Fine Asymptotics for Bergman and Szegö Polynomials over Domains with Corners

Nikos Stylianopoulos, University of Cyprus

Approximation Theory 13
San Antonio TX, March 2010

Definition: Bergman polynomials $\left\{p_{n}\right\}$

$\Gamma:$ a Jordan curve in $\mathbb{C}, \quad G:=\operatorname{int}(\Gamma)$

$$
\langle f, g\rangle:=\int_{G} f(z) \overline{g(z)} d A(z), \quad\|f\|_{L^{2}(G)}:=\langle f, f\rangle^{1 / 2}
$$

The Bergman polynomials $\left\{p_{n}\right\}_{n=0}^{\infty}$ of G are the orthonormal polynomials w.r.t. the area measure:

$$
\left\langle p_{m}, p_{n}\right\rangle=\int_{G} p_{m}(z) \overline{p_{n}(z)} d A(z)=\delta_{m, n}
$$

with

$$
p_{n}(z)=\lambda_{n} z^{n}+\cdots, \quad \lambda_{n}>0, \quad n=0,1,2, \ldots
$$

Minimal property

$$
\frac{1}{\lambda_{n}}=\left\|\frac{p_{n}}{\lambda_{n}}\right\|_{L^{2}(G)}=\min _{z^{n}+\cdots}\left\|z^{n}+\cdots\right\|_{L^{2}(G)} .
$$

The Bergman space

$$
L_{a}^{2}(G):=\left\{f \text { analytic in } G,\|f\|_{L^{2}(G)}<\infty\right\},
$$

is a Hilbert space with reproducing kernel $K_{B}(z, \zeta)$: For any $\zeta \in G$,

$$
f(\zeta)=\left\langle f, K_{B}(\cdot, \zeta)\right\rangle, \forall f \in L_{a}^{2}(G) .
$$

Approximation Property

$\left\{p_{n}\right\}_{n=0}^{\infty}$ is a complete ON system of $L_{a}^{2}(G)$ and

$$
K_{B}(z, \zeta)=\sum_{n=0}^{\infty} \overline{p_{n}(\zeta)} p_{n}(z), \quad z, \zeta \in G .
$$

Associated conformal maps

If $\varphi_{\zeta}(\zeta)=0$ and $\varphi_{\zeta}^{\prime}(\zeta)>0$ then

$$
K_{B}(z, \zeta)=\frac{1}{\pi} \varphi_{\zeta}^{\prime}(\zeta) \varphi_{\zeta}^{\prime}(z)
$$

This leads to the Bergman kernel method for approximating φ_{ζ}^{\prime} (and thus φ_{ζ}) in terms of Bergman polynomials.

Strong asymptotics when Γ is analytic

Carleman, Ark. Mat. Astr. Fys. (1922)
If $\rho<1$ is the smallest index for which Φ is conformal in $\operatorname{ext}\left(L_{\rho}\right)$, then for any $n \in \mathbb{N}$,

$$
\frac{n+1}{\pi} \frac{\gamma^{2(n+1)}}{\lambda_{n}^{2}}=1+O\left(\rho^{2 n}\right)
$$

and for any $z \in \bar{\Omega}$,

$$
p_{n}(z)=\sqrt{\frac{n+1}{\pi}} \Phi^{n}(z) \Phi^{\prime}(z)\left\{1+O\left(\sqrt{n} \rho^{n}\right)\right\} .
$$

Strong asymptotics when Γ is smooth

We say that $\Gamma \in C(p, \alpha)$, for some $p \in \mathbb{N}$ and $0<\alpha<1$, if Γ is given by $z=g(s)$, where s is the arclength, with $g^{(p)} \in \operatorname{Lip} \alpha$. Then both Φ and $\psi:=\Phi^{-1}$ are p times continuously differentiable on Γ and $\partial \mathbb{D}$ respectively, with $\Phi^{(p)}$ and $\Psi^{(p)} \in \operatorname{Lip} \alpha$.
P.K. Suetin, Proc. Steklov Inst. Math. AMS (1974)

Assume that $\Gamma \in C(p+1, \alpha)$, with $p+\alpha>1 / 2$. Then, then for any $n \in \mathbb{N}$,

$$
\frac{n+1}{\pi} \frac{\gamma^{2(n+1)}}{\lambda_{n}^{2}}=1+O\left(\frac{1}{n^{2(p+\alpha)}}\right)
$$

and for any $z \in \bar{\Omega}$,

$$
p_{n}(z)=\sqrt{\frac{n+1}{\pi}} \Phi^{n}(z) \Phi^{\prime}(z)\left\{1+O\left(\frac{\log n}{n^{p+\alpha}}\right)\right\}
$$

Strong asymptotics for Γ non-smooth: An example

$$
\gamma=\frac{1}{\operatorname{cap}(\Gamma)}=\frac{3 \sqrt{3}}{4}
$$

We compute, by using the Gram-Schmidt process (in finite precision), the Bergman polynomials $p_{n}(z)$ for the unit half-disk, for n up to 60 and test the hypothesis

$$
\alpha_{n}:=1-\frac{n+1}{\pi} \frac{\gamma^{2(n+1)}}{\lambda_{n}^{2}} \approx C \frac{1}{n^{s}}
$$

Strong asymptotics for Γ non-smooth: Numerical data

n	α_{n}	s
51	0.003263458678	-
52	0.003200769764	0.998887
53	0.003140444435	0.998899
54	0.003082351464	0.998911
55	0.003026369160	0.998923
56	0.002972384524	0.998934
57	0.002920292482	0.998946
58	0.002869952027	0.998957
59	0.002821401485	0.998968
60	0.002774426207	0.998979

The numbers indicate clearly that $\alpha_{n} \approx C \frac{1}{n}$. Accordingly, we have
made coniectures regarding fine asymntotics in Oberwolfach Reports (2004) and ETNA (2006)

Strong asymptotics for Γ non－smooth：Numerical data

n	α_{n}	s
51	0.003263458678	-
52	0.003200769764	0.998887
53	0.003140444435	0.998899
54	0.003082351464	0.998911
55	0.003026369160	0.998923
56	0.002972384524	0.998934
57	0.002920292482	0.998946
58	0.002869952027	0.998957
59	0.002821401485	0.998968
60	0.002774426207	0.998979

The numbers indicate clearly that $\alpha_{n} \approx C \frac{1}{n}$ ．Accordingly，we have made conjectures regarding fine asymptotics in Oberwolfach Reports （2004）and ETNA（2006）．

Strong asymptotics for the leading coefficient

Theorem (I)

Assume that Γ is piecewise analytic without cusps, then

$$
\frac{n+1}{\pi} \frac{\gamma^{2(n+1)}}{\lambda_{n}^{2}}=1-\alpha_{n}
$$

where

$$
0 \leq \alpha_{n} \leq c(\Gamma) \frac{1}{n}, \quad n \in \mathbb{N}
$$

and $C(\Gamma)$ depends on Γ only.

Fine asymptotics for p_{n} in Ω

Theorem (II)
Assume that Γ is piecewise analytic w/o cusps. Then, for any $z \in \Omega$,

$$
p_{n}(z)=\sqrt{\frac{n+1}{\pi}} \Phi^{n}(z) \Phi^{\prime}(z)\left\{1+A_{n}(z)\right\},
$$

where

$$
\left|A_{n}(z)\right| \leq \frac{c_{1}(\Gamma)}{\operatorname{dist}(z, \Gamma)\left|\Phi^{\prime}(z)\right|} \frac{1}{\sqrt{n}}+c_{2}(\Gamma) \frac{1}{n}, \quad n \in \mathbb{N}
$$

A lower bound for α_{n} - Coefficient estimates

Let Ψ denote the inverse conformal map $\Phi^{-1}:\{w:|w|>1\} \rightarrow \Omega$. Then

$$
\Psi(w)=b w+b_{0}+\frac{b_{1}}{w}+\frac{b_{2}}{w^{2}}+\cdots, \quad|w|>1
$$

Theorem (III)

Assume that Γ is quasiconformal and rectifiable. Then,

$$
\alpha_{n} \geq \frac{\pi\left(1-k^{2}\right)}{A(G)}(n+1)\left|b_{n+1}\right|^{2}
$$

The above provides a connection with the well-studied problem of estimating coefficients of univalent functions.

Quasiconformal curves

In Theorem (II), $\quad k:=\frac{K-1}{K+1}<1$, where $K \geq 1$, is the characteristic constant of the quasiconformal reflection defined by Γ.

Definition

A Jordan curve Γ is quasiconformal if there exists a constant $M>0$, such that

$$
\operatorname{diam} \Gamma(a, b) \leq M|a-b|, \text { for all } a, b \in \Gamma
$$

where $\Gamma(a, b)$ is the arc (of smaller diameter) of Γ between a and b.
Note: A piecewise analytic Jordan curve is quasiconformal if and only if has no cusps (0 and 2π angles).

Definition：Szegö polynomials $\left\{P_{n}\right\}$

「：rectifiable Jordan curve．

$$
\langle f, g\rangle_{\Gamma}:=\frac{1}{2 \pi} \int_{\Gamma} f(z) \overline{g(z)}|d z|, \quad\|f\|_{L^{2}(\Gamma)}:=\langle f, f\rangle_{\Gamma}^{1 / 2}
$$

The Szegö polynomials $\left\{P_{n}\right\}_{n=0}^{\infty}$ of Γ are the orthonormal polynomials w．r．t．the normalized arc length measure measure：

$$
\left\langle P_{m}, P_{n}\right\rangle_{\Gamma}=\frac{1}{2 \pi} \int_{\Gamma} P_{m}(z) \overline{P_{n}(z)}|d z|=\delta_{m, n},
$$

with

$$
P_{n}(z)=\mu_{n} z^{n}+\cdots, \quad \mu_{n}>0, \quad n=0,1,2, \ldots
$$

Minimal property

$$
\frac{1}{\mu_{n}}=\left\|\frac{P_{n}}{\mu_{n}}\right\|_{L^{2}(\Gamma)}=\min _{z^{n}+\cdots}\left\|z^{n}+\cdots\right\|_{L^{2}(\Gamma)}
$$

The Smirnov space

$$
E^{2}(G):=\left\{f \text { analytic in } G,\|f\|_{L^{2}(\Gamma)}<\infty\right\},
$$

is a Hilbert space with reproducing kernel $K_{S}(z, \zeta)$: For any $\zeta \in G$,

$$
f(\zeta)=\left\langle f, K_{S}(\cdot, \zeta)\right\rangle, \forall f \in E^{2}(G) .
$$

Approximation Property

If G is a Smirnov domain then the $\left\{P_{n}\right\}_{n=0}^{\infty}$ is a complete ON system of $E^{2}(G)$ and

$$
K_{S}(z, \zeta)=\sum_{n=0}^{\infty} \overline{P_{n}(\zeta)} P_{n}(z), \quad z, \zeta \in G .
$$

Strong asymptotics when Γ is analytic

G. Szegö, Math. Z. (1921)

If $\rho<1$ is the smallest index for which Φ is conformal in $\operatorname{ext}\left(L_{\rho}\right)$, then for any $n \in \mathbb{N}$,

$$
\frac{\gamma^{2 n+1}}{\mu_{n}^{2}}=1+O\left(\rho^{2 n}\right)
$$

and for any $z \in \bar{\Omega}$,

$$
P_{n}(z)=\Phi^{n}(z) \sqrt{\Phi^{\prime}(z)}\left\{1+O\left(\sqrt{n} \rho^{n}\right)\right\} .
$$

Strong asymptotics when 「 is smooth

P.K. Suetin, (1964)

Assume that $\Gamma \in C(p+1, \alpha)$, with $0<\alpha<1$. Then, for any $n \in \mathbb{N}$,

$$
\frac{\gamma^{2 n+1}}{\mu_{n}^{2}}=1+O\left(\frac{1}{n^{2(p+\alpha)}}\right),
$$

and for any $z \in \bar{\Omega}$,

$$
P_{n}(z)=\Phi^{n}(z) \sqrt{\Phi^{\prime}(z)}\left\{1+O\left(\frac{\log n}{n^{p+\alpha}}\right)\right\}
$$

Strong asymptotics for the leading coefficient

Theorem (IV)
Assume that Γ is piecewise analytic without cusps, then

$$
\frac{\gamma^{2 n+1}}{\mu_{n}^{2}}=1+\alpha_{n}
$$

where

$$
0 \leq \alpha_{n} \leq c(\Gamma) \frac{1}{n}, \quad n \in \mathbb{N}
$$

and $C(\Gamma)$ depends on Γ only.

Fine asymptotics for P_{n} in Ω

Theorem（V）
Assume that Γ is piecewise analytic w／o cusps．Then，for any $z \in \Omega$ ，

$$
P_{n}(z)=\Phi^{n}(z) \sqrt{\Phi^{\prime}(z)}\left\{1+A_{n}(z)\right\}
$$

where

$$
\left|A_{n}(z)\right| \leq \frac{c_{1}(\Gamma)}{\sqrt{\operatorname{dist}(z, \Gamma)\left|\Phi^{\prime}(z)\right|}} \frac{1}{\sqrt{n}}+c_{2}(\Gamma) \frac{1}{n}, \quad n \in \mathbb{N}
$$

Sharp estimates for $\left\|p_{n}\right\|_{\bar{G}}$ and $\left\|P_{n}\right\|_{\bar{G}}$

Theorem（VI）

Assume that Γ is piecewise analytic w／o cusps and let $\lambda \pi$ denote the largest exterior angle of $\Gamma(1 \leq \lambda \leq 2)$ ．Then

$$
\begin{equation*}
\left\|p_{n}\right\|_{\bar{G}} \leq c(\Gamma) n^{\lambda-1 / 2}, \quad n \in \mathbb{N} . \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|P_{n}\right\|_{\bar{G}} \leq c(\Gamma) n^{\lambda / 2-1 / 2}, \quad n \in \mathbb{N} . \tag{2}
\end{equation*}
$$

Note：
－The order $\lambda-1 / 2$ in（1）is sharp and $\lambda / 2-1 / 2$ in（2）is sharp， both for Γ smooth（hence $\lambda=1$ ）．This follows immediately from the fine asymptotic formula of Suetin．

A result about the zeros of p_{n} and $\left\|P_{n}\right\|_{\bar{G}}$

Since for any $z \in \Omega,|\Phi(z)|>1$ and $\left|\Phi^{\prime}(z)\right| \neq 0$, Thms II and V yield:

Theorem (VII)

Assume that Γ is piecewise analytic w/o cusps. Then for any closed set $E \subset \Omega$, there exists $n_{0} \in \mathbb{N}$, such that for $n \geq n_{0}, p_{n}(z)$ has no zeros on E. The same holds true for $P_{n}(z)$.

This leads at once to the refinement:

Corollary

Assume that Γ is piecewise analytic w/o cusps. Then

$$
\lim _{n \rightarrow \infty}\left|p_{n}(z)\right|^{1 / n}=|\Phi(z)|, \quad z \in \Omega \backslash\{\infty\}
$$

and

$$
\lim _{n \rightarrow \infty}\left|P_{n}(z)\right|^{1 / n}=|\Phi(z)|, \quad z \in \Omega \backslash\{\infty\}
$$

Ratio asymptotics

From Thm（I）we have immediately：
Corollary（Ratio asymptotics for λ_{n} ）

$$
\sqrt{\frac{n+1}{n+2}} \frac{\lambda_{n+1}}{\lambda_{n}}=\gamma+\xi_{n}
$$

where

$$
\left|\xi_{n}\right| \leq c(\Gamma) \frac{1}{n}, \quad n \in \mathbb{N}
$$

We note however that numerical evidence suggests that $\left|\xi_{n}\right| \approx C \frac{1}{n^{2}}$ ． Since $\operatorname{cap}(\Gamma)=1 / \gamma$ ，the above relation provides the means for computing approximations to the capacity of Γ ，by using only the leading coefficients of the associated orthonormal polynomials．

Ratio asymptotics

Similarly, from Thm (II) we have:

Corollary (Ratio asymptotics for p_{n})

$$
\sqrt{\frac{n+1}{n+2}} \frac{p_{n+1}(z)}{p_{n}(z)}=\Phi(z)\left\{1+B_{n}(z)\right\}, \quad z \in \Omega
$$

where

$$
\left|B_{n}(z)\right| \leq \frac{c_{1}(\Gamma)}{\sqrt{\operatorname{dist}(z, \Gamma)\left|\Phi^{\prime}(z)\right|}} \frac{1}{\sqrt{n}}+c_{2}(\Gamma) \frac{1}{n}, \quad n \in \mathbb{N} .
$$

The above relation provides the means for computing approximations to the conformal map Φ in Ω, by simply taking the ratio of two consequent orthonormal polynomials. This leads to an efficient algorithm for recovering the shape of G, from a finite collection of its power moments $\left\langle z^{m}, z^{n}\right\rangle, m, n=0,1, \ldots, N$.

Only ellipses carry finite-term recurrences for p_{n}

Definition

We say that the polynomials $\left\{p_{n}\right\}_{n=0}^{\infty}$ satisfy a $(N+1)$-term recurrence relation, if for any $n \geq N-1$,

$$
z p_{n}(z)=a_{n+1, n} p_{n+1}(z)+a_{n, n} p_{n}(z)+\ldots+a_{n-N+1, n} p_{n-N+1}(z)
$$

Theorem (Putinar \& St. CAOT, 2007)
Assume that:

- $\Gamma=\partial G$, where G is a Caratheodory domain;
- the Bergman polynomials $\left\{p_{n}\right\}_{n=0}^{\infty}$ satisfy a $(N+1)$-term recurrence relation, with some $N \geq 2$;
- $\Gamma \subset B:=\left\{(x, y) \in \mathbb{R}^{2}: \psi(x, y)=0\right\}$, where B is bounded.

Then $N=2$ and Γ is an ellipse.

An application of the Suetin's asymptotics for p_{n} leads to:
Theorem (Khavinson \& St., 2010)
Assume that:

- $\Gamma=\partial G$ is a C^{2}-smooth Jordan curve;
- the Bergman polynomials $\left\{p_{n}\right\}_{n=0}^{\infty}$ satisfy a $(N+1)$-term recurrence relation, with some $N \geq 2$.
Then $N=2$ and Γ is an ellipse.
However, by using the ratio asymptotics corollary above:

Theorem (VIII)

Assume that:

- $\Gamma=\partial G$ is piecewise analytic without cusps;
- the Bergman polynomials $\left\{p_{n}\right\}_{n=0}^{\infty}$ satisfy a $(N+1)$-term recurrence relation, with some $N \geq 2$.
Then $N=2$ and Γ is an ellipse.

