to μΓ in a neighborhood of Gj . However, we do not know
whether there necessarily exists a common subsequence for the two islands.

Case II. One singular boundary and one analytic boundary.
Assume that Γ1 is singular and Γ2 is analytic. Then in terms of two specific conformal maps

ϕj : Gj → D, j = 1,2: (a) ϕ1 has no analytic continuation beyond Γ1, (b) ϕ2 extends analytically
as a univalent function to some domain containing G2. Since Γ2 is an analytic Jordan curve, it
possesses a Schwarz function, which is given by

S2(z) = ϕ−1
2

(
1/ϕ2(z)

)
.

In order to formulate a particular statement we assume further that ϕ2 remains analytic and
univalent throughout G2,R′ . This implies that gΩ(·,∞) extends by Schwarz reflection up to the
level line L2, 1

R′ ; see (3.1) and the terminology in Example 3.1. Moreover, the domain

D2 := G2,R′ \ G2, 1
R′

is connected and is a domain of involution of the Schwarz reflection z �→ S2(z).
Set

E = G1 ∪ G2, 1
R′ .

It follows that the multi-valued function

Φ̂(z) :=
⎧⎨
⎩

Φ(z) if z ∈ C \ G,

1/Φ(S2(z)) if z ∈ G2 \ G2, 1 ,
(6.11)
R′
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is (locally) analytic in C\E and (locally) continuous on C\E. It also follows from the expression
(8.23) of ρ(K(·, z)) appearing in the proof of Theorem 6.1, by taking into account (8.18) and
(8.19), that

ρ
(
K(·, z)) =

⎧⎪⎪⎨
⎪⎪⎩

1 if z ∈ G1,

exp{−gΩ(z,∞)} if z ∈ G2 \ G2, 1
R′ ,

R′ if z ∈ G2, 1
R′ .

(6.12)

The relations in (6.11) and (6.12) yield at once, in view of Proposition 3.1 and Corollary 3.1,
the nth root asymptotic behavior of {Pn}∞n=1 in C:

lim sup
n→∞

∣∣Pn(z)
∣∣1/n =

⎧⎪⎨
⎪⎩

1 if z ∈ G1,

|Φ̂(z)| if z ∈ C \ E,
1
R′ if z ∈ G2, 1

R′ .
(6.13)

In addition, these relations provide more detailed information for the potential Uβ of the canon-
ical measure β , and thus for the counting measures {νPn}∞n=1.

Corollary 6.4. Under the assumption and notations of Case II, we have:

Uβ(z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

log 1
cap(Γ )

if z ∈ G1,

log 1
cap(Γ )

− gΩ(z,∞) if z ∈ C \ E,

log R′
cap(Γ )

if z ∈ G2, 1
R′ .

(6.14)

In particular,

(i) suppβ = ∂E.
(ii) For any weak-star cluster point σ of {νPn}, suppσ ⊂ E, and

Uσ (z) = Uβ(z), z ∈ C \ E.

(iii) There is a subsequence N ⊂ N such that, with V any neighborhood of G1 or G 2, 1
R′ not

meeting the other island,

νPn |V ∗→ β|V , n → ∞, n ∈ N . (6.15)

Hence, every point of ∂E = Γ1 ∪ L2, 1
R′ belongs to suppσ , for some weak-star cluster point

σ of {νPn}∞n=1.

The corollary is illustrated in the following example.

Example 6.1. Bergman polynomials for G = G1 ∪G2, with G1 denoting the canonical pentagon
with vertices at the fifth roots of unity and G2 = {z: |z − 7/2| < 2/3}.
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Fig. 8. Zeros of Bergman polynomials Pn of Example 6.1, for n = 80, 90 and 100.

The zeros of the associated Bergman polynomials Pn, for n = 80, 90 and 100 are shown in
Fig. 8. In the same figure we also depict the critical line LR′ and the curve L2, 1

R′ . Note that L2, 1
R′

is, simply, the inverse image of L2,R′ with respect to the circle {z: |z − 7/2| = 2/3}.

Case III. Two analytic boundary curves. This is the case N = 2, where both Γ1 and Γ2 are
analytic curves.

Example 6.2. Bergman polynomials for the union of the disks: G1 = {z: |z + 2| < 1} and G2 :=
{z: |z − 3| < 2/3}.

Let S1 and S2 denote the Schwarz functions defined by Γ1 and Γ2. (Note that the Schwarz
function for the circle {z: |z − a| = r} is simply S(z) = r2/(z − a) + a.) Clearly, the Green
function gΩ extends by Schwarz reflection to the set

D = (G1,R′ \ G1, 1
R′ ) ∪ (G2,R′ \ G2, 1

R′ ), (6.16)

and the multi-valued function

Φ̂(z) :=
⎧⎨
⎩

Φ(z) if z ∈ C \ G,

1/Φ(Sj (z)) if z ∈ Gj \ G
j, 1

R′ , j = 1,2,
(6.17)

is (locally) analytic in C \ E and (locally) continuous on C \ E, where now

E = G1, 1
R′ ∪ G2, 1

R′ .

As in Case II, the extensions of gΩ(z,∞) and Φ(z) lead to the expressions

ρ
(
K(·, z)) =

{
exp{−gΩ(z,∞)} if z ∈ G \ E,

R′ if z ∈ E,
(6.18)

lim sup
n→∞

∣∣Pn(z)
∣∣1/n =

{
|Φ̂(z)| if z ∈ C \ E,
1 if z ∈ E,

(6.19)

R′
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Fig. 9. Zeros of Bergman polynomials Pn of Example 6.2, for n = 140, 150 and 160.

and in parallel with Corollary 6.4, to the conclusion

Uβ(z) =
⎧⎨
⎩

log 1
cap(Γ )

− gΩ(z,∞) if z ∈ C \ E,

log R′
cap(Γ )

if z ∈ E,
(6.20)

suppβ = ∂E and that every point of ∂E = L1, 1
R′ ∪ L2, 1

R′ attracts zeros of the sequence {Pn}∞n=1.

Furthermore, since the unbounded domains C \ E and Ω 1
R′ coincide, it follows from (2.14),

(2.15) and (6.20) that the same is true for the potentials Uβ and Uμ∂E in C. Hence, the canonical
measure β is the equilibrium measure of ∂E. Therefore, by applying Corollary 6.1(ii) (with E

in the place of G), we conclude that for j = 1,2, there is a subsequence N = Nj ⊂ N such that,
with V any neighborhood of G

j, 1
R′ not meeting the other island,

νPn |V ∗→ μ∂E |V , n → ∞, n ∈ N . (6.21)

The zeros of the associated Bergman polynomials Pn, for n = 140, 150 and 160 are shown
in Fig. 9. In the same figure we also depict the critical line LR′ and the curves L1, 1

R′ and L2, 1
R′ .

Note that L
j, 1

R′ is the inverse image of Lj,R′ with respect to the circle Γj , j = 1,2.

Example 6.3. Bergman polynomials for the union of an ellipse and a disk.

In Fig. 10 we plot the zeros of the Bergman polynomials Pn, for n = 80, 90 and 100 of an
ellipse (domain G1) and a disk (domain G2), in relative positions chosen to illustrate further
the theory given above. To this end, let S1 and S2 denote the Schwarz function associated with
the ellipse, respectively the circle. The three ellipses pictured in Fig. 10 have all focal segment
[−1,1] and canonical equation

x2

a2
+ y2

b2
= 1,

with a = 5/3, b = 4/3, in (i) and a = 5/4, b = 3/4, in both (ii) and (iii).
For such ellipses the associated Schwarz function is given by

S1(z) = (
2a2 − 1

)
z − 2ab

√
z2 − 1,
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Fig. 10. Zeros of Bergman polynomials Pn of Example 6.3, for n = 80, 90 and 100.

and the focal segment [−1,1] is reflected to the confocal ellipse x2/A2 + y2/B2 = 1, where
A = 2a2 − 1 and B = 2ab. We denote by

D1 =
{
(x, y):

x2

A2
+ y2

B2
< 1

}
\ [−1,1],

the maximal domain of involution for the Schwarz reflection and by γ the outer boundary of D1,
i.e.,

γ =
{
(x, y):

x2

A2
+ y2

B2
= 1

}
.

Also, if G2 is a disk centered at z = z0, the reflection z �→ S2(z) is an involution on the domain
D2 = C \ {z0}.

The situations illustrated in Fig. 10 represent the three possible relative positions between the
loop L1,R′ of the singular level set LR′ and γ :

• Fig. 10(i) corresponds to the case that L1,R′ is interior to γ ,
• Fig. 10(ii) corresponds to the case that L1,R′ intersects γ ,
• Fig. 10(iii) corresponds to the case that the ellipse γ is interior to L1,R′ .

By specializing Theorem 6.1 to this example, we can conclude the following:
Case (i) is completely analogous to Example 6.2. That is, suppβ = ∂E = L1, 1

R′ ∪ L2, 1
R′ and

every point of ∂E attracts zeros of the sequence {Pn}∞n=1. More precisely, β = μ∂E and for any
j = 1,2, there exists a subsequence N = Nj ⊂ N such that, with V any neighborhood of G

j, 1
R′

not meeting the other island,

νPn |V ∗→ μ∂E|V , n → ∞, n ∈ N .
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Fig. 11. Zeros of Bergman polynomials Pn of Example 6.4, for n = 80, 90 and 100.

In case (ii), the support of the canonical measure β consists of three parts: the inverse image
L2, 1

R′ of L2,R′ with respect to the circle Γ2, the reflection of L1,R′ ∩ D1 with respect to the

ellipse Γ1 and the part [s,1] of the focal segment [−1,1] of the ellipse that lies exterior to this
reflection. In addition, every point of suppβ attracts zeros of the sequence {Pn}∞n=1.

Finally in case (iii), suppβ = [−1,1] ∪ L2, 1
R′ . Thus C \ suppβ has exactly two components

and it follows from (vii) of Theorem 6.1 that there exists is a subsequence N ⊂ N such that

νPn

∗→ β, n → ∞, n ∈ N . (6.22)

Case IV. One piecewise analytic non-singular boundary and one analytic boundary curve.
Assume that Γ2 is analytic and Γ1 is piecewise analytic and non-singular. By the latter we

mean that any conformal map ϕ1 : G1 → D has an analytic continuation to a neighborhood of G1,
but this continuation is not univalent in any neighborhood of G1. This occurs, for example, if Γ1

consists of circular arcs and/or straight lines and all its interior corners are of the form π/m,
m � 2 an integer.

Example 6.4. Bergman polynomials for the union of the half-disk G1 = {z: |z| < 1, Re(z) > 0}
and the disk G2 = {z: |z − 3| < 2/3}.

In Fig. 11 we plot the zeros of the Bergman polynomials Pn of G, for n = 80, 90 and 100. In
addition we depict:

• The critical level line LR′ of the Green function gΩ(z,∞).
• The part of the reflection (we denote it by Γ ′

1) of L1,R′ with respect to Γ1 which lies in G1.
• The inverse image L2, 1

R′ of L2,R′ with respect to the circle Γ2.

By considering the symmetric and inverse images of the interior points of G1 with respect to
the two arcs forming Γ1, in conjunction with the harmonic extension of the Green function inside
G1 defined by the Schwarz functions of these arcs, it is not difficult to see that the support of
the canonical measure β consists of three parts: the loop Γ ′

1 and two (symmetric) arcs that join
together each one of the points i and −i with the nearest corner of Γ ′

1. In addition, every point
of suppβ attracts zeros of the sequence {Pn}∞ .
n=1
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Fig. 12. Zeros of Bergman polynomials Pn of Example 6.5, for n = 80, 90 and 100.

Example 6.5. Bergman polynomials for the union of the symmetric lens domain G1 formed by
two circular arcs meeting at −i and i with interior angles π/4 and the disk G2 = {z: |z − 5/2| <
2/3}.

In Fig. 12 we plot the zeros of the Bergman polynomials Pn of G, for n = 80, 90 and 100. In
addition we depict:

• The critical level line LR′ of the Green function gΩ(z,∞).
• The part of the reflection (we denote it by Γ ′

1) of L1,R′ with respect to Γ1 which lies in G1.
• The inverse image L2, 1

R′ of L2,R′ with respect to the circle Γ2.

As it is expected, identical conclusions to those of Example 6.4 regarding the properties of the
support of the canonical measure β hold here.

Case V. Three analytic boundaries.

Example 6.6. Bergman polynomials for the union of the three disks G1 = {z: |z + 1| < 1/2},
G2 = {z: |z − 2| < 1} and G3 = {z: |z − 2i| < 1/2}.

In this example we have two critical Green level lines, LR′ and LR′′ , where R′ = R2 = R3 and
R′′ = R1. (See Fig. 1 which depicts the present example.) On setting

E′ = G2, 1
R′ ∪ G3, 1

R′ and E′′ = G1, 1
R′′ ,

we have

lim sup
n→∞

∣∣Pn(z)
∣∣1/n =

⎧⎪⎨
⎪⎩

|Φ̂(z)| if z ∈ C \ (E′ ∪ E′′),
1
R′ if z ∈ E′,
1

R′′ if z ∈ E′′,
(6.23)

where Φ̂(z) is the multi-valued function defined as in (6.17), with j = 1,2,3. From (6.23)
and (3.9) conclusions can be drawn about the canonical measure β . In particular we note that
suppβ = ∂E′ ∪ ∂E′′ = L1, 1

R1
∪ L2, 1

R2
∪ L3, 1

R3
and that every point of ∂E′ ∪ ∂E′′ attracts zeros

of the sequence {Pn}∞ .
n=1
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Fig. 13. Zeros of Bergman polynomials Pn of Example 6.6, for n = 80, 90 and 100.

In Fig. 13 we plot the zeros of the Bergman polynomials Pn of G, for n = 80, 90 and 100.
In order to illustrate the above observations regarding the zero distribution we also depict the
inverse image L

j, 1
Rj

of Lj,Rj
with respect to the circle Γj , j = 1,2,3.

We end this section by noting that the critical level curves of the Green function depicted in
the plots above were computed by a simple modification of the MATLAB code manydisks.m
of Trefethen [38]. The original code manydisks.m is designed for archipelagoes formed by
circles; see also Remark 2.1.

7. An example: lemniscate islands

Let G := {z: |zm − 1| < rm}, m � 2 an integer and 0 < r < 1. Then G consists of m islands
G1,G2, . . . ,Gm, where

Gj contains e2πji/m, j = 1,2, . . . ,m. (7.1)

Let Pn(z) = λnz
n + · · · denote the (orthonormal) Bergman polynomial of degree n for the

archipelago G, and write

n = km + s, 0 � s � m − 1.

By the rotational symmetry of G and the uniqueness of the Bergman polynomials it is easy to
see that

Pkm+s(z) = zsQk,s

(
zm

)
, degQk,s = k. (7.2)

Then

pkm+s(z) := Pkm+s(z)

λkm+s

= zsqk,s

(
zm

) = zkm+s + · · · , (7.3)

are the monic Bergman polynomials. Our first result concerns the asymptotic behavior of the
leading coefficient λn.
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Table 1
Illustrating Proposition 7.1 for the lemniscate case m = 3 and r = 0.9, for n = 38, . . . ,52.

n λn λnrn+1
√

π
n+1

38 214.535664 1.000000
39 305.078943 1.263740
40 305.314216 1.124276
41 305.396681 1.000000
42 433.231373 1.261795
43 433.526043 1.123400
44 433.629077 1.000000
45 613.834469 1.260094
46 614.205506 1.122633
47 614.334958 1.000000
48 868.011830 1.258593
49 868.481244 1.121956
50 868.644692 1.000000
51 1225.297855 1.257261
52 1225.894247 1.121355

Proposition 7.1. For each s = 0,1, . . . ,m − 1 there holds

lim
k→∞λkm+sr

km+s+1
√

π

km + s + 1
= 1

rm−s−1
. (7.4)

Remark 7.1. Note that r = cap(G) = cap(Γ ), where as above Γ = ∂G. Thus the sequence

λn cap(Γ )n+1
√

π

n + 1
, n ∈ N,

has exactly m limit points, 1
rm−1 , 1

rm−2 , . . . , 1
r
,1.

In Table 1 we illustrate Proposition 7.1 for the lemniscate depicted in Fig. 14, where m = 3 and
r = 0.9. More precisely, Table 1 contains the computed values of the leading coefficients λn cor-

rect to 6 decimal figures, for n = 38, . . . ,52, together with the computed values of λnr
n+1

√
π

n+1 .

As predicted by the theory, the values of λnr
n+1

√
π

n+1 alternate, as n increases, towards to the

three limits

1/r2 = 1.234567 . . . , 1/r = 1.111111 . . . , 1.

The coincidence for the values of n = 38,41, . . . ,50 is explained in the proof of Proposition 7.1.

Proposition 7.2. The following representations hold for the monic polynomials pkm+s(z):

pkm+m−1(z) = zm−1(zm − 1
)k (7.5)
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Fig. 14. Zeros of the Bergman polynomials Pn for the lemniscate case m = 3 and r = 0.9, for n = 50, 51 and 52.

and for s = 0,1, . . . ,m − 2, we have for k sufficiently large,

pkm+s(z)(z
m − 1 + r2m)

zsrm(k+1)
= πk+1,s(w) − πk+1,s(−rm)

πk,s(−rm)
πk,s(w), (7.6)

where w = (zm −1)/rm and πn,s(w) is the monic polynomial of degree n in w that is orthogonal
on the circle |w| = 1 with respect to the weight

|dw|
|rmw + 1|2− 2

m
− 2s

m

. (7.7)

Remark 7.2. The representation formulas (7.5) and (7.6) have the same form as those found by
Miña-Díaz [18], who studied the simpler case when r > 1, i.e. when G consists of a single island.
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In our proof we utilize the following lemma that relates “weighted” Bergman polynomials on
the unit disk to Szegő polynomials on the unit circle. This result is somewhat implicitly contained
in [18].

Lemma 7.1. Let tn(w) = wn +· · · be the monic polynomial orthogonal with respect to the weight
|dw|/|γw+1|τ on |w| = 1, where τ is real, τ �= 2,4, . . . ,2n, and |γ | < 1. Let βn(w) = wn +· · ·
be the monic polynomial orthogonal with respect to the weight dA(w)/|γw + 1|τ over the unit
disk |w| < 1. If tn(−γ ) �= 0, then

(w + γ )βn(w) = tn+1(w) − tn+1(−γ )

tn(−γ )
tn(w). (7.8)

Our next result describes the fine asymptotics for the monic Bergman polynomials.

Proposition 7.3. Let

τ := 2 − 2

m
− 2s

m
, s = 0,1, . . . ,m − 1. (7.9)

Then for |zm − 1| � r2m, zm − 1 �= −r2m, the monic Bergman polynomials satisfy for each s =
0,1, . . . ,m − 1,

lim
k→∞

pkm+s(z)

zs(zm − 1)k
=

(
zm − 1 + r2m

zm − 1

)τ/2

, (7.10)

where the branch of the power function on the right-hand side of (7.10) is taken to equal one at
infinity, and the convergence is uniform on compact subsets.

Furthermore, for each j = 1,2, . . . ,m and z ∈ Gj with |zm − 1| < r2m, we have

lim
k→∞

(−1)k+1k2+τ/2

rm(2k+4)
pkm+s(z) = e2πij (s+1)/mzm−1τΓ (τ/2) sin(τπ/2)

2π(1 − r2m)τ/2(zm − 1 + r2m)2
(7.11)

for each s = 0,1, . . . ,m − 2, the convergence being uniform on closed subsets.

Observe that the lemniscate |zm − 1| = r2m is the reflection of the lemniscate |zm − 1| = 1 in
the bounding lemniscate of G.

Remark 7.3. From the first part of Proposition 7.3 we see that the Bergman polynomials for G

have no limit point of zeros in |zm − 1| > r2m other than at z = 0. Furthermore, from the second
part of the proposition, we deduce that, except for the subsequence (7.5), there are no limit points
of the zeros of Pn(z) in |zm −1| < r2m. Consequently, the only limit points of zeros of such Pn(z)

are at z = 0 or on the lemniscate |zm − 1| = r2m.

In Fig. 14, we plot the zeros of the Bergman polynomials Pn, for n = 50, 51 and 52, of G :=
{z: |z3 −1| < 0.93}. In each plot, we depict also the defining lemniscate Γ = {z: |z3 −1| = 0.93},
the reflection {z: |z3 − 1| = 0.96} of {z: |z3 − 1| = 1} in Γ and, for the cases n = 51,52, the
branch cuts for the Schwarz function S(z) = ( z3−1+0.96

z3−1
)1/3 of Γ .

As a consequence of Proposition 7.3 we have the following:
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Corollary 7.1. There are precisely two limit measures for the sequence {νPn}∞n=1; namely

1

m

m∑
j=1

δzj
, zj = exp(2πij/m),

and the equilibrium measure for the lemniscate |zm − 1| = r2m, which is given by the formula

dβ = |z|m−1

r2m
|dz|.

8. Proofs

The present section is devoted to the proofs of the results stated earlier in the article.

Proof of Lemma 3.1. That Γ is analytic is clear, since u is real analytic and ∇u �= 0.
All of D is filled with integral curves of the gradient ∇u. These are disjoint and have no end

points in D since ∇u �= 0. Hence they all end up on ∂D (an integral curve cannot be closed since
u is single-valued and increases along it). These integral curves are at the same time level lines
of any locally defined harmonic conjugate of u.

Given z ∈ D we want to define the reflected point S(z) using only u. Assume for example that
u(z) < 0. By the maximum principle, |u| < c in D, so actually −c < u(z) < 0. There is a unique
integral curve γ of ∇u passing through z, and u increases along γ with limiting value +c as γ

approaches ∂D. Thus there is a unique point w ∈ γ at which u(w) = −u(z). In terms of this we
define

S(z) = w.

The above procedure defines a function S(z) in D. To see that S(z) is analytic, note that, in
some neighborhood of γ , u has a single-valued harmonic conjugate u∗ and that γ is a level line
of u∗. The function f = u + iu∗ is analytic in a neighborhood of γ , with f ′ �= 0; hence f can
be used as a new complex coordinate near γ , or u and u∗ are new real coordinates. In terms of
these, the reflection map z �→ S(z) just defined is given by

u + iu∗ �→ −u + iu∗,

or f (z) �→ −f (z). This gives

S(z) = f −1
(−f (z)

)
,

which proves that S(z) is analytic. It is also immediate that S(z) = z on Γ , so that S is indeed a
Schwarz function of Γ . �
Proof of Lemma 3.2. According to Theorem 3.2.3 of [31], one criterion for dA|G to belong to
the class Reg is that

lim ‖Pn‖1/n = 1; (8.1)

n→∞ G
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note that Ω is regular with respect to the Dirichlet problem [24, p. 92]. (Here and in the sequel
‖ · ‖ means the sup norm on the subscripted set.)

The argument given in the proof of Lemma 4.3 of [23], when separately applied to each of the
Jordan regions Gj yields

lim sup
n→∞

‖Pn‖1/n

Gj
� 1, j = 1,2, . . . ,N.

Consequently, lim supn→∞ ‖Pn‖1/n

G
� 1. But lim infn→∞ ‖Pn‖1/n

G
� 1, since ‖Pn‖L2(G) = 1 for

all n, and so (8.1) follows. �
8.1. The extremal problems

We use Pn to denote the space of complex polynomials of degree n. Recall that Kn(z, ζ )

denotes the nth finite section of K(z, ζ )

Kn(z, ζ ) :=
n∑

k=0

Pk(ζ )Pk(z),

and similarly set

K
Gj
n (z, ζ ) :=

n∑
k=0

Pk,j (ζ )Pk,j (z),

where

Pn,j (z) = λn,j z
n + · · · , λn,j > 0, n = 0,1,2, . . . ,

are the sequences of the Bergman polynomials associated with Gj , j = 1,2, . . . ,N .

Lemma 8.1. For any ζ ∈ C,

max
p∈Pn

|p(ζ )|
‖p‖L2(G)

= √
Kn(ζ, ζ ), n = 0,1, . . . .

Proof. Since for any p ∈ Pn and ζ ∈ C

p(ζ ) = 〈
p,Kn(·, ζ )

〉
,

it follows that ∣∣p(ζ )
∣∣ � ‖p‖L2(G)

∥∥Kn(·, ζ )
∥∥

L2(G)
= ‖p‖L2(G)

√
Kn(ζ, ζ ).

Hence

|p(ζ )|
‖p‖L2(G)

�
√

Kn(ζ, ζ ),

with equality if p(z) = cKn(z, ζ ), for some constant c �= 0. �
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Obviously

‖p‖L2(Gj ) � ‖p‖L2(G), j = 1,2, . . . ,N,

therefore for n = 0,1, . . . ,

max
p∈Pn

|p(ζ )|
‖p‖L2(Gj )

� max
p∈Pn

|p(ζ )|
‖p‖L2(G)

, j = 1,2, . . . ,N,

or

K
Gj
n (ζ, ζ ) � Kn(ζ, ζ ), j = 1,2, . . . ,N, ζ ∈ C. (8.2)

Furthermore, since for any ζ ∈ Gj ,

K
Gj
n (ζ, ζ ) � KGj (ζ, ζ ) = K(ζ, ζ ), j = 1,2, . . . ,N,

it follows from (8.2) that

1√
Kn(ζ, ζ )

� 1√
K

Gj
n (ζ, ζ )

� 1√
K(ζ, ζ )

, j = 1,2, . . . ,N. (8.3)

8.2. Proof of Theorem 4.1

The estimates from above require only a C2+α-smooth boundary and are based on comparison
with corresponding estimates for the arc-length measure |dz| and the Szegő orthogonal polyno-
mials. To this purpose, we compare the two extremal problems

m2
n(G,dA) := min

a0,...,an−1

∫
G

∣∣zn + an−1z
n−1 + · · · + a0

∣∣2
dA(z), n = 0,1,2, . . . , (8.4)

and

m2
n

(
Γ,ρ|dz|) := min

a0,...,an−1

∫
Γ

∣∣zn + an−1z
n−1 + · · · + a0

∣∣2
ρ(z)|dz|, n = 0,1,2, . . . , (8.5)

where ρ is a positive smooth function on Γ . Recall from (2.1) that

m2
n(G,dA) = 1

λ2
n

=
∫
G

∣∣∣∣Pn(z)

λn

∣∣∣∣
2

dA(z), (8.6)

where

Pn(z) = λnz
n + · · · , λn > 0, n = 0,1,2, . . . ,

are the Bergman polynomials of G.
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The asymptotic properties of mn(Γ,ρ|dz|) have been established by Widom in [42, The-
orem 9.1]. In particular, the next estimate for ρ = 1 and some constant C > 0 follows from
Theorems 9.1 and 9.2 of [42]:

m2
n

(
Γ, |dz|) � C cap(Γ )2n. (8.7)

On the other hand, Suetin’s lemma (Lemma 3.5 above) applied to each island separately gives

mn(G,dA)2 =
∫
G

∣∣∣∣Pn(z)

λn

∣∣∣∣
2

dA � C

n + 1

∫
Γ

∣∣∣∣Pn(z)

λn

∣∣∣∣
2

|dz| � C

n + 1
mn

(
Γ, |dz|)2

,

where C > 0 is another positive constant.
Combining the above two estimates we conclude

mn(G,dA) � C
cap(Γ )n√

n
,

which yields the upper inequality in Theorem 4.1.
For estimates from below we require analyticity of the boundary. The main technical aid is

provided by a family of polynomials ωn constructed by Walsh in [39], which we thereby refer to
as Walsh polynomials.

Lemma 8.2. Assume that each Γj , j = 1,2, . . . ,N , is analytic. Then, there exists a sequence
of monic polynomials ωn(z) = zn + · · · , n = 1,2, . . . , with all zeros on a fixed compact subset
E ⊂ G, and a constant C such that

‖ωn‖L2(G) � C√
n

cap(Γ )n. (8.8)

From this we deduce the lower inequality in Theorem 4.1:

Corollary 8.1. If each Γj , j = 1,2, . . . ,N , is analytic then

C

√
n

cap(Γ )n
� λn. (8.9)

Proof of Lemma 8.2. Since each Γj , j = 1,2, . . . ,N , is analytic, the Green function gΩ(z,∞)

extends harmonically across ∂G by Schwarz reflection. Choose first a number 0 < τ < 1 such
that 1

τ
< R′ (see Section 2.4 for the definition of R′) and such that gΩ(z,∞) extends into each

component of G, at least to the negative level log τ . Since gΩ(z,∞) has no critical points in
GR′ \ G it follows that the extended Green function has no critical points in D = G 1

τ
\ Gτ =

Ωτ \ Ω1/τ . The latter open set has N components, each of which is a domain of involution for
the Schwarz reflection (see Lemma 3.1).

Now choose a number ρ in the interval

τ < ρ < 1.
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For any R � ρ,

gΩR
(z,∞) := gΩ(z,∞) − logR, (8.10)

is the Green function of ΩR with pole at infinity. Hence,

cap(LR) = R cap(Γ ). (8.11)

Choose the compact set E ⊂ G in the statement of the lemma to be E = Lτ . By a theorem of
Walsh [39] (see also [25, p. 515]), there exists a sequence of monic polynomials ωn(z) = zn+· · · ,
n = 1,2, . . . , with zeros approximately equidistributed with respect to the conjugate function of
gΩ(z,∞) and such that

∣∣∣∣gΩτ (z,∞) + log cap(Lτ ) − 1

n
log

∣∣ωn(z)
∣∣∣∣∣∣ � C

n
in Ωρ. (8.12)

Note that gΩR
(z,∞)+ log cap(LR) is independent of R, hence in (8.12) τ can be replaced by

any number R > τ . For z ∈ LR and R � ρ this gives

∣∣∣∣log cap(LR) − 1

n
log

∣∣ωn(z)
∣∣∣∣∣∣ � C

n
,

or after exponentiating and using (8.11)

e−C � |ωn(z)|
Rn cap(Γ )n

� eC, z ∈ LR, ρ � R < ∞. (8.13)

In particular, from the maximum principle,

∣∣ωn(z)
∣∣ � CRn cap(Γ )n, z ∈ GR, ρ � R < ∞, (8.14)

for another constant C.
Next we estimate the L2(G)-norm of ωn. On decomposing

∫
G

|ωn|2 dA =
∫
Gρ

|ωn|2 dA +
∫

G\Gρ

|ωn|2 dA,

the first term can be directly estimated by means of (8.14):

∫
Gρ

|ωn|2 dA � C max
z∈Lρ

∣∣ωn(z)
∣∣2 � Cρ2n cap(Γ )2n.

For the second term we foliate G \ Gρ by the level lines LR of gΩ(z,∞), or |Φ(z)| =
exp[gΩ(z,∞)], and use the coarea formula. Since ∇gΩ(z,∞), and hence ∇|Φ(z)|, is bounded
away from zero on G \ Gρ we obtain by using once more (8.14)
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∫
G\Gρ

|ωn|2 dA =
1∫

ρ

∫
LR

|ωn(z)|2
|∇|Φ(z)|| |dz|dR

� C

1∫
ρ

max
z∈LR

∣∣ωn(z)
∣∣2

dR � C cap(Γ )2n

1∫
ρ

R2n dR

� C cap(Γ )2n 1 − ρ2n+1

2n + 1
� C

cap(Γ )2n

n
,

for various positive constants C. Thus altogether we have

∫
G

|ωn|2 dA � C

(
ρ2n + 1

n

)
cap(Γ )2n,

and since ρ < 1, this gives (8.8). �
The corollary is an immediate consequence of the lemma and the definition of λn:

1

λn

= mn(G,dA) � ‖ωn‖L2(G) � C

√
n

cap(Γ )n
.

8.3. Proof of Theorem 4.2

We turn now our attention to the problem of determining the rate of convergence of Λ
Gj
n

as compared to Λn. The solution will obviously depend on a set of numerical constants which
reflect the global configuration of G.

In the case of a single island N = 1 we have Λ
G1
n ≡ Λn, hence both (4.7) and (4.8) hold

trivially with m = 1. For the case N � 2, we assume that Γj is analytic, for some fixed j ∈
{1,2, . . . ,N}. Let X denote the characteristic function of Gj in G and set

γn := inf
p∈Pn

‖X p‖L2(G)

‖p‖L2(G)

. (8.15)

(Note that ‖X p‖L2(G) = ‖p‖L2(Gj ), hence 0 < γn < 1.)
By considering the Bergman polynomial Pn,j of Gj , as a competing polynomial in (8.15)

and using Carleman asymptotics (Theorem 3.1) for Pn,j in G \ Gj in conjunction with the fact
|Φj(z)| > |Φ(z)|, z ∈ Ω (subordinate principle for the Green function; see e.g. [24, p. 108]), we
conclude that there exist constants C > 0 and R > Rj (> 1) such that, for any n ∈ N,

1

γn

� 1 + C
√

nRn.

Hence for large values of n,

γn < αn,



1444 B. Gustafsson et al. / Advances in Mathematics 222 (2009) 1405–1460
where 0 < α < 1. Since X has an analytic continuation up to LR′ in Ω , it follows from Walsh’s
theorem of maximal convergence [40, Theorem IV.5] that for any n ∈ N, there exist a constant
m � 1 and a polynomial qm(n) ∈ Pm(n), where m(n) = mn, with the property,

‖qm(n) − X ‖G < γn. (8.16)

Then we have:

Lemma 8.3. Assume that Γj , j ∈ {1,2, . . . ,N}, is analytic. Then for any n ∈ N,

√
K

Gj
n (ζ, ζ ) � 2

1 − γn

√
Kn+m(n)(ζ, ζ ), ζ ∈ Gj .

Proof. Take ζ ∈ Gj and let h ∈ Pn be an extremal polynomial for

max
p∈Pn

|p(ζ )|
‖p‖L2(Gj )

.

Then from Lemma 8.1, √
K

Gj
n (ζ, ζ ) = |(X h)(ζ )|

‖X h‖L2(G)

.

Clearly it holds,

∣∣(X h)(ζ )
∣∣ � 1

1 − γn

∣∣(qm(n)h)(ζ )
∣∣,

because from (8.16),

(1 − γn)X (ζ ) �
∣∣qm(n)(ζ )

∣∣.
Also,

‖qm(n)h‖L2(G) � ‖X h‖L2(G) + ∥∥(X − qm(n))h
∥∥

L2(G)

� ‖X h‖L2(G) + γn‖h‖L2(G) � 2‖X h‖L2(G),

where in the last inequality we made use of the defining property of γn. Finally,

|(X h)(ζ )|
‖X h‖L2(G)

� 2

1 − γn

|(qm(n)h)(ζ )|
‖qm(n)h‖L2(G)

� 2

1 − γn

max
f ∈Pn+m(n)

|f (ζ )|
‖f ‖L2(G)

,

and the result follows from Lemma 8.1. �
This yields inequality (4.8) in Theorem 4.2. The other inequality (4.7) follows immediately

from (8.2).
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8.4. Proof of Theorem 4.3

Keeping in mind Lemma 3.3, it is clear from its definition that the functions Λn converge
uniformly on compact subsets of G to Λ. By imposing analyticity of the boundary, we will be
able to estimate jointly the rate of convergence of Λn(z) on Γ and in a neighborhood of Γ in
the interior. In view of the reduction to a single island, established in the previous subsection, we
will assume in the first part of the proof that N = 1. In order to simplify further the notation, we
will simply write G = G1, Φ = Φ1 and so forth.

Thus, we deal now with a Jordan domain G with analytic boundary Γ . The normalized ex-
ternal conformal mapping Φ extends analytically to the level set Gρ , with ρ < 1. According to
Theorem 3.1, the Bergman orthogonal polynomials satisfy:

Pn(z) =
√

n + 1

π
Φ(z)nΦ ′(z)

{
1 + An(z)

}
, z ∈ G \ Gρ,

where An(z) = O((
ρ
r
)n), whenever z ∈ Γr , and ρ < r < 1. Fix a z ∈ G \ Gρ and denote t =

|Φ(z)|2. Then

Kn(z, z) =
n∑

k=0

∣∣Pk(z)
∣∣2 = |Φ ′(z)|2

π

n∑
k=0

(k + 1)tk + Rn(z)

= |Φ ′(z)|2
π

1 − (n + 2)tn+1 + (n + 1)tn+2

(1 − t)2
+ Rn(z). (8.17)

Similarly,

K(z, z) = |Φ ′(z)|2
π

1

(1 − t)2
+ R(z).

The convergence of Rn(z) to R(z), for ρ2 < r2 � t < 1, is uniformly dominated by a convergent
geometric series.

In view of (4.4) we set Λ(z) = 0 for all z ∈ Γ . Since

0 < Λn(z) − Λ(z) = 1√
Kn(z, z)

− 1√
K(z, z)

,

we are led to the estimate

Λn(z) − Λ(z) � C(1 − t)

[
1√

1 − (n + 2)tn+1 + (n + 1)tn+2
− 1

]
.

Now some elementary algebra yields:

(1 − t)

[
1√

1 − (n + 2)tn+1 + (n + 1)tn+2
− 1

]

= 1√∑n
(k + 1)tn

(n + 2)tn+1 − (n + 1)tn+2

1 + √
1 − (n + 2)tn+1 + (n + 1)tn+2
k=0
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� n + 1

tn/2
√

1 + 2 + · · · + (n + 1)
tn+1

[
1 − 1

n + 1
− t

]

� Ctn/2
(

1 − t + 1

n

)
,

which implies inequality (4.9) in Theorem 4.3, since for z near Γ :

1 − ∣∣Φ(z)
∣∣2 � 1 − ∣∣Φ(z)

∣∣ � dist(z,Γ ).

Using (8.17), which holds for z ∈ Γ with Rn(z) = O(n2√nρn), we derive easily (4.10), which
is the limit of the exact form of (4.9).

We resume now our general assumption G = ⋃N
j=1 Gj and we turn our attention to deriv-

ing (4.11). The lower bound emerges at once by combining (4.10) with (4.7). To obtain the upper
bound we apply (4.8) to Λk(z), for large k, with k = [k/m]m + r , where 0 � r < m − 1, and
[k/m] is the integral part of the fraction, and then we use again (4.10).

In order to estimate Λn in the exterior of G we employ the Walsh polynomials: From
Lemma 8.1,

Λn(z) = min
p∈Pn

‖p‖L2(G)

|p(z)|
and therefore,

Λn(z) �
‖ωn‖L2(G)

|ωn(z)| � C
1√

n|Φ(z)|n ;

where we made use of Lemma 8.2 and (8.13).
Finally, the lower estimate for Λn(z) for z exterior to G is directly derived from the upper

estimates for the orthogonal polynomials appearing in Theorem 4.4. �
8.5. Proof of Theorem 4.4

Our aim is to derive estimates for Pn(z), for z in the exterior of the archipelago. To do so,
we assume that every curve constituting Γ is analytic and we rely, once more, on the Walsh
polynomials ωn.

We fix a positive integer n and consider the rational function Pn(z)
ωn+1(z)

, whose poles lie in a

compact subset of G and which vanishes at infinity. With z /∈ G, Cauchy’s formula yields:

Pn(z)

ωn+1(z)
= −1

2πi

∫
Γ

Pn(ζ ) dζ

ωn+1(ζ )(ζ − z)
,

whence, from (8.13),

∣∣Pn(z)
∣∣ � C

dist(z,Γ )

|ωn+1(z)|
cap(Γ )n+1

‖Pn‖L1(Γ ),

where ‖ · ‖L1(Γ ) denotes the L1-norm on Γ with respect to |dz|.
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Since the L1-norm is dominated by a constant times the L2-norm, Lemma 3.5 gives
‖Pn‖L1(Γ ) � C

√
n and one more application of (8.13) yields

∣∣Pn(z)
∣∣ � C

dist(z,Γ )

√
n
∣∣Φ(z)

∣∣n.
(In the above we use C to denote positive constants, not necessarily the same in all instances.)

In order to obtain the estimates from below, we have to restrict the point z to the complement
of the convex hull Co(G). On that set, including the point at infinity, the sequence of rational
functions Rn(z) = Pn(z)cap(Γ )n√

nωn(z)
has no zeros, and by the above estimate, it is equicontinuous on

compact subsets of U = C \ Co(G). Thus {Rn}∞n=0 forms a normal family on U and the possible
limit functions are either identically zero, or zero free. The normalization at infinity was chosen
so that, in view of (4.2) and (8.13), infn∈N Rn(∞) > 0. Thus, every limit point of the sequence
Rn is bounded away from zero, on compact subsets of U .

8.6. Distribution of zeros

Proof of Theorem 6.1. To prove (i), we notice that from (3.4) in Proposition 3.1 and from
Corollary 3.1 we have

lim sup
n→∞

1

n
log

∣∣Pn(z)
∣∣ = h(z),

for all z ∈ C. Thus h is the limes superior of a sequence of subharmonic functions. By The-
orem 3.4.3 in [24] we therefore conclude that the upper semicontinuous regularization of h is
subharmonic in all of C. But now an analysis similar to that given for Lemma 3.2 in [13] shows
that h is actually upper semicontinuous, hence it is subharmonic. The corresponding detailed
analysis in our case, given below, also gives information on the structure of h, which in its turn
will be needed for understanding the examples in Section 6.2 (case studies).

We have already remarked, cf. (3.9), that for ζ ∈ Gj ,

ρ
(
K(·, ζ )

) = min
{
Rj ,ρ

(
KGj (·, ζ )

)}
.

Recall (2.17), that is, in terms of any conformal mapping ϕj : Gj → D,

KGj (z, ζ ) = ϕ′
j (z)ϕ

′
j (ζ )

π[1 − ϕj (z)ϕj (ζ )]2
, z, ζ ∈ Gj .

Conversely, if (given ζ ∈ Gj ) ϕj is chosen so that ϕj (ζ ) = 0, then

ϕj (z) = π

ϕ′
j (ζ )

z∫
KGj (t, ζ ) dt.
ζ
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Hence, for a general ϕj ,

ϕj (z) − ϕj (ζ )

1 − ϕj (z)ϕj (ζ )
= π(1 − |ϕj (ζ )|2)

ϕ′
j (ζ )

z∫
ζ

KGj (t, ζ ) dt.

It follows therefore that, given a ζ ∈ Gj and a simply connected region D with Gj ⊂ D ⊂
Gj,Rj

, KGj (z, ζ ) has an analytic extension to D as a function of z if and only if ϕj (z) has a

meromorphic extension to D and does not attain the value 1/ϕj (ζ ) there.
We introduce a meromorphic version of the function ρ defined in (3.7) by setting, for f

meromorphic in G,

ρm(f ) := sup{R � 1: f has a meromorphic continuation to GR}. (8.18)

Next we extend each ϕj to all G by setting ϕj = 0 in G \ Gj . Clearly the so extended ϕj cannot
be meromorphic in Gj,R for any R > Rj , hence

1 � ρm(ϕj ) � Rj . (8.19)

(This is vacuous statement if N = 1, thus we simply set R1 = +∞ in such a case.) The largest
R for which ϕj does not take the value 1/ϕj (ζ ) in Gj,R is inf{|Φ(ϕj |−1

Gj,ρm(ϕj )
(1/ϕj (ζ )))|} (� 1),

where the infimum is taken over all points in the preimage ϕj |−1
Gj,ρm(ϕj )

(1/ϕj (ζ )), which is a

subset of Gj,ρm(ϕj ) \ Gj . (We assign the value +∞ for the infimum of the empty set.)
Putting things together we get, in view of (8.19),

ρ
(
K(·, ζ )

) = min
{
ρm(ϕj ), inf

{∣∣Φ(
ϕj |−1

Gj,ρm(ϕj )

(
1/ϕj (ζ )

))∣∣}}, ζ ∈ Gj, (8.20)

or, by taking the logarithm,

logρ
(
K(·, ζ )

) = min
{
logρm(ϕj ), inf

{
gΩ

(
ϕj |−1

Gj,ρm(ϕj )

(
1/ϕj (ζ )

)
,∞)}}

, ζ ∈ Gj . (8.21)

This may look messy, but in principle it means that we have expressed logρ(K(·, ζ )) as the
infimum of some harmonic functions. This is the basic argument telling that logρ(K(·, ζ )) is
superharmonic as a function of ζ in Gj .

Now, if ϕj has a singularity on Γj , then ρm(ϕj ) = 1 and ρ(K(·, ζ )) = 1, ζ ∈ Gj . In the
complementary case, i.e., if ϕj has an analytic continuation across Γj , then for any ζ ∈ Gj ,
ϕj |−1

Gj,ρm(ϕj )
(1/ϕj (ζ )) is either void or it defines a (possibly) multi-valued reflection map in Γj ,

i.e., the conjugate of a (possibly) multi-valued Schwarz function of Γj . By our assumption that
the infimum of the empty set is +∞, we only need to concentrate on the latter case. Denoting
ϕj |−1

Gj,ρm(ϕj )
(1/ϕj (ζ )) by Sj,multi(ζ ) we can write (8.21) somewhat more handily as

logρ
(
K(·, ζ )

) = min
{
logρm(ϕj ), inf

{
gΩ

(
Sj,multi(ζ ),∞)}}

, ζ ∈ Gj, (8.22)
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where the infimum is taken over all branches of Sj,multi(ζ ). One step further, this reflection map
gives a multi-valued analytic extension of the Walsh–Riemann function Φ into Gj :

Φ̂multi(ζ ) = 1/Φ
(
Sj,multi(ζ )

)
, ζ ∈ Gj

(where we have used hat to emphasize the analytic extension). Inserting the latter into (8.20)
gives the following, more direct, description of ρ(K(·, ζ )):

ρ
(
K(·, ζ )

) = min
{
ρm(ϕj ), inf

{
1/

∣∣Φ̂multi(ζ )
∣∣}}, ζ ∈ Gj, (8.23)

the infimum is taken, again, over all (local) branches.
In order to make the above considerations more rigorous we take (8.21) as our starting point.

We first treat the case N � 2, which is somewhat simpler because in this case (8.19) gives an
upper bound for logρ(K(·, ζ )) in (8.21). Let ζ ∈ Gj . Then 1/ϕj (ζ ) is outside the closed unit
disk, and the preimage ϕj |−1

Gj,ρm(ϕj )
(1/ϕj (ζ )) is either empty or is a finite or infinite subset of

Gj,ρm(ϕj ) \ Gj . If it is an infinite set, then all cluster points will be on the boundary of Gj,ρm(ϕj ),
where gΩ(·,∞) is larger, than near Γj . This means that only finitely many of the points in the
preimage will be serious candidates in the competition for the infimum in (8.21). We may also
vary ζ within a small disk, compactly contained in Gj , and there will still be only finitely many
branches of the multivaled analytic function ϕj |−1 involved, when forming the infimum. Within
such a disk there will also be only finitely many branch points (where two or more preimages
coincide).

Thus, locally away from the mentioned branch points, logρ(K(·, ζ )) is the infimum of
finitely many harmonic functions, hence is continuous and superharmonic. At the branch points
logρ(K(·, ζ )) is still continuous, and since the set of branch points is discrete (in Gj,ρm(ϕj ) \Gj )
they make up a removable set for continuous superharmonic functions; see e.g. [24, Theo-
rem 3.6.1]. It follows, therefore, that logρ(K(·, ζ )) is superharmonic (and continuous) in all Gj .

We apply now the above inferences to h(z) = − logρ(K(·, z)), for z ∈ G. If ρm(ϕj ) = 1, for
some j , then h(z) = 0, for z ∈ Gj , hence the transition across Γj to gΩ(z,∞) is continuous
and subharmonic. If ρm(ϕj ) > 1 and ϕj remains univalent in a neighborhood of Gj , then it is
easy to see that h(z) defines the harmonic continuation of gΩ(z,∞) across Γj (in fact, Γj turns
out to be analytic and thus Sj,multi is the associated ordinary single-valued Schwarz function).
Finally, if ρm(ϕj ) > 1 but ϕj is not univalent in any neighborhood of Gj then locally, away from
finitely many branch points on Γj , h is still the ordinary harmonic continuation of gΩ(z,∞).
At the branch points h is still continuous and the set of branch points is too small to affect the
overall subharmonicity. Hence, in all possible situations h(z) = − logρ(K(·, z)) is continuous
and subharmonic in G.

Therefore, we have established so far that in the case N � 2, h is subharmonic (and contin-
uous) in C and since it coincides with the Green function in Ω , β is a positive measure, with
support contained in G. Moreover, from Gauss’ theorem (see e.g. [28, p. 83]), and the singularity
of the Green function at infinity, we have for any R > 1:

β(GR) = 1

2π

∫
LR

∂h

∂n
ds = 1

2π

∫
LR

∂gΩ(z,∞)

∂n
ds = 1. (8.24)

Hence β is a unit measure and this completes the proof of (i), for N � 2.
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In order to derive (ii), we observe that the Riesz decomposition theorem for subharmonic
functions applied to h in C (see e.g. [24, p. 76]) gives,

h(z) = −Uβ(z) + v(z), z ∈ C,

where v is harmonic in C. Then, by considering the expansions near infinity of Uβ(z) and h(z) =
gΩ(z,∞), we see that v(z) = − log cap(Γ ), which yields (6.3). Relation (6.4) is an immediate
consequence of (6.3) the fact that h coincides with the Green function in Ω , in conjunction with
the relations (2.5)–(2.7).

When N � 2, Uβ is bounded from above because of (8.19):

Uβ � log
maxj {Rj }

cap(Γ )
< ∞.

Statement (iii) of the theorem is just a juxtaposition of Proposition 3.1 and Corollary 3.1 along
with (6.3).

As for (iv), C is non-empty by general compactness principles for measures and the known
fact that all counting measures νPn have support within a fixed compact set; see Remark 3.1. Let
σ ∈ C . Then there is a subsequence N = Nσ ⊂ N such that

νPn

∗→ σ, n → ∞, n ∈ N . (8.25)

Using the lower envelope theorem [28, Theorem I.6.9] and (6.6) we get

Uσ (z) = lim inf
n∈N
n→∞

UνPn (z) � lim inf
n→∞ UνPn (z) = Uβ(z), (8.26)

where the first equality holds only quasi-everywhere in C. However the relation between Uσ and
Uβ persists everywhere in C, since both members are potentials.

Let D be any component of C\suppβ . Applying the minimum principle to u = Uσ −Uβ � 0,
which is superharmonic in D, gives that either u > 0 in all D or u = 0 in all D. Since u vanishes
at ∞ (recall that σ and β are unit measures) it follows that it vanishes in the entire unbounded
component of C \ suppβ . From this and the observations above follow all parts of (iv).

Turning to (v), let

U = lsc
(

inf
σ∈C

Uσ
)
.

By (iv), Uβ � U in C. To prove the opposite inequality, choose an arbitrary point z ∈ C. Then
there is subsequence Nz ⊂ N, such that the lim inf in (6.6) is realized at z, i.e.

lim
n∈Nz
n→∞

UνPn (z) = Uβ(z). (8.27)

By weak-star compactness there exists a further subsequence N ′
z ⊂ Nz and a measure σ = σz ∈ C

such that

νPn

∗→ σ, n → ∞, n ∈ N ′
z. (8.28)
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Then, by the principle of descent (see [28, Theorem I.6.8]) and (8.27),

Uβ(z) = lim inf
n∈N ′

z
n→∞

UνPn (z) � Uσ (z). (8.29)

Since z ∈ C was arbitrary,

Uβ � inf
σ∈C

Uσ in C,

by which Uβ � U follows in all C.
To finish the proof of (v), we let again D be a component of C \ suppβ . By choosing above

z ∈ D we get a measure σ = σz ∈ C with Uσ (z) = Uβ(z) (since equality necessarily holds in
(8.29)). Thus Uσ = Uβ in all D because, as we have already proved, the other alternative would
be Uσ > Uβ in all D.

Regarding (vi), if C consists of only one point, say σ , then Uβ = Uσ by (v), and from the unic-
ity theorem for logarithmic potentials (see [28, Theorem II.2.1]) we must have β = σ . Clearly,
the full sequence must converge to β , because otherwise one could extract a subsequence con-
verging to something else, which would be a different element in C .

The assertions in (vii) are easy consequences of (iv) and (v): Since, for any σ ∈ C , Uσ = Uβ

in the unbounded component of C \ suppβ we get in the case of (a) plus (b) that (for any σ ∈ C )
Uσ = Uβ , almost everywhere with respect to the area measure in C. This and the unicity theorem
yield β = σ ∈ C . In the case of (a) plus (c), there exists (by (v)) at least one σ ∈ C satisfying
Uσ = Uβ in the bounded component of C \ suppβ , and for this σ we have the same conclusion:
Uσ = Uβ almost everywhere in C and, as above, β = σ ∈ C .

So far we have assumed that N � 2. Let us indicate the modifications needed for N = 1.
Eq. (8.21) may be written

logρ
(
K(·, ζ )

) = lim
M→+∞ min

{
M, logρm(ϕj ), inf

{
gΩ

(
ϕj |−1

Gj,ρm(ϕj )

(
1/ϕj (ζ )

)
,∞)}}

, (8.30)

that is, by introducing an auxiliary upper bound M , which finally tends to infinity. Before passing
to the limit we can work with the corresponding quantities

hM = sup{h,−M}, βM = 1

2π
�hM

(etc.) as before. Since a decreasing sequence of subharmonic functions is subharmonic,
h = limM→∞ hM will be again subharmonic. It is however not clear that it will be continu-
ous, only upper semicontinuity is automatic. If ρm(ϕj ) < ∞, then the bound M is not needed
and everything will be as in the case N � 2. So assume ρm(ϕj ) = ∞. This means that ϕj is
meromorphic in the entire complex plane and hence (8.21) reads

logρ
(
K(·, ζ )

) = inf
{
gΩ

(
ϕj |−1

C

(
1/ϕj (ζ )

)
,∞)}

, ζ ∈ Gj . (8.31)

Problems concerning the lower boundedness and continuity of h could conceivably occur at
points ζ ∈ G at which the inverse image above is either empty or is an infinite set. The first case
can, by Picard’s theorem, occur for at most two values of ζ ∈ G. At such points the infimum
in (8.31) is +∞, and hence h(ζ ) = −∞. In particular, h will not be bounded from below, but
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it will still be subharmonic and upper semicontinuous. Moreover, it will be continuous at all
other points, which is enough for the reasoning in the proof (above) of (iv), where we used the
continuity of h (or Uβ ).

The second conceivable problem, that ϕ1|−1
C

(1/ϕ1(ζ )) is an infinite set, presents no actual
difficulty because the only cluster points can be at infinity, hence all but finitely many branches
of ϕ1|−1

C
(1/ϕ1(ζ )) will be ruled out when taking the infimum in (8.31). �

Proof of Corollary 6.1. As already remarked, the boundary curve Γj is singular if and only if
ρm(ϕj ) = 1, which by the proof of the theorem (e.g., Eq. (8.21)) occurs if and only if h = 0
in Gj . This, in view of (6.3), is equivalent to

Uβ(z) = log
1

cap(Γ )
, z ∈ Gj .

Also from (6.3),

Uβ(z) = log
1

cap(Γ )
− gΩ(z,∞), z ∈ Gj,Rj

\ Gj .

It follows that Uβ is harmonic in Gj,Rj
\Γj , thus suppβ ⊂ Γj . It also follows that the logarithmic

potentials of β and μΓ coincide in the domain Gj,Rj
, hence the equation β|Gj

= μΓ |Gj
holds as

a result of the unicity theorem (see e.g. [28, p. 97]). This proves the equivalence of (i) and (ii).
By assertion (v) of the theorem, there exists a σ ∈ C such that Uσ = Uβ in Gj (= D). The

equation persists on Γj , because of the continuity of logarithmic potentials in the fine topology
and in view of (6.7), it also holds in any neighborhood of Gj not meeting the other islands. Thus,
from the unicity theorem σ = β , in such a neighborhood. As σ is a cluster point of {νPn}, we
conclude that (iii) follows from (ii).

If (iii) holds, then by selecting a further subsequence we conclude σ |V = μΓ |V , for some
σ ∈ C . Then Uσ = UμΓ in V , which in view of (6.4) and (6.7) yields the relation Uβ = UμΓ

in V . Therefore β|Gj
= μΓ |Gj

. �
Proof of Corollary 6.3. Set μn = Bal(νPn). Then

suppμn ⊂ C \ G, (8.32)

UνPn = Uμn in Ω. (8.33)

Let μ be any weak-star cluster point of {μn} and let N ⊂ N be a subsequence with μn
∗→ μ,

n ∈ N . By refining N we may assume also that νPn

∗→ σ , n ∈ N , for some measure σ . Then in
view of (8.33) we have Uσ = Uμ in Ω .

On the other hand, Uσ = UμΓ in Ω by Theorem 6.1, thus Uμ = UμΓ in Ω . But UμΓ is
harmonic in Ω \ {∞} and suppμ ⊂ C \ G by (8.32), hence suppμ ⊂ Γ . Now Carleson’s unicity
theorem [28, p. 123], shows that μ = μΓ . Since μ was an arbitrary cluster point of μn it follows

that μn
∗→ μΓ for the full sequence. �

Proof of Corollary 6.4. The expression for Uβ follows immediately after uploading (6.12) into
Theorem 6.1(ii). From this expression and the unicity theorem for logarithmic potentials we
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gather that suppβ must be contained in ∂E. To show that eventually suppβ = ∂E we can argue
as in [20, pp. 215–216]. That is, by assuming that a point z0 ∈ ∂E does not belong to suppβ ,
hence the potential Uβ is harmonic in a small disk centered at z0, we arrive to a contradiction by
comparing the resulting harmonic extension of Uβ with the one given in (6.14).

In view of the connectedness of the complement of E and the fact that the support of β is
contained in E the equality Uσ (z) = Uβ(z), for z ∈ C \ E, is immediate from Theorem 6.1(iv).
Hence suppσ ⊂ E. Furthermore, since the boundary of the domain C\E in the fine topology co-
incides with its boundary in the Euclidean topology (see e.g. [28, Corollary I.5.6]), we conclude
that the equality between the potentials persists in C \ E.

The last assertion in the corollary can be deduced from Theorem 6.1(iv)–(v), because this
guarantees the existence of a cluster point σ of the sequence νPn such that Uσ = Uβ on both
sides of Γ1. More precisely, Uσ = Uβ in V \ Γ1, where V is a neighborhood of G1 not meeting
the other islands, and therefore σ = β in such a neighborhood. Similarly we argue for L2, 1

R′ . �
8.7. The lemniscate example

Proof of Lemma 7.1. Let (γw + 1)τ/2 denote the analytic branch in D = {w: |w| < 1} that
equals 1 at w = 0. Then applying Green’s formula we have, for j = 0,1, . . . , n − 1,

0 =
∫
D

βn(w)(γw + 1)j
dA(w)

|γw + 1|τ =
∫
D

βn(w)

(γw + 1)τ/2
(γw + 1)j−τ/2 dA(w)

=
∫

|w|=1

βn(w)

|γw + 1|τ (γw + 1)j+1w|dw| =
∫

|w|=1

βn(w)(γ + w)
(γw + 1)j

|γw + 1|τ |dw|,

where we have ignored non-zero constants, and in the last equality, we used that (γw + 1) =
(γ /w + 1) for |w| = 1. Consequently, βn(w)(γ + w) is a monic polynomial of degree n + 1 that
vanishes at w = −γ and is orthogonal to all polynomials of degree less than n with respect to
|dw|/|γw+1|τ . The same is true of the right-hand side of (7.8) and hence the difference of these
two polynomials (which is of degree � n) must be a multiple of tn(w) that vanishes at −γ . Since
tn(−γ ) �= 0, the difference of the left and right-hand sides of (7.8) must be identically zero. �
Remark 8.1. It is essential that the cases τ = 2,4, . . . ,2n be excluded in Lemma 7.1. Indeed for
τ = 2j , where j is a positive integer, it is well known (cf. [35, §11.2]) that tn(w) = wn−j (w+γ )j

for n � j , so that tn(−γ ) = 0 in this case. There appears, however, to be no simple formula1 for
the polynomials βn(w) for such values of τ . We shall show in Lemma 8.4 that if τ is not an even
integer, then tn(−γ ) �= 0 for all n sufficiently large.

Proof of Proposition 7.2. Here we use the minimality property of the monic Bergman polyno-
mials pkm+s(z) = zsqk,s(z

m). More precisely, qk,s solves the extremal problem

1 For the weight dA/|γw + 1|2, we have

β1(w) = w + 1

γ
+ γ

ln(1 − |γ |2)
.
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Ik,s := min

{∫
G

∣∣zsq
(
zm

)∣∣2
dA: q(t) = tk + · · · ∈ Pk

}
. (8.34)

Clearly,

∫
G

∣∣zsq
(
zm

)∣∣2
dA = m

∫
Gm

∣∣zsq
(
zm

)∣∣2
dA,

and the change of variables w = (zm − 1)/rm, which maps Gm conformally onto the unit disk D

in the w-plane, yields

∫
Gm

∣∣zsq
(
zm

)∣∣2
dA(z) = r2m

m2

∫
D

|q(rmw + 1)|2
|rmw + 1|τ dA(w),

where

τ := 2 − 2

m
− 2s

m
. (8.35)

Consequently,

Ik,s = r2m

m
min

{∫
D

|q(rmw + 1)|2
|rmw + 1|τ dA(w): q(t) = tk + · · · ∈ Pk

}
, (8.36)

and, moreover, r−mkqk,s(r
mw + 1) is the monic (in w) orthogonal polynomial with respect to

the weight dA(w)/|rmw + 1|τ on D. Applying Lemma 7.1 then yields formulas (7.5) and (7.6),
provided that πk,s(−rm) is not zero. In the next lemma we show that this condition is indeed
satisfied for k sufficiently large. �
Lemma 8.4. Let πk,s(w) be as in Proposition 7.2 and τ be given by (8.35). Then, for each
s = 0,1, . . . ,m − 2, we have

(−1)k
kτ/2

rmk
πk,s

(−rm
) = sin(τπ/2)

[
1

π
Γ

(
τ

2

)
+ bs

k
+ O

(
1

k2

)]
(8.37)

as k → ∞, where bs is a constant independent of k.

Proof. As in [18], we utilize the results of [16] for Szegő polynomials with respect to an analytic
weight on |w| = 1. For the weight |w+rm|−τ = 1/|rmw+1|τ , we have, imitating the notation of
[16], the following formulas for the exterior and interior Szegő functions De,τ (w) and Di,τ (w),
respectively,

De,τ (w) =
(

w + rm
)τ/2

, Di,τ (w) = (
1 + rmw

)−τ/2
, (8.38)
w
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where the branches of the square roots are chosen so that De,τ (∞) = Di,τ (0) = 1. The scattering
function Sτ (w) is given by

Sτ (w) = De,τ (w)Di,τ (w) =
(

w + rm

w

)τ/2(
1 + rmw

)−τ/2 for rm < |w| < r−m. (8.39)

As shown in [16] (see Eqs. (16), (25), and (39)), we have for |w| < η, where rm < η < 1,

Di,τ (w)πk,s(w) = 1

2πi

∮
|t |=1

tkSτ (t)

t − w
dt + O

(
η3k

)
, as k → ∞. (8.40)

For w = −rm, we can deform the unit circle in the integral in (8.40) so that the integration takes
place along each side of the branch cut of De,τ (w) joining −rm to 0 to obtain

Ik :=
∮

|t |=1

tkSτ (t)

t + rm
dt =

( ∫
[−rm,0]

+
∫

[0,−rm]

)
xkSτ (x)

x + rm
dx, (8.41)

where we utilize the limiting values from below for Sτ in integrating from −rm to 0 and the
limiting values of Sτ from above in integrating from 0 to −rm. Thus we get (cf. (8.39))

Ik = 2i sin(τπ/2)

0∫
−rm

xk(1 + rmx)−τ/2

|x|τ/2(x + rm)1−τ/2
dx,

and on making the change of variable x = −rm(1 + cos θ)/2 we find that

Ik = irmk

2k−1
sin(τπ/2)(−1)k

π∫
0

e−kp(θ)q(θ) dθ, (8.42)

where p(θ) := − log(1 + cos θ) and

q(θ) :=
[

1 − r2m

2
(1 + cos θ)

]−τ/2

(1 + cos θ)1−τ θτ−1
(

sin θ

θ

)τ−1

. (8.43)

We now apply Laplace’s method to deduce the asymptotic behavior of the integral in (8.42).
Since

p(θ) = − log 2 +
∞∑

j=0

pjθ
j+2 = − log 2 + 1

4
θ2 + · · ·

and

q(θ) =
∞∑

qj θ
j+τ−1 = (

1 − r2m
)−τ/221−τ θτ−1 + q2θ

τ+1 + · · ·

j=0
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(note that q1 = 0) we obtain from [21, Chapter 3, Theorem 8.1], that, as k → ∞,

π∫
0

e−kp(θ)q(θ) dθ = 2k

[
Γ

(
τ

2

)
(1 − r2m)−τ/2

kτ/2
+ a2,τ

kτ/2+1
+ O

(
1

kτ/2+2

)]
, (8.44)

where a2,τ is a constant independent of k. From (8.40)–(8.44) (taking η such that η3 < rm < η)
we deduce (8.37). �

As an immediate consequence of the preceding lemma we obtain that

πk+1,s(−rm)

πk,s(−rm)
= −rm

[
1 − τ

2k
+ O

(
1

k2

)]
as k → ∞. (8.45)

Proof of Proposition 7.3. For s = m− 1 the assertion is obvious from (7.5). For |zm − 1| > r2m

and s = 0,1, . . . ,m − 2, we appeal to the well-known fact regarding exterior asymptotics of
Szegő polynomials (see e.g. [16, Proposition 1]) that for |w| > rm we have

lim
k→∞

πk,s(w)

wk
= De,τ (w) =

(
w + rm

w

)τ/2

, (8.46)

where the convergence is locally uniform and takes place with a geometric rate. Thus from (8.45)
and the representation (7.6) we deduce (7.10), for |zm − 1| > r2m.

For |zm − 1| � r2m, we begin with the asymptotic analysis of πk,s(w), for s = 0,1, . . . ,m− 2
and |w| � rm. Assume at first that w /∈ [−rm,0], and consider the integral in the representation
(8.40). For each ε > 0 sufficiently small, we can write

Jk(w) := 1

2πi

∮
|t |=1

tkSτ (t)

t − w
dt = 1

2πi

( ∮
|t−w|=ε

+
∫

[−rm,0]
+

∫
[0,−rm]

)
tkSτ (t)

t − w
dt, (8.47)

where integration along both sides of the branch cut from −rm to 0 is as in the proof of
Lemma 8.4. From Cauchy’s formula and the representation of Sτ (t) along each side of the branch
cut, we deduce that

Jk(w) = wkSτ (w) + 1

π
sin(τπ/2)

0∫
−rm

xk(1 + rmx)−τ/2(x + rm)τ/2

|x|τ/2(x − w)
dx,

which, upon performing the change of variable x = −rm(1 + cos θ)/2, yields

Jk(w) = wkSτ (w) + 1

π
sin(τπ/2)(−1)k+1 rm(k+1)

2k+1

π∫
e−kp(θ)q̂(θ) dθ, (8.48)
0
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where p(θ) = − log(1 + cos θ) and

q̂(θ) := [1 − r2m

2 (1 + cos θ)]−τ/2( sin θ
θ

)τ+1θτ+1

[ rm

2 (1 + cos θ) + w](1 + cos θ)τ
.

Since

q̂(θ) =
∞∑

j=0

q̂j θ
j+(τ+2)−1 = (1 − r2m)−τ/2

(rm + w)2τ
θτ+1 + q̂3θ

τ+3 + · · ·

(note that q̂1 = 0), Laplace’s method yields

π∫
0

e−kp(θ)q̂(θ) dθ = 2k

[
τΓ ( τ

2 )(1 − r2m)−τ/2

rm + w

1

k1+τ/2
+ b̂s(w)

k2+τ/2
+ O

(
1

k3+τ/2

)]
,

as k → ∞, where b̂s(w) is a constant independent of k. Thus, from (8.48) and (8.40), we obtain

Di,τ (w)πk,s(w)
k1+τ/2(−1)k+1

rm(k+1)
= sin(τπ/2)τΓ (τ/2)

2π(1 − r2m)τ/2(w + rm)

[
1 + b̂s(w)

k
+ O

(
1

k2

)]
, (8.49)

as k → ∞, provided |w| < rm and η3 < rm < η, while for |w| = rm, w �= −rm, we obtain

Di,τ (w)
πk,s(w)

wk
= Sτ (w) + O

(
1

k1+τ/2

)
, (8.50)

as k → ∞, where we take rm < η < 1.
Combining (8.45) with (8.49) and (8.50), we deduce from the representation (7.6) that (7.11)

holds for |zm − 1| < r2m, zm /∈ [1 − r2m,1], and that (7.10) holds for |zm − 1| = r2m, except for
the m roots (1 − r2m)1/m. In deriving (7.11) we used the fact that (zm)τ/2zs = zm−1e2πij (s+1)/m

for z ∈ Gj (recall (7.1)). Finally, by a slight modification of the above analysis, it is easy
to see that (8.49) is valid also for w ∈ (−rm,0] and so (7.11) holds for all z satisfying
|zm − 1| < r2m. �
Proof of Proposition 7.1. We use the obvious fact that

λ−2
km+s =

∫
G

∣∣pkm+s(z)
∣∣2

dA(z). (8.51)

For s = m − 1, we have from (7.5),

λ−2
km+m−1 =

∫
G

∣∣zm−1(zm − 1
)k∣∣2

dA(z) = m

∫
Gm

∣∣zm−1(zm − 1
)k∣∣2

dA(z)

= r2m(k+1)

m

∫
|w|2k dA(w) = πr2m(k+1)

m(k + 1)
,

D
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where, as in the proof of Lemma 8.4, we have made the change of variables w = (zm − 1)/rm.
Thus,

λkm+m−1 =
√

m(k + 1)

πr2m(k+1)
. (8.52)

Now suppose that 0 � s < m − 1. Then, on utilizing the formula (7.6) we deduce that, for k

sufficiently large,

λ−2
km+s = m

∫
Gm

∣∣zsqk,s

(
zm

)∣∣2
dA(z) = r2m

m

∫
D

|qk,s(r
mw + 1)|2

|rmw + 1|τ dA(w)

= r2m(k+1)

m

∫
D

|πk+1(w) − πk+1(−rm)

πk(−rm)
πk(w)|2

|w + rm|2|rmw + 1|τ dA(w), (8.53)

where for simplicity of notation we have written πk = πk,s . On using the orthogonality property
of the πk’s we can simplify the last integral in (8.53) to obtain

λ−2
km+s = −πk+1(−rm)r2mk+m

πk(−rm)2m(k − τ
2 + 1)

∫
|w|=1

|πk(w)|2
|rmw + 1|τ |dw|. (8.54)

Finally, we note that the integral on the right-hand side of (8.54) equals μ−2
k,s , where μk,s is the

leading coefficient of the orthonormal polynomial with respect to the weight |dw|/|rmw + 1|τ
on the unit circle. As is well known (see e.g. [16, Corollary 2])

∣∣∣∣μ2
k,s − 1

2π

∣∣∣∣ = O
(
η2k

)
as k → ∞,

where rm < η < 1. Combining this fact with (8.54) and (8.45) yields (7.4). �
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