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Abstract

The goal of this thesis is to contribute to the formulation and understand-
ing of the Bayesian approach to inverse problems in function space. To this end
we examine two important aspects of this approach: the frequentist asymptotic
properties of the posterior, and the extraction of information from the posterior
via sampling. We work in a separable Hilbert space setting and consider Gaus-
sian priors on the unknown in conjugate Gaussian models. In the first part of this
work we consider linear inverse problems with Gaussian additive noise and study
the contraction in the small noise limit of the Gaussian posterior distribution to
a Dirac measure centered on the true parameter underlying the data. In a wide
range of situations, which include both mildly and severely ill-posed problems, we
show how carefully calibrating the scaling of the prior as a function of the size of
the noise, based on a priori known information on the regularity of the truth, yields
optimal rates of contraction. In the second part we study the implementation in
RN of hierarchical Bayesian linear inverse problems with Gaussian noise and priors,
and with hyper-parameters introduced through the scalings of the prior and noise
covariance operators. We use function space intuition to understand the large N
behaviour of algorithms designed to sample the posterior and show that the two
scaling hyper-parameters evolve under these algorithms in contrasting ways: as N
grows the prior scaling slows down while the noise scaling speeds up. We propose
a reparametrization of the prior scaling which is robust with respect to the increase
in dimension. Our theory on the slowing down of the evolution of the prior scal-
ing extends to hierarchical approaches in more general conjugate Gaussian settings,
while our intuition covers other parameters of the prior covariance operator as well.
Throughout the thesis we use a blend of results from measure theory and proba-
bility theory with tools from the theory of linear partial differential equations and
numerical analysis.
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Chapter 1

Introduction

1.1 Overview

Inverse problems are concerned with determining causes for a desired or an observed

effect, [22]. We have an equation of the form

y = G(u), (1.1.1)

which we want to solve for the unknown input u ∈ X given the observation y ∈ Y,

where (X , ‖ · ‖X ), (Y, ‖ · ‖Y) are Banach spaces. The possibly nonlinear operator

G : X → Y is called the observation operator and in general is the composition of

a mathematical model, henceforward called the forward model, and the observation

mechanism. For example, u can be the initial condition of a partial differential

equation and the operator G the solution operator at time T ; that is, G maps the

initial condition u to the solution y at time T . The inverse problem would then

be to find the initial condition u from an observation of the solution y at time T .

Another possibility in this example would be to only observe the solution y at time

T on a discrete set of points.

Typically inverse problems are ill-posed in the Hadamard sense: they may

not have a solution, the solution may not be unique and may depend sensitively on

the observation y. The latter is very important, since typically we have imperfect

observations of y, modelled as

y = G(u) + η, (1.1.2)

where η is an additive noise.

The area of inverse problems has received enormous interest in recent years

and during the second half of the last century a classical, deterministic mathematical
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theory has been developed for restoring well-posedness. In this classical approach,

the lack of existence of solution to the inverse problem is addressed by weakening the

notion of solution: for example, instead of trying to find an exact solution, one may

look for an approximate solution which is a minimizer of the least squares functional

Φ(u; y) =
1

2

∥∥y − G(u)
∥∥2

Y .

Furthermore, a criterion for choosing between candidate solutions can be employed

to enforce uniqueness, for example one can choose the element ū ∈ X which in ad-

dition to minimizing Φ(·; y), also has the minimal norm among all minimizers; the

element ū ∈ X is an example of a best approximate solution. However, the existence

of minimizers of Φ(·, y) is not guaranteed in general and even if a best approximate

solution exists, it typically depends sensitively on the observation y. These issues

can be addressed using regularization techniques which enforce the continuity of the

approximate solution with respect to the data by looking for a regularized approxi-

mate solution. One of the most widely applied classical regularization techniques is

the (generalized) Tikhonov-Phillips regularization [81, 61], in which one seeks for a

minimizer uλ of the functional

J (u; y) = Φ(u; y) +
λ

2

∥∥u∥∥2

E ,

where (E , ‖ · ‖E) is a Banach space (often compactly) embedded in X and λ > 0

is the regularization parameter which determines the relative weight between the

fidelity, least squares term and the regularization term.

A typical result of classical regularization assumes the existence of a true pa-

rameter u† underlying the data y and considers a sequence of idealized experiments

such that the norm of the noise vanishes,
∥∥η∥∥Y ≤ 1√

n
where n→∞. The objective

is then to determine conditions on G and the underlying truth u†, which imply the

existence of a parameter choice rule for the regularization parameter λ as a function

of the size of the noise, which needs to be such that the regularization disappears

as the noise vanishes (λ → 0 as n → ∞), and which secures the convergence of

the regularized approximations uλ;n to the underlying truth in the small noise limit

n→∞. More sophisticated results allow for data driven choices of λ, that is, they

allow λ to also depend on y. Typically rates of convergence are provided depending

on the properties of G and the regularity of the truth. The performance of a regu-

larization method is judged by comparing the convergence rates it achieves to the

worst case error, which is a lower bound over the best convergence rate that any

regularization method can achieve for a given G and regularity class of the truth.
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The literature in this classical approach to the regularization of inverse problems is

very rich, see for example the classic books [22, 42, 85].

In this thesis we adopt a Bayesian approach, that is a statistical approach to

the regularization of inverse problems. In the Bayesian approach all the variables

in problem (1.1.2), that is the unknown u, the noise η and the observation y, are

modelled as random. The regularized approximate solution which is the object of

interest in the classical approach is replaced by a probability measure. We assume

that the noise is distributed according to the probability measure P0, hence for a

fixed u we can find the data likelihood, that is the distribution of the observation

y given u, by shifting P0. We then choose a prior distribution on the unknown

u, encoding any prior information we may have on the unknown, denoted by µ0.

An application of the Bayes’ rule gives the posterior distribution µy, that is the

distribution of the unknown u given the data y. The posterior distribution is the

object of interest in the Bayesian approach and encompasses our updated beliefs on

the unknown after incorporating the observed data.

The books [40, 80] are an excellent introduction to the Bayesian approach

to inverse problems, and include many model problems mainly from differential

equations as well as case studies of real-world applications. Even though both

of these books contain a breadth of Bayesian techniques in the context of inverse

problems, they do not attempt to formulate a complete mathematical theory of

Bayesian inverse problems.

A more modern and more mathematically structured treatment based on a

function space formulation of the Bayesian methodology, is presented in the review

article [78]. In the function space setting, Bayes’ rule often has the form of the

conditioning result [32, Lemma 5.3], which in the context of inverse problems gives

the Radon-Nikodym derivative of the posterior with respect to the prior,

dµy

dµ0
(u) =

1

Z(y)
exp(−Φ(u; y)). (1.1.3)

Here, Z(y) is a normalization constant securing that the posterior is a probability

measure and Φ is a potential which relates to the forward problem and in particular

to the properties of the observation operator G. For example, if the noise is Gaussian,

the potential Φ can be formally thought of as being a least squares functional (this

would be the case if Y was finite dimensional; in infinite dimensions the situation is

a bit more complicated but the intuition is still correct). Candidate solutions with

high posterior probability are the ones that compromise between giving low values

of Φ(·, y) and having high prior probability. It is apparent that the classical and
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Bayesian approach are linked: the potential Φ acts as a fidelity term while the prior

acts as a regularization term.

In [78], several examples of inverse problems in function space are given a

Bayesian formulation with Gaussian priors µ0 and posteriors µy which are defined

by (1.1.3), and it is shown that they share a common mathematical structure in

the sense that they give rise to potentials Φ which satisfy certain conditions. A

mathematical theory is then provided, showing that under these conditions, the

posterior measure µy is well-defined and is Lipschitz continuous in the Hellinger

distance of measures with respect to the data. Furthermore, it is shown that these

conditions also secure that approximation results on the forward problem translate

to approximation results on the corresponding posterior measure. More recently

in [19], this mathematical framework has been extended to cover a larger class of

function space priors, termed Besov priors, introduced in [49].

The biggest challenge in the Bayesian approach to inverse problems is the

one of extracting information from the posterior distribution. This may be done for

example by obtaining estimators of the unknown and quantifying the uncertainty

around them. Unfortunately, in all but some very special cases such computations

are analytically intractable and the posterior distribution is in general an enormously

complicated object. In order to exploit the full potential of the Bayesian approach,

we need to be able to efficiently sample the posterior distribution which enables

the numerical computation of estimators and the corresponding quantification of

uncertainty. Typically, Markov chain Monte Carlo (MCMC) methods are used to

produce a sequence of samples approximately drawn from the posterior, however in

high dimensions the conventional Metropolis Hastings type algorithms are proved to

be inadequate and new algorithms need to be used. The general philosophy in [78]

is that the function space formulation enables a better understanding of the issues

arising in Bayesian inverse problems in finite but large dimensions. For example,

even though in practice all the algorithms are implemented in finite dimensions, a

sampling algorithm which is not well-defined in the infinite dimensional limit will

degenerate as the dimension increases. For this reason it is desirable to design

algorithms directly in the infinite dimensional limit.

In this thesis we work in a separable Hilbert space X and consider Bayesian

inverse problems with Gaussian priors which are Gaussian conjugate, that is the

data model is such that the posterior is also Gaussian. The main objectives of the

two approaches to inverse problems, one being proving convergence results to the

underlying truth in the classical approach and the other being probing the posterior

distribution in the Bayesian approach, are brought together by the study of the
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frequentist asymptotic properties of the posterior distribution in the small noise

limit. That is, we assume that we have data produced from an underlying true

parameter u† and study the contraction of the Gaussian posterior distribution to a

Dirac distribution centered on u† as the noise in the data disappears. This is the

subject of the first two chapters of the current thesis, briefly introduced in the next

section. In particular in Chapters 2 and 3 we study linear inverse problems with

Gaussian prior and noise distributions.

It is often desirable to consider prior and noise distributions defined hier-

archically, that is having distributions which depend on random hyper-parameters.

This may be motivated either by the Bayesian dogma that if a parameter is not

known, then it is a part of the inference, [40], or through the study of the asymp-

totic behaviour of the posterior by an analogy to the data driven regularization

parameter choice rules often considered in the classical approach. The hierarchical

Bayesian approach gives rise to more elaborate posterior distributions simultane-

ously on the unknown function and the random hyper-parameters given the data,

hence sampling is necessary. This is typically done using Metropolis-within-Gibbs

algorithms in which a Metropolis-Hastings step is used to generate an instance from

the distributions of the unknown parameter and each of the hyper-parameters in

turn conditioned on the data and the current values of the other parameters. The

situation is simpler if we have conditional conjugacy, in which case a plain Gibbs

sampler can be used.

The efficiency of such sampling algorithms when implemented in finite but

large dimensions is the topic of Chapter 4 and is briefly introduced in Section 1.3.

In particular, in Chapter 4 we consider hierarchical Bayesian linear inverse prob-

lems with Gaussian noise and prior distributions and hyper-parameters introduced

through the scalings of the covariance operators of the prior and noise distributions.

We work with inverse-Gamma hyper-priors which are conditionally conjugate and

apply function space intuition to understand the mixing behaviour of the corre-

sponding Gibbs sampler as the discretization level increases. Our intuition carries

over to other conjugate Gaussian setups as well; see Chapter 4.5 and 4.8 for details.

1.2 Asymptotic performance - rate of posterior

contraction

The study of the asymptotic performance of the Bayesian posterior distribution

µy from a frequentist point of view is of central importance in Bayesian statistics.

As explained in [20], whether one believes in the existence of a true parameter
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underlying the data or not, it is always reasonable to ask what if the data is produced

from an underlying truth. It is then desirable to have that as more informative

data comes in, the posterior concentrates around the underlying truth. In Bayesian

statistics this is formalized by the notion of posterior consistency. Assume that

we have a sequence of observations {y†n}n∈N, generated from an underlying true

parameter u† ∈ X , where as n → ∞ the information increases. We denote by µy
†
n

the corresponding posterior distribution and by Ey
†
n the expectation with respect to

the distribution of y†n.

Definition 1.2.1 (Posterior consistency). The posterior is called consistent (with

respect to the metric d) at u†, if for every ε > 0

Ey
†
nµy

†
n{u : d(u, u†) ≥ ε} → 0,

as n→∞.

Doob in [21] showed that posterior consistency holds under very weak mea-

surability conditions. Essentially Doob’s result says that for every prior distribution

on the parameter space X , posterior consistency holds for every underlying truth

except for a set of truths having prior measure zero. Consistency fails for true

parameters u† in a null set of the prior distribution and Doob’s result gives no infor-

mation about this null set. Even though one may hope that things only go wrong in

pathological, special cases, this is not necessarily the case in nonparametric models

[26, 20], and we thus need to be careful when choosing the prior distribution. For

a given prior and model, it is desirable to be able to secure posterior consistency

for an underlying true parameter in a known set. Such posterior consistency results

in nonparametric models have been proved in weak metrics in [76] and in stronger

metrics in [9, 27].

A more quantitative measure of the asymptotic performance of the posterior

distribution is the speed at which the posterior contracts to the truth as captured

by the rate of contraction defined below.

Definition 1.2.2 (Posterior rate of contraction). The posterior is said to contract

(with respect to the metric d) at u† with rate εn, εn ↓ 0, if

Ey
†
nµy

†
n{u : d(u, u†) ≥Mnεn} → 0,

for every sequence Mn →∞ as n→∞.

An arsenal of techniques for proving rates of posterior contraction in the

Hellinger metric for suitable priors in general contexts has been developed in [28, 77].
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More recently, posterior contraction results in general contexts have been proved for

example in [83, 82, 84, 37, 29, 74].

In this thesis we study rates of posterior contraction in the small noise limit

in linear inverse problems in a separable Hilbert space (X , ‖ · ‖). In particular, we

consider the model

y = Ku+
1√
n
η, (1.2.1)

where K : X → X is an injective linear bounded operator and η ∼ N (0, C1) is a

Gaussian additive noise. We put a Gaussian prior on the unknown u ∼ N (0, τ2C0)

resulting in a Gaussian posterior distribution µy = N (m, C) with known mean m

and covariance operator C, as proved in [54, 52]. We then consider a sequence of

observations of the form y†n = Ku†+ 1√
n
η, where u† is an underlying true parameter

known to belong to a smoothness class indexed by γ > 0 and determine rate εn =

εn(γ), such that as the noise disappears (n→∞)

Ey
†
nµy

†
n

{
u :
∥∥u− u†∥∥ ≥Mnεn

}
→ 0, ∀Mn →∞. (1.2.2)

The combination of K and C1 determines the degree of ill-posedness of prob-

lem (1.2.1). In broad terms, assuming that C−
1
2

1 K possesses a discrete set of singular

values, we refer to problem (1.2.1) as being mildly ill-posed if these singular values

decay algebraically, or severely ill-posed if the singular values decay exponentially.

In an analogous way to the classical approach, to a given smoothness class of the

truth and a given degree of ill-posedness, we associate an optimal rate of convergence

defined by the minimax criterion. The minimax rate is defined as the infimum over

all statistical estimators û, of the supremum over all true parameters u† in a given

smoothness class, of the mean integrated squared error (MISE) of û, Ey
†
n
∥∥û− u†∥∥2

,

[14]. A prior achieving the minimax rate in a family of smoothness classes indexed

by γ, is considered optimal and is called rate-adaptive over the particular family: it

achieves the optimal rate for a true parameter in the smoothness class γ, without

knowledge of γ. It is obvious that such priors are highly desirable, but unfortunately

they are very hard to find.

In this thesis the priors will not be adaptive, however we examine how the

rate of contraction is affected by the choice of the parameters of the prior and show

how a careful calibration of these parameters, based on at least a rough knowledge

of the smoothness of the truth, leads to the minimax rates. As hinted earlier, this

motivates the use of hierarchical priors, that is priors with hyper-parameters which

are part of the inference.

Despite the rich literature in general nonparametric problems, the study of
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the frequentist asymptotic properties of the posterior in the small noise limit in the

context of inverse problems, has been underdeveloped until recently. In [34, 35],

rates of convergence of the posterior distribution µy
†
n to a Dirac distribution cen-

tered on the underlying true parameter u† in the Ky-Fan metric are shown in linear

inverse problems in finite dimensions with Gaussian prior and noise distributions,

while in [58] an attempt to translate these convergence rates to infinite dimensions

is undertaken, by first projecting the data to finite dimensions and then letting the

dimension increase as the noise disappears in a carefully chosen way. The first paper

to study posterior contraction in the sense of (1.2.2) in the infinite dimensional linear

conjugate Gaussian setting of (1.2.1) is [44], in which sharp posterior contraction

rates are obtained in a mildly ill-posed setup where K∗K and C0 are diagonaliz-

able in the same eigenbasis with eigenvalues decaying algebraically and where η is

Gaussian white noise. Our work in Chapter 2 (published as [3]) sidesteps the si-

multaneous diagonalizability assumption in [44] and allows for non-white Gaussian

noise; when restricting to the mildly ill-posed diagonal case our rates agree (up to

ε > 0 arbitrarily small) with the sharp rates in [44] when the truth is in a range of

smoothness classes. In [45], sharp rates of posterior contraction are obtained in the

linear severely ill-posed inverse problem of the recovery of the initial condition of

the heat equation in a simultaneous diagonalizable setup similar to [44], while in our

work in Chapter 3 (contained in [4]) we extend these sharp rates to more general

severely ill-posed diagonal linear inverse problems. In [43, 79], posterior contraction

rates are provided in hierarchical Bayesian diagonal mildly ill-posed linear inverse

problems, with hyper-parameters introduced through the regularity and the scaling

of the Gaussian prior respectively. Moreover, the methodology of [3] has been ex-

tended to prove posterior contraction rates in the problem of nonparametric drift

estimation for diffusion processes in the large observation time limit in [64].

All of the results in the previous paragraph rely on the availability of an

explicit description of the posterior distribution. The first consistency results based

on general techniques in the context of inverse problems have appeared recently. In

particular, posterior contraction results for linear inverse problems with Gaussian

white noise and non-conjugate priors are considered in [65], while nonlinear inverse

problems with a more general class of priors and Gaussian noise are studied in [86].

In both of these papers, when restricting to linear inverse problems with Gaussian

priors, the posterior contraction rates obtained are in some cases slower than the ones

in [44, 3, 45, 4]. Finally, consistency results in the Ky-Fan metric for linear inverse

problems with non-Gaussian noise and priors in finite dimensions, are presented in

[12].
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1.2.1 Chapter 2 - Posterior contraction rates for the Bayesian ap-

proach to linear ill-posed inverse problems∗

In this chapter we study the Bayesian linear inverse problem (1.2.1) with K, C0

and C1 which are related to each other through certain norm equivalence assump-

tions which formally express the fact that K ' C`0 and C1 ' Cβ1 for some `, β ≥ 0.

In particular, our assumptions allow cases where the three operators defining the

problem are not simultaneously diagonalizable (see Chapter 2.8)∗. While in the si-

multaneously diagonalizable setting, problem (1.2.1) is reduced to a countable set of

uncoupled scalar problems, this is not the case here and the analysis is considerably

harder.

We work in a functional setting defined through the prior covariance operator

C0, in particular we work in the Hilbert scale (Xt)t∈R, where the Hilbert spaces Xt

are roughly defined as the domains of C−
t
2

0 , [22]. This choice is natural since both the

support and the Cameron-Martin space of the prior are spaces in this Hilbert scale.

If the eigenvalues of C0 decay algebraically, then the spaces Xt can be thought of as

rescaled Sobolev-type classes, while for exponential decay the spaces Xt correspond

to classes of analytic functions, as defined in [14]. We do not assume that the

problem is mildly nor severely ill-posed, however the assumed similarity between K

and C1 to algebraic powers of C0, suggests that for priors which are supported in

Sobolev-type smoothness classes the problem needs to be mildly ill-posed, while for

priors which are supported in analytic smoothness classes the problem needs to be

severely ill-posed (see Appendix A).

Our first contribution in this chapter is a new method for identifying the

posterior which is a generalization to the separable Hilbert space setting of the

completion of the squares technique natural in finite dimensions. As mentioned

earlier, in the linear Gaussian setting of (1.2.1) it has been shown in [54, 52] that

the posterior is Gaussian, µy = N (m, C), and formulae for the posterior mean and

covariance were provided. Our method results in alternative formulae for the mean

and covariance which are expressed through the unbounded precision operator:

1

n
C−1 = K∗C−1

1 K +
1

nτ2
C−1

0 , (1.2.3)

∗Chapter 2 in the current thesis is [3].
∗Note that in Chapter 2 we denote the forward operator as A−1 instead of K. This is because

we have in mind that the observation operator is the inverse of a Schröndinger-type operator as in
the examples in Chapter 2.8. For the same reason, we assume that A is self-adjoint and positive
definite, however an inspection of our proofs suggests that our analysis directly generalizes to the
case where the forward operator is bounded and injective.
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1

n
C−1m = K∗C−1

1 y, (1.2.4)

where equation (1.2.4) is interpreted in a weak sense in X1. Our formulation of the

posterior using precision operators has several advantages:

i) First, the precision operator formulation links directly to the theory of cal-

culus of variations and the classical Tikhonov-Phillips regularization method.

In particular, equations (1.2.3), (1.2.4) are the Euler-Lagrange equations for

minimizing the generalized Tikhonov-Phillips functional

J (u; y) =
1

2

∥∥C− 1
2

1 (y −Ku)
∥∥2

+
λ

2

∥∥C− 1
2

0 u
∥∥2
,

where λ = 1
nτ2 acts as the regularization parameter. This suggests that in the

small noise limit n→∞, we need to have λ→ 0 in order to recover the truth.

ii) The posterior precision operator in (1.2.3) has the simple form of the prior

precision operator C−1
0 plus the operator K∗C−1

1 K which in order for the prior

to be regularizing we assume to be of lower order. If this is not the case, that

is, if K∗C−1
1 K dominates in C−1, then 1

nC
−1 ' K∗C1K and the mean equation

gives m ' K−1y, that is, we try to directly invert the data. This simple

form is useful because it splits the behaviour of the posterior to a leading

order behaviour coming from the prior and a lower order correction due to the

model. This splitting is useful when considering noise with non-vanishing size;

we use this especially in Chapter 4 both in our intuition and our calculations.

iii) Working with the unbounded precision operators opens the possibility of using

methods familiar from the theory of partial differential equations. In particular

it enables the use of interpolation techniques to estimate blow-up rates for the

operator 1
nC
−1 in a range of weak spaces Xt, t ≤ 0 as λ = 1

nτ2 → 0. This is

useful for obtaining rates of posterior contraction as described below.

iv) Precision matrices corresponding to Markov processes can be sparse hence

computation is efficient. Indeed, it is well known that for multivariate Gaus-

sian distributions, the precision matrix relates to the correlation of the corre-

sponding pair of variables given the rest. If a Markov property is assumed in

the underlying stochastic process, this translates to conditional independence

hence sparse precision matrices.

As part of our method, we formulate the posterior in the form (1.1.3), and show

that the corresponding potential Φ(u; y) satisfies the assumptions of [78] for u and
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y in certain spaces of full measure under the assumed prior and model. This secures

that the posterior is well-posed and absolutely continuous with respect to the prior;

it also secures that the posterior is Lipschitz continuous in the Hellinger metric with

respect to the data and with respect to finite dimensional approximations of the

forward problem.

Our second contribution in Chapter 2 is that we prove rates of contraction

in this more general more difficult non-diagonal setting. We also prove rates of

convergence of the mean squared error of the posterior mean in a range of spaces

in the Hilbert scale (Xt)t∈R. We now present a brief heuristic for the convergence

of the MISE of the posterior mean. We assume that we have data of the form

y†n = Ku† + 1√
n
η, hence the posterior is µy=y†n = N (m†, C), where m† satisfies

(1.2.4) with y = y†n and C satisfies (1.2.3). That is, we have

1

n
C−1m† = K∗C−1

1 Ku† +
1√
n
K∗C−1

1 η. (1.2.5)

Moreover, by the definition of C, the true solution u† satisfies the equation

1

n
C−1u† = K∗C−1

1 Ku† +
1

nτ2
C−1

0 u†, (1.2.6)

hence subtracting we get the equation for the error e = m† − u†,

e = nC
( 1√

n
K∗C−1

1 η − 1

nτ2
C−1

0 u†
)
. (1.2.7)

As n → ∞ and for λ = 1
nτ2 → 0, the expectations of sufficiently weak norms of

the two terms in the parenthesis go to zero. On the other hand using interpolation

techniques we can estimate the blow-up rates of the nC as λ = 1
nτ2 → 0 as a linear

operator mapping these spaces to X . Comparing the decay and the blow-up rates

yields the rate of convergence of the MISE of the posterior mean which has two

contributions: one because of the presence of the noise which, for fixed n, blows-up

as λ → 0 and one because of the regularizing effect of the prior which, for fixed n,

goes to zero as λ→ 0. We optimize the rate by balancing the two contributions by

choosing λ (and hence τ) as an appropriate function of n.

The work in this chapter is in collaboration with Stig Larsson (Chalmers

University of Technology) and my PhD supervisor Andrew Stuart (University of

Warwick) and is published in [3]. The problem formulation and methodology were

developed in conjunction with my two co-authors, while almost all of the technical

analysis was carried out by myself.
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1.2.2 Chapter 3 - Bayesian posterior contraction rates for linear

severely ill-posed inverse problems∗

In this chapter we study the Bayesian linear inverse problem (1.2.1), in a setting in

which the operators K∗K, C0 and C1 are simultaneously diagonalizable and have

eigenvalues which decay like exp(−2sjb), j−2α and j−2β, respectively, for s, b >

0, α > 1
2 and β ≥ 0. That is, we consider a family of severely ill-posed linear

inverse problems which includes for example the problem of the recovery of the

initial condition of the heat equation considered in [45] (corresponding to b = 2),

or the Cauchy problem for the Helmholtz equation (corresponding to b = 1, see

Chapter 3.5).

Because of the simultaneous diagonalizability assumption, this problem is

reduced to countable uncoupled scalar inverse problems; this enables the sharp cal-

culation of posterior contraction rates as in [45]. Both the problem formulation and

the convergence analysis are inspired by [45], however this more general setup leads

to some technical improvements in the proofs. Furthermore, we provide new results

on the absolute continuity of the posterior with respect to the prior. In particular,

we show that in this severely ill-posed case the posterior is absolutely continuous

with respect to the prior almost surely with respect to the joint distribution of

(u, y), independently of the particular values of α, β, b and s. This is not a trivial

statement; we demonstrate this by showing that in the mildly ill-posed case where

the eigenvalues of K∗K decay as j−4` for ` ≥ 0, there are combinations of α, β

and ` which are such that the (Gaussian) posterior is mutually singular with the

(Gaussian) prior independently of the data; in particular this happens if the prior

is not sufficiently regular. Finally, we include a numerical simulation of the Cauchy

problem for the Helmholtz equation.

The work in this chapter is in collaboration with my PhD supervisor Andrew

Stuart (University of Warwick) and Yuan-Xiang Zhang (Lanzhou University). My

main contribution in this chapter was to use my experience from Chapter 2 to guide

Yuan-Xiang in carrying out the technical convergence analysis, while I was more

actively involved in the measure-theoretic considerations and the implementation of

the numerical example.

1.3 Sampling the posterior

We now turn our attention to the problem of efficiently sampling the posterior.

Suppose we have a possibly unnormalized finite measure π on a space W. The

∗Chapter 3 in the current thesis is [4].
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most widely applied method for drawing samples from π is to run a MCMC algo-

rithm which produces a Markov chain {w(1), ..., w(k)} constructed to have π as its

stationary distribution. Provided the algorithm satisfies certain assumptions, we

have that when started from π-almost any point w ∈ W the Markov chain con-

verges to its stationary distribution; we then say that the algorithm is ergodic, [71].

Ergodicity guarantees that if we run the algorithm for long enough, the samples

w(i) are drawn approximately from the target distribution π. Naturally, different

algorithms have different convergence properties and in particular different speeds

of convergence, which are quantified using various notions of ergodicity [57, 71, 68].

Furthermore, even after the algorithm reaches stationarity, it is desirable that the

produced Markov chain explores the target distribution π as quickly as possible, so

that less samples are required to extract accurate information; this relates to the

rate of decorrelation between samples.

1.3.1 Sampling in function space - diffusion limits and spectral gaps

In our context of Bayesian inverse problems in function space, the target measure

π is the posterior measure µy on the function space X which we assume to have

a density with respect to a Gaussian prior measure µ0 as expressed in (1.1.3). In

practice the problem is discretized and the MCMC algorithm is implemented in

RN ; we are interested in understanding the behaviour of the algorithm as we refine

the model, N → ∞. In this context, two theories have been developed in order to

understand the advantages of different algorithms: the first is by proving diffusion

(scaling) limits of the algorithms, while the second is to establish spectral gaps.

In the diffusion limit approach, it is shown that an appropriately scaled

continuous time interpolant of the Markov chain converges weakly, in the infinite

dimensional limit N →∞, to the solution to a stochastic partial differential equation

(SPDE) which has π as stationary distribution. Since the SPDE needs a finite time

T to explore its stationary distribution, this suggests that the time the Markov chain

needs to explore π (or more accurately an approximation of π in RN ) is inversely

proportional to the time-step required to get the diffusion limit; the bigger the

required time-step the faster the algorithm explores the target distribution with the

algorithms which are optimal in this sense being the ones which require no scaling at

all. This technique was pioneered by [67, 69, 70] for target distributions of product

form and recently extended to targets of the type (1.1.3) in [11, 55, 63]. The intuition

obtained from the study of diffusion limits led to the design of algorithms which are

well-defined in the infinite dimensional limit and hence are robust with respect to

the increase in dimension, [10, 62, 15].
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Spectral gaps relate to the geometric ergodicity of Markov chains, [68], and

hence to the speed of convergence of an algorithm to the target distribution. In

[31], the large dimensional behaviour of the Random Walk Metropolis (RWM) and

preconditioned Crank Nicolson (pCN) algorithms was investigated using this theory.

It was shown that the RWM algorithm, which is not well-defined in the function

space setting, has a dimension-dependent spectral gap implying the deterioration

of its rate of convergence to equilibrium, while the pCN algorithm which is well-

defined in the infinite dimensional limit, has a dimension independent spectral gap

and hence its rate of convergence to equilibrium is robust with respect to the increase

in dimension. The application of the spectral gap theory was made possible through

recent developments in the theory of Markov chains in infinite dimensions, [30], and

it is expected that this method will also be useful for analyzing the large dimensional

behaviour of other MCMC algorithms in the near future.

In this thesis we are interested in understanding the large dimensional be-

haviour of Gibbs samplers naturally arising in hierarchical Bayesian inverse problems

in conjugate Gaussian settings; this is the topic of Chapter 4 introduced in the next

subsection. We apply infinite dimensional intuition and use a variant of the diffusion

limit approach.

1.3.2 Chapter 4 - Dimension dependence of sampling algorithms

in hierarchical Bayesian inverse problems

In this chapter we consider a hierarchical variant of the Bayesian linear inverse

problem (1.2.1), with hyper-priors introduced through the scalings of the noise and

prior covariance operators. In particular, we consider the model

y = Ku+ η, (1.3.1)

where η|σ ∼ N (0, σ−1C1) and σ ∼ Gamma(α1,β1). We put a mixture prior on u,

u|δ ∼ N (0, δ−1C0) where δ ∼ Gamma(α0,β0).

In practice the problem is discretized and the above setup is implemented in

RN , where it is desirable to refine the model by letting N → ∞, [7]. To this end,

we assume that we have a way of computing discretizations of the data yN ∈ RN

and we replace the operators K, C0, C1 by N × N matrices arising from consistent

discretizations of the corresponding operators in the underlying Hilbert space X . It

is well known that this hierarchical Bayesian model is conditionally conjugate, that

is u|yN , δ, σ is Gaussian and δ|yN , u, σ and σ|yN , u, δ are Gamma; this makes natural

the use of a Gibbs sampler, which draws from the three conditional distributions
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in turn, in order to sample the full posterior on u, δ, σ|yN in RN × R × R. We are

interested in understanding the large N behaviour of this Gibbs sampler.

We remark that the use of consistent discretizations secures the interpretabil-

ity of the scaling parameters δ−1 and σ−1 in the limit N → ∞, as the scalings of

the corresponding covariance operators in the underlying infinite dimensional setup

(1.3.1). If as in [7] we do not use consistent discretizations, we cannot make mean-

ingful comparisons of δ and σ across different discretization levels, and in particular

it is not natural to examine their limiting behaviour as N → ∞. This is very

important especially in applied problems where often simulations are performed

at different discretization levels in order to check the robustness to the numerical

approximations used.

Our main results in this chapter suggest that under natural assumptions, as

the dimension N grows, the behaviour of the algorithm has two scales: an increas-

ingly fast scale on which the scaling of the noise evolves under the Gibbs sampler,

and an increasingly slow scale on which the scaling of the prior evolves under the

Gibbs sampler.

We now briefly describe our intuition based on infinite dimensional arguments

and in particular the following two properties of Gaussian measures in separable

Hilbert spaces:

- two centered Gaussian measures with covariance operators which are propor-

tional to each other are mutually singular unless the constant of proportion-

ality is equal to one;

- a complete path drawn from a Gaussian measure N (0, aΣ) contains full infor-

mation about the scaling parameter a.

We work under the natural assumption that in the infinite dimensional un-

derlying model the conditional posterior on u|y, δ, σ is absolutely continuous with

respect to the prior u|δ. By the above properties of infinite dimensional Gaussian

measures this assumption suggests that a draw from u|y, δ, σ contains full informa-

tion on the value of δ, hence as N → ∞ there is a strong dependence between

u|yN , δ, σ and δ|yN , u, σ leading to strong dependence between successive δ-draws.

Indeed, we show under assumptions securing the reasonable behaviour of the dis-

cretizations used, that as the dimension N grows, the δ-chain makes moves which

on average are of order N−1 with fluctuations of order N−
1
2 . This implies that it

takes O(N) steps for the δ-chain to move O(1) distance and in turn suggests that

it takes O(N) steps for the Gibbs sampler to sample the posterior on u, δ, σ|yN .
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In order to analyze the behaviour of the σ-chain, we assume that we have

data produced as perturbations of a sufficiently smooth z ∈ X by a realization of

the noise distribution with a fixed scaling σ̄; that is, we assume

y = z + σ̄−
1
2C

1
2
1 ξ,

where ξ is a realization of a Gaussian white noise. The assumption on the regularity

of z suggests that the data producing measure N (z, σ̄−1C1) is absolutely continuous

with respect to the noise distribution η|σ̄. Again by the properties of infinite di-

mensional Gaussian measures we have that the data contain full information on the

value of σ̄, hence as N →∞ there is a strong dependence between the σ-draw and

the data leading to instant identification of σ̄ by the σ-chain. Indeed, we show that

as the dimension N grows, the σ-chain makes moves which on average are within

order N−1 distance from σ̄ with fluctuations of order N−
1
2 .

Based on intuition from [72, 60], we propose a reparametrization of the prior

scaling in problem (1.3.1) in order to alleviate the poor mixing of the δ-chain, in

which the two components on the unknown and the prior scaling are a priori inde-

pendent. That is, instead of assuming u|δ ∼ N (0, δ−1C0) where δ ∼ Gamma(α0,β0),

we write u = τv, where v ∼ N (0, C0) and τ ∼ N (r0, q
2
0). This setup is again condi-

tionally conjugate, hence we again use a Gibbs sampler to sample the full posterior

on u, τ, σ|yN . While the reparametrized algorithm is robust with respect to the

increase in dimension, it deteriorates in the small noise limit. The reason is that as

the noise disappears, v and τ are a posteriori increasingly dependent because they

both need to explain the data; more research is required in this small noise limit.

We also extend our results on the slowing down of the δ-chain to other

Gaussian conjugate settings, such as the setting of nonparametric drift estimation

of SDE’s considered in [64, 59, 56]. Furthermore, our theory generalizes to cases

where the discretization level of the unknown is different to the discretization level

on the data; in this case the slowing down of the δ-chain occurs as the discretization

level of the unknown increases, while the speeding up of the σ-chain occurs as the

discretization level of the data increases.

We provide numerical simulations in several linear inverse problems settings

which support our theory regarding the behaviour of both the standard hierarchical

algorithm and the proposed reparametrization. Finally, we remark that our intu-

ition also applies when attempting to learn other parameters of the noise and prior

distributions, as for example in [43].

The work in this chapter is in collaboration with Johnathan Bardsley (Uni-
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versity of Montana), Omiros Papaspiliopoulos (Universitat Pompeu Fabra) and my

PhD supervisor Andrew Stuart (University of Warwick). The problem formulation

and methodology were developed in conjunction with my three co-authors, while

almost all of the technical analysis was carried out by myself. All the numerical

simulations were performed by myself based on modifications of the code used by

Johnathan Bardsley in [7].
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Chapter 2

Posterior Contraction Rates for

the Bayesian Approach to

Linear Ill-Posed Inverse

Problems

2.1 Introduction

The solution of inverse problems provides a rich source of applications of the Bayesian

nonparametric methodology. It encompasses a broad range of applications from

partial differential equations (PDEs) [6], where there is a well-developed theory

of classical, non-statistical, regularization [22]. On the other hand, the area of

nonparametric Bayesian statistical estimation and in particular the problem of

posterior consistency has attracted a lot of interest in recent years; see for in-

stance [28, 77, 74, 83, 82, 29, 20]. Despite this, the formulation of many of these

PDE inverse problems using the Bayesian approach is in its infancy [78]. Further-

more, the development of a theory of Bayesian posterior consistency, analogous to

the theory for classical regularization, is under-developed with the primary contri-

bution being the recent paper [44]. This recent paper provides a roadmap for what

is to be expected regarding Bayesian posterior consistency, but is limited in terms of

applicability by the assumption of simultaneous diagonalizability of the three linear

operators required to define Bayesian inversion. Our aim in this chapter is to make

a significant step in the theory of Bayesian posterior consistency for linear inverse

problems by developing a methodology which sidesteps the need for simultaneous

diagonalizability. The central idea underlying the analysis is to work with precision
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operators rather than covariance operators, and thereby to enable use of powerful

tools from PDE theory to facilitate the analysis.

Let X be a separable Hilbert space, with norm ‖ · ‖ and inner product 〈·, ·〉,
and let A : D(A) ⊂ X → X be a known self-adjoint and positive-definite linear

operator with bounded inverse∗. We consider the inverse problem to find u from y,

where y is a noisy observation of A−1u. We assume the model,

y = A−1u+
1√
n
η, (2.1.1)

where 1√
n
η is an additive noise. We will be particularly interested in the small noise

limit where n→∞.

A popular method in the deterministic approach to inverse problems is the

generalized Tikhonov-Phillips regularization method in which u is approximated by

the minimizer of a regularized least squares functional: define the Tikhonov-Phillips

functional

J0(u) :=
1

2

∥∥C− 1
2

1 (y −A−1u)
∥∥2

+
λ

2

∥∥C− 1
2

0 u
∥∥2
, (2.1.2)

where Ci : X → X , i = 0, 1, are bounded, possibly compact, self-adjoint positive-

definite linear operators. The parameter λ is called the regularization parameter,

and in the classical non-probabilistic approach the general practice is to choose it

as an appropriate function of the noise size n−
1
2 , which shrinks to zero as n → ∞,

in order to recover the unknown parameter u [22].

In this chapter we adopt a Bayesian approach for the solution of problem

(2.1.1), which will be linked to the minimization of J0 via the posterior mean. We

assume that the prior distribution is Gaussian, u ∼ µ0 = N (0, τ2C0), where τ > 0

and C0 is a self-adjoint, positive-definite, trace class, linear operator on X . We also

assume that the noise is Gaussian, η ∼ N (0, C1), where C1 is a self-adjoint positive-

definite, bounded, but not necessarily trace class, linear operator; this allows us

to include the case of white observational noise. We assume that the, generally

unbounded, operators C−1
0 and C−1

1 , have been maximally extended to self-adjoint

positive-definite operators on appropriate domains. The unknown parameter and

the noise are considered to be independent, thus the conditional distribution of the

observation given the unknown parameter u (termed the likelihood) is also Gaussian

with distribution y|u ∼ N (A−1u, 1
nC1).

∗In fact our analysis directly generalizes to the case where the forward operator is bounded and
injective, see Section 2.10.
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Define λ = 1
nτ2 and let

J (u) = nJ0(u) =
n

2

∥∥C− 1
2

1 (y −A−1u)
∥∥2

+
1

2τ2

∥∥C− 1
2

0 u
∥∥2
. (2.1.3)

In finite dimensions the probability density of the posterior distribution, that is, the

distribution of the unknown given the observation, with respect to the Lebesgue mea-

sure is proportional to exp (−J (u)). This suggests that, in the infinite-dimensional

setting, the posterior is Gaussian µy = N (m, C), where we can identify the posterior

covariance and mean by the equations

C−1 = nA−1C−1
1 A

−1 +
1

τ2
C−1

0 (2.1.4)

and
1

n
C−1m = A−1C−1

1 y, (2.1.5)

obtained by completing the square. We present a method of justifying these expres-

sions in Section 2.5. We define

Bλ =
1

n
C−1 = A−1C−1

1 A
−1 + λC−1

0 (2.1.6)

and observe that the dependence of Bλ on n and τ is only through λ. Since

Bλm = A−1C−1
1 y, (2.1.7)

the linear operator mapping the data to the posterior mean also depends only on λ:

m(y) = mλ(y). This is not the case for the posterior covariance C, since it depends

on n and τ separately: C = Cλ,n. In the following, we suppress the dependence of

the posterior mean on λ and the posterior covariance on λ and n and write just m

and C.
Observe that the posterior mean is the minimizer of the functional J , hence

also of J0, that is, the posterior mean is the Tikhonov-Phillips regularized approxi-

mate solution of problem (2.1.1), for the functional J0 with λ = 1
nτ2 .

In [54] and [52], formulae for the posterior covariance and mean are identified

in the infinite-dimensional setting, which avoid using any of the inverses of the prior,

posterior or noise covariance operators. They obtain

C = τ2C0 − τ2C0A−1(A−1C0A−1 + λC1)−1A−1C0 (2.1.8)
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and

m = C0A−1(A−1C0A−1 + λC1)−1y, (2.1.9)

which are consistent with formulae (2.1.4) and (2.1.7) for the finite-dimensional

case. In [54] this is done only for C1 of trace class while in [52] the case of white

observational noise was included. We will work in an infinite-dimensional setting

where the formulae (2.1.4), (2.1.7) for the posterior covariance and mean can be

justified. Working with the unbounded operator Bλ opens the possibility of using

tools of analysis, and also numerical analysis, familiar from the theory of partial

differential equations.

In our analysis we always assume that C−1
0 is regularizing, that is, we assume

that C−1
0 dominates Bλ in the sense that it induces stronger norms than A−1C−1

1 A−1.

This is a reasonable assumption since otherwise we would have Bλ ' A−1C−1
1 A−1

(here ' is used loosely to indicate two operators which induce equivalent norms; we

will make this notion precise in due course). This would imply that the posterior

mean is m ' Ay, meaning that we attempt to invert the data by applying the,

generally discontinuous, operator A [22, Proposition 2.7].

We study the consistency of the posterior µy in the frequentist setting. To

this end, we consider data y = y†n which is a realization of

y†n = A−1u† +
1√
n
η, η ∼ N (0, C1), (2.1.10)

where u† is a fixed element of X ; that is, we consider a sequence of observations

{y†n}, where y†n is a perturbation of the image of a fixed true solution u† by an

additive noise η, scaled by 1√
n

. Since the posterior depends through its mean on the

data and also through its covariance operator on the scaling of the noise and the

prior, this choice of data model gives as posterior distribution the Gaussian measure

µy
†
n

λ,n = N (m†, C), where C is given by (2.1.4) and

Bλm† = A−1C−1
1 y†n. (2.1.11)

Note that the posterior mean m† now also depends on n through the assumed data.

We study the behaviour of the posterior µy
†
n

λ,n as the noise disappears (n → ∞).

Our aim is to show that it contracts to a Dirac measure centered on the fixed true

solution u†. In particular, we aim to determine εn such that

Ey
†
nµy

†
n

λ,n

{
u :
∥∥u− u†∥∥ ≥Mnεn

}
→ 0, ∀Mn →∞, (2.1.12)
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where the expectation is with respect to the random variable y†n distributed accord-

ing to the data producing measure N (A−1u†, 1
nC1).

As in the deterministic theory of inverse problems, in order to get convergence

in the small noise limit, we let the regularization disappear in a carefully chosen way,

that is, we will choose λ = λ(n) such that λ → 0 as n → ∞. The assumption that

C−1
0 dominates Bλ, shows that Bλ is a singularly perturbed unbounded (usually

differential) operator, with an inverse which blows-up in the limit λ → 0. This

together with equation (2.1.7), opens up the possibility of using the analysis of such

singular limits to study posterior contraction: on the one hand, as λ → 0, B−1
λ

becomes unbounded; on the other hand, as n → ∞, we have more accurate data,

suggesting that for the appropriate choice of λ = λ(n) we can get m† ' u†. In

particular, we will choose τ as a function of the scaling of the noise, τ = τ(n), under

the restriction that the induced choice of λ = λ(n) = 1
nτ(n)2 , is such that λ → 0 as

n→∞. The last choice will be made in a way which optimizes the rate of posterior

contraction εn, defined in (2.1.12). In general there are three possible asymptotic

behaviours of the scaling of the prior τ2 as n→∞, [82, 44]:

i) τ2 → ∞; we increase the prior spread, if we know that draws from the prior

are more regular than u†;

ii) τ2 fixed; draws from the prior have the same regularity as u†;

iii) τ2 → 0 at a rate slower than 1
n ; we shrink the prior spread, when we know

that draws from the prior are less regular than u†.

The problem of posterior contraction in this context is also investigated in [44]

and [24]. In [44], sharp convergence rates are obtained in the case where C0, C1 and

A−1 are simultaneously diagonalizable, with eigenvalues decaying algebraically, and

in particular C1 = I, that is, the data are polluted by white noise. In this chapter

we relax the assumptions on the relations between the operators C0, C1 and A−1, by

assuming that appropriate powers of them induce comparable norms (see Section

2.3). In [24], the non-diagonal case is also examined; the three operators involved

are related through domain inclusion assumptions. The assumptions made in [24]

can be quite restrictive in practice; our assumptions include settings not covered

in [24], and in particular the case of white observational noise.

2.1.1 Outline of the rest of the chapter

In the following section we present our main results which concern the identifica-

tion of the posterior (Theorem 2.2.1) and the posterior contraction (Theorems 2.2.2
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and 2.2.3). In Section 2.3 we present our assumptions and their implications. The

proofs of the main results are built in a series of intermediate results contained in

Sections 2.4-2.7. In Section 2.4, we reformulate equation (2.1.7) as a weak equa-

tion in an infinite-dimensional space. In Section 2.5, we present a new method of

identifying the posterior distribution: we first characterize it through its Radon-

Nikodym derivative with respect to the prior (Theorem 2.5.1) and then justify the

formulae (2.1.4), (2.1.7) for the posterior covariance and mean (proof of Theorem

2.2.1). In Section 2.6, we present operator norm bounds for B−1
λ in terms of the

singular parameter λ, which are the key to the posterior contraction results con-

tained in Section 2.7 and their corollaries in Section 2.2 (Theorems 2.7.1, 2.7.2 and

2.2.2, 2.2.3). In Section 2.8, we present some nontrivial examples satisfying our

assumptions and provide the corresponding rates of convergence. In Section 2.9,

we compare our results to known minimax rates of convergence in the case where

C0, C1 and A−1 are all diagonalizable in the same eigenbasis and have eigenvalues

that decay algebraically. Finally, Section 2.10 is a short conclusion.

The entire chapter rests on a rich set of connections between the theory of

stochastic processes and various aspects of the theory of linear partial differential

equations. In particular, since the Green’s function of the precision operator of

a Gaussian measure corresponds to its covariance function, our formulation and

analysis of the inverse problem via precision operators is very natural. Furthermore,

estimates on the inverse of singular limits of these precisions, which have direct

implications for localization of the Green’s functions, play a key role in the analysis

of posterior consistency.

2.2 Main Results

In this section we present our main results. We postpone the rigorous presentation

of our assumptions to the next section and the proofs and technical lemmas are

presented together with intermediate results of independent interest in Sections 2.4

- 2.7. Recall that we assume a Gaussian prior µ0 = N (0, τ2C0) and a Gaussian noise

distribution N (0, C1). Our first assumption concerns the decay of the eigenvalues

of the prior covariance operator and enables us to quantify the regularity of draws

from the prior. This is encoded in the parameter s0 ∈ [0, 1); smaller s0 implies more

regular draws from the prior. We also assume that C1 ' Cβ0 and A−1 ' C`0, for

some β, ` ≥ 0, where ' is used in the manner outlined in Section 2.1, and defined

in detail in Section 2.3. Finally, we assume that the problem is sufficiently ill-posed

with respect to the prior. This is quantified by the parameter ∆ := 2`−β+1 which
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we assume to be larger than 2s0; for a fixed prior, the larger ∆ is, the more ill-posed

the problem.

2.2.1 Posterior Identification

Our first main theorem identifies the posterior measure as Gaussian and justifies

formulae (2.1.4) and (2.1.7). This reformulation of the posterior in terms of the

precision operator is key to our method of analysis of posterior consistency and

opens the route to using methods from the study of partial differential equations

(PDEs). These methods will also be useful for the development of numerical methods

for the inverse problem.

Theorem 2.2.1. Under the Assumptions 2.3.1, the posterior measure µy(du) is

Gaussian µy = N (m, C), where C is given by (2.1.4) and m is a weak solution of

(2.1.7).

2.2.2 Posterior Contraction

We now present our results concerning frequentist posterior consistency of the

Bayesian solution to the inverse problem. We assume to have data y = y†n as in

(2.1.10), and examine the behaviour of the posterior µy
†
n

λ,n = N (m†, C), where m† is

given by (2.1.11), as the noise disappears (n → ∞). The first convergence result

concerns the convergence of the posterior mean m† to the true solution u† in a range

of weighted norms ‖ · ‖κ induced by powers of the prior covariance operator C0. The

spaces (Xκ, ‖ · ‖κ) are rigorously defined in the following section. The second result

provides rates of posterior contraction of the posterior measure to a Dirac measure

centered on the true solution as described in (2.1.12). In both results, we assume a

priori known regularity of the true solution u† ∈ Xγ and give the convergence rates

as functions of γ.

Theorem 2.2.2. Assume u† ∈ Xγ, where γ ≥ 1 and let κ = (1 − θ)(β − 2`) + θ,

where θ ∈ [0, 1]. Under the Assumptions 2.3.1, we have the following optimized rates

of convergence, where ε > 0 is arbitrarily small:

i) if γ ∈ (1,∆ + 1], for τ = τ(n) = n
− γ−1+s0+ε

2(∆+γ−1+s0+ε)

Ey
†
n
∥∥m† − u†∥∥2

κ
≤ cn−

∆+γ−1−θ∆
∆+γ−1+s0+ε ;

ii) if γ > ∆ + 1, for τ = τ(n) = n
− ∆+s0+ε

2(2∆+s0+ε)

Ey
†
n
∥∥m† − u†∥∥2

κ
≤ cn−

(2−θ)∆
2∆+s0+ε ;
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iii) if γ = 1 and θ ∈ [0, 1) for τ = τ(n) = n
− s0+ε

2(∆+s0+ε)

Ey
†
n
∥∥m† − u†∥∥2

κ
≤ cn−

(1−θ)∆
∆+s0+ε .

If γ = 1 and θ = 1 then the method does not give convergence.

Theorem 2.2.3. Assume u† ∈ Xγ, where γ ≥ 1. Under the Assumptions 2.3.1, we

have the following optimized rates for the convergence in (2.1.12), where ε > 0 is

arbitrarily small:

i) if γ ∈ [1,∆ + 1] for τ = τ(n) = n
− γ−1+s0+ε

2(∆+γ−1+s0+ε)

εn =

{
n
− γ

2(∆+γ−1+s0+ε) , if β − 2` ≤ 0

n
− ∆+γ−1

2(∆+γ−1+s0+ε) , otherwise;

ii) if γ > ∆ + 1 for τ = τ(n) = n
− ∆+s0+ε

2(2∆+s0+ε)

εn =

 n
− ∆+1

2(2∆+s0+ε) , if β − 2` ≤ 0

n
− ∆

2∆+s0+ε , otherwise.

To summarize, provided the problem is sufficiently ill-posed and the true

solution u† is sufficiently regular we get the convergence in (2.1.12) for

εn = n
− γ∧(∆+1)

2(∆+γ∧(∆+1)−1+s0+ε) .

Our rates of convergence agree, up to ε > 0 arbitrarily small, with the

sharp convergence rates obtained in the diagonal case in [44] across a wide range

of regularity assumptions on the true solution (Figure 2.1); yet, our rates cover a

much more applicable range of non-simultaneously diagonalizable problems. (The

reason for the appearance of ε is that in the assumed non-diagonal setting we can

only use information about the regularity of the noise as expressed in terms of the

spaces Xρ (cf. Lemma 2.3.5), rather than the explicit representation of the noise.)

The rates we obtain are not as strong as in the simultaneously diagonalizable

case when the true solution is too regular; in particular our rates saturate earlier

as a function of increasing regularity, and we require a certain degree of regularity

25



0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

γ

ex
po

ne
nt

 o
f c

on
ve

rg
en

ce
 r

at
e

Figure 2.1: Exponents of rates of contraction plotted against the regularity of the
true solution, γ. In blue are the sharp convergence rates obtained in the diagonal
case in [44], while in green the rates predicted by our method, which applies to the
more general non-diagonal case

of the true solution in order to secure convergence. It is not known if our results

can be improved but it would be interesting to try. Both of the two discrepancies

are attributed to the fact that our method relies on interpolating between rates in

a strong and a weak norm of the error e = m† − u†; on the one hand the rate of

the error in the weak norm saturates earlier, and on the other hand the error in the

strong norm requires additional regularity in order to converge (cf. Section 2.9).

2.3 The Setting

In this section we present the setting in which we formulate our results. First, we

define the spaces in which we work, in particular, we define the Hilbert scale induced

by the prior covariance operator C0. Then we define the probability measures rele-

vant to our analysis. Furthermore, we state our main assumptions, which concern

the decay of the eigenvalues of C0 and the connections between the operators C0, C1

and A−1, and present regularity results for draws from the prior, µ0, and the noise

distribution, N (0, C1). Finally we briefly overview the way in which the Hilbert

scale defined in terms of the prior covariance operator C0, which is natural for our

analysis, links to scales of spaces defined independently of any prior model.

We start by defining the Hilbert scale which we will use in our analysis.
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Recall that X is an infinite-dimensional separable Hilbert space and C0 : X → X
is a self-adjoint, positive-definite, trace class, linear operator. Since C0 : X → X
is injective and self-adjoint we have that X = R(C0) ⊕ R(C0)⊥ = R(C0). This

means that C−1
0 : R(C0)→ X is a densely defined, unbounded, symmetric, positive-

definite, linear operator in X . Hence it can be extended to a self-adjoint operator

with domain D(C−1
0 ) := {u ∈ X : C−1

0 u ∈ X}; this is the Friedrichs extension [50].

Thus, we can define the Hilbert scale (Xt)t∈R, with Xt :=M‖.‖t [22], where

M :=
∞⋂
l=0

D(C−l0 ),
〈
u, v
〉
t

:=
〈
C−

t
2

0 u, C−
t
2

0 v
〉

and ‖u‖t :=
∥∥C− t20 u

∥∥.
The bounded linear operator C1 : X → X is assumed to be self-adjoint, positive-

definite (but not necessarily trace class); thus C−1
1 : R(C1)→ X can be extended in

the same way to a self-adjoint operator with domain D(C−1
1 ) := {u ∈ X : C−1

1 u ∈ X}.
Finally, recall that we assume that A : D(A) → X is a self-adjoint and positive-

definite, linear operator with bounded inverse, A−1 : X → X .

We assume that we have a probability space (Ω,F ,P). The expected value is

denoted by E and η ∼ µ means that the law of the random variable η is the measure

µ.

Let µ0 := N (0, τ2C0) and P0 := N (0, 1
nC1) be the prior and noise distributions

respectively. Furthermore, let ν(du, dy) denote the joint distribution of u ∼ µ0 and

y|u ∼ N (A−1u, 1
nC1):

ν(du, dy) = P(dy|u)µ0(du),

where P := N (A−1u, 1
nC1). We denote by ν0(du, dy) the measure constructed by

taking u and y as independent Gaussian random variables N (0, τ2C0) and N (0, 1
nC1)

respectively:

ν0(du, dy) = P0(dy)⊗ µ0(du).

Let {λj , φj}∞j=1 be orthonormal eigenpairs of C0 in X . Thus, {λj}∞j=1 are

the eigenvalues, which are positive since C0 is positive definite, and {φj}∞j=1 an

orthonormal eigenbasis. Since C0 is trace class we have that
∑∞

j=1 λj < ∞. In fact

we require a slightly stronger assumption see Assumption 2.3.1(1) below.

2.3.1 Assumptions

We are now ready to present our assumptions. The first assumption enables us to

quantify the regularity of draws from the prior whereas the rest of the assumptions

regard interrelations between the three operators C0, C1 and A−1; these assumptions
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reflect the idea that

C1 ' Cβ0 and A−1 ' C`0,

for some β ≥ 0, ` ≥ 0, where ' is used in the same manner as in Section 2.1. This

is made precise by the inequalities presented in the following assumption, where the

notation a � b means that there exist constants c, c′ > 0 such that ca ≤ b ≤ c′a.

Assumption 2.3.1. Suppose there exist s0 ∈ [0, 1), β ≥ 0, ` ≥ 0 and constants

ci > 0, i = 1, .., 4 such that

1. Cs0 is trace class for all s > s0;

2. ∆ > 2s0, where ∆ := 2`− β + 1;

3.
∥∥C− 1

2
1 A−1u

∥∥ � ∥∥C`−β20 u
∥∥, ∀u ∈ Xβ−2`;

4.
∥∥C− ρ20 C

1
2
1 u
∥∥ ≤ c1

∥∥C β−ρ2
0 u

∥∥, ∀u ∈ Xρ−β, ∀ρ ∈ [dβ − s0 − 1e, β − s0);

5.
∥∥C s20 C− 1

2
1 u

∥∥ ≤ c2

∥∥C s−β2
0 u

∥∥, ∀u ∈ Xβ−s, ∀s ∈ (s0, 1];

6.
∥∥C− s20 C

− 1
2

1 A−1u
∥∥ ≤ c3

∥∥C 2`−β−s
2

0 u
∥∥, ∀u ∈ Xs+β−2`, ∀s ∈ (s0, 1];

7.
∥∥C κ20 A−1C−1

1 u
∥∥ ≤ c4

∥∥C κ2 +`−β
0 u

∥∥, ∀u ∈ X2β−2`−κ, ∀κ ∈ [β − 2`, 1].

Notice that, by Assumption 2.3.1(2) we have 2` − β > −1 which, in combi-

nation with Assumption 2.3.1(3), implies that

〈
C−

1
2

1 A
−1u, C−

1
2

1 A
−1u

〉
+ λ
〈
C−

1
2

0 u, C−
1
2

0 u
〉
≤ c
〈
C−

1
2

0 u, C−
1
2

0 u
〉
, ∀u ∈ X1,

capturing the idea that the regularization through C0 is indeed a regularization.

In fact the assumption ∆ > 2s0 connects the ill-posedness of the problem to the

regularity of the prior. We exhibit this connection in the following example:

Example 2.3.2. Assume A, C1 and C0 are simultaneously diagonalizable, with eigen-

values having algebraic decay j2ˆ̀
, j−2β̂ and j−2α, respectively, for ˆ̀, β̂ ≥ 0 and α > 1

2

so that C0 is trace class. Then Assumptions (1),(3)-(7) are trivially satisfied with

` =
ˆ̀

α , β = β̂
α and s0 = 1

2α . The Assumption (2) ∆ > 2s0 is then equivalent

to α > 1 + β̂ − 2ˆ̀. That is, for a certain degree of ill-posedness (encoded in the

difference 2ˆ̀− β̂) we have a minimum requirement on the regularity of the prior

(encoded in α). Put differently, for a certain prior, we require a minimum degree of

ill-posedness.
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We refer the reader to Section 2.8 for nontrivial examples satisfying Assump-

tions 2.3.1.

In the following, we exploit the regularity properties of a white noise to

determine the regularity of draws from the prior and the noise distributions using

Assumption 2.3.1(1). We consider a white noise to be a draw from N (0, I), that is

a random variable ζ ∼ N (0, I). Even though the identity operator is not trace class

in X , it is trace class in a bigger space X−s, where s > 0 is sufficiently large.

Lemma 2.3.3. Under the Assumption 2.3.1(1) we have:

i) Let ζ be a white noise. Then E
∥∥C s20 ζ∥∥2

<∞ for all s > s0.

ii) Let u ∼ µ0. Then u ∈ X1−s µ0-a.s. for every s > s0.

Proof.

i) We have that C
s
2
0 ζ ∼ N (0, Cs0), thus E

∥∥C s20 ζ∥∥2
<∞ is equivalent to Cs0 being of

trace class. By the Assumption 2.3.1(1) it suffices to have s > s0.

ii) We have E
∥∥C s−1

2
0 u

∥∥2
= E

∥∥C s20 C− 1
2

0 u
∥∥2

= E
∥∥C s20 ζ∥∥2

, where ζ is a white noise,

therefore using part (i) we get the result.

Remark 2.3.4. Note that as s0 changes, both the Hilbert scale and the decay of the

coefficients of a draw from µ0 change. The norms ‖·‖t are defined through powers of

the eigenvalues λj. If s0 > 0, then C0 has eigenvalues that decay like j
− 1
s0 , thus an

element u ∈ Xt has coefficients
〈
u, φj

〉
, that decay faster than j

− 1
2
− t

2s0 . As s0 gets

closer to zero, the space Xt for fixed t > 0, corresponds to a faster decay rate of the

coefficients. At the same time, by the last lemma, draws from µ0 = N (0, C0) belong

to X1−s for all s > s0. Consequently, as s0 gets smaller, not only do draws from

µ0 belong to X1−s for smaller s, but also the spaces X1−s for fixed s reflect faster

decay rates of the coefficients. The case s0 = 0 corresponds to C0 having eigenvalues

that decay faster than any negative power of j. A draw from µ0 in that case has

coefficients that decay faster than any negative power of j (we consider such priors

in Appendix A).

In the next lemma, we use the interrelations between the operators C0, C1,A−1

to obtain additional regularity properties of draws from the prior, and also deter-

mine the regularity of draws from the noise distribution and the joint distribution

of the unknown and the data.
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Lemma 2.3.5. Under the Assumptions 2.3.1 we have:

i) u ∈ Xs0+β−2`+ε µ0-a.s. for all 0 < ε < (∆− 2s0) ∧ (1− s0);

ii) A−1u ∈ D(C−
1
2

1 ) µ0-a.s.;

iii) η ∈ Xρ P0-a.s. for all ρ < β − s0;

iv) y ∈ Xρ ν-a.s. for all ρ < β − s0.

Proof.

i) We can choose an ε as in the statement by the Assumption 2.3.1(2). By

Lemma 2.3.3(ii), it suffices to show that s0 + β − 2` + ε < 1 − s0. Indeed,

s0 + β − 2`+ ε = s0 + 1−∆ + ε < 1− s0.

ii) Under Assumption 2.3.1(3) it suffices to show that u ∈ Xβ−2`. Indeed, by

Lemma 2.3.3(ii), we need to show that β − 2` < 1 − s0, which is true since

s0 ∈ [0, 1) and we assume ∆ > 2s0 ≥ s0, thus 2`− β + 1 > s0.

iii) It suffices to show it for any ρ ∈ [dβ − s0 − 1e, β − s0). Noting that ζ = C−
1
2

1 η

is a white noise, using Assumption 2.3.1(4), we have by Lemma 2.3.3(i)

E‖η‖2ρ = E
∥∥C− ρ20 C

1
2
1 C
− 1

2
1 η

∥∥2 ≤ cE
∥∥C β−ρ2

0 ζ
∥∥2
<∞,

since β − ρ > s0.

iv) By (ii) we have that A−1u is µ0-a.s. in the Cameron-Martin space of the Gaus-

sian measures P and P0, thus the measures P and P0 are µ0-a.s. equivalent [17,

Theorem 2.8] and (iii) gives the result.

2.3.2 Guidelines for applying the theory

The theory is naturally developed in the scale of Hilbert spaces defined via the prior.

However application of the theory may be more natural in a different functional

setting. We explain how the two may be connected. Let {ψj}j∈N be an orthonormal

basis of the separable Hilbert space X . We define the spaces Ht, t ∈ R as follows:

for t > 0 we set

Ht := {u ∈ X :
∞∑
j=1

j2t
〈
u, ψj

〉2
<∞}

and the spaces H−t, t > 0 are defined by duality, H−t := (Ht)∗.
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For example, if we restrict ourselves to functions on a periodic domain D =

[0, L]d and assume that {ψj}j∈N is the Fourier basis of X = L2(D), then the spaces

Ht can be identified with the Sobolev spaces of periodic functions Ht, by rescaling:

Ht = H
t
d [73, Proposition 5.39].

In the case s0 > 0, as explained in Remark 2.3.4 we have algebraic decay of

the eigenvalues of C0 and in particular λj decay like j
− 1
s0 . If C0 is diagonalizable in

the basis {ψj}j∈N, that is, if φj = ψj , j ∈ N, then it is straightforward to identify

the spaces Xt with the spaces H
t

2s0 . The advantage of this identification is that the

spaces Ht do not depend on the prior so one can use them as a fixed reference point

for expressing regularity, for example of the true solution.

In our subsequent analysis, we will require that the true solution lives in

the Cameron-Martin space of the prior X1, which in different choices of the prior

(different s0) is a different space. Furthermore, we will assume that the true so-

lution lives in Xγ for some γ ≥ 1 and provide the convergence rate depending on

the parameters γ, s0, β, `. The identification Xγ = H
γ

2s0 and the intuitive relation

between the spaces Ht and the Sobolev spaces, enable us to understand the meaning

of the assumptions on the true solution.

We can now formulate the following guidelines for applying the theory pre-

sented in the present chapter: we work in a separable Hilbert space X with an

orthonormal basis {ψj}j∈N and we have some prior knowledge about the true solu-

tion u† which can be expressed in terms of the spaces Ht. The noise is assumed to

be Gaussian N (0, C1), and the forward operator is known; that is, C1 and A−1 are

known. We choose the prior N (0, C0), that is, we choose the covariance operator C0,

and we can determine the value of s0. If the operator C0 is chosen to be diagonal

in the basis {ψj}j∈N then we can find the regularity of the true solution in terms

of the spaces Xt, that is, the value of γ such that u† ∈ Xγ , and check that γ ≥ 1

which is necessary for our theory to work. We then find the values of β and ` and

calculate the value of ∆ appearing in Assumption 2.3.1, checking that our choice of

the prior is such that ∆ > 2s0. We now have all the necessary information required

for applying the Theorems 2.2.2 and 2.2.3 presented in Section 2.2 to get the rate

of convergence.

Remark 2.3.6. Observe that in the above mentioned example of periodic functions,

we have the identification X1 = H
d

2s0 , thus since s0 < 1 we have that the assumption

u† ∈ X1 implies that u† ∈ Ht, for t > d
2 . By the Sobolev embedding theorem [73,

Theorem 5.31], this implies that the true solution is always assumed to be continuous.

However, this is not a disadvantage of our method, since in many cases a Gaussian

measure which charges L2(D) with probability one, can be shown to also charge the
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space of continuous functions with probability one [78, Lemma 6.25]

2.4 Properties of the Posterior Mean and Covariance

We now make sense of equation (2.1.7) weakly in the space X1, under the assump-

tions presented in the previous section. To do so, we define the operator Bλ from

(2.1.6) in X1 and examine its properties. In Section 2.5 we demonstrate that (2.1.4)

and (2.1.7) do indeed correspond to the posterior covariance and mean.

Consider the equation

Bλw = r, (2.4.1)

where

Bλ = A−1C−1
1 A

−1 + λC−1
0 .

Define the bilinear form B : X1 ×X1 → R,

B(u, v) :=
〈
C−

1
2

1 A
−1u, C−

1
2

1 A
−1v
〉

+ λ
〈
C−

1
2

0 u, C−
1
2

0 v
〉
, ∀u, v ∈ X1.

Definition 2.4.1. Let r ∈ X−1. An element w ∈ X1 is called a weak solution of

(2.4.1), if

B(w, v) =
〈
r, v
〉
, ∀v ∈ X1.

Proposition 2.4.2. Under the Assumptions 2.3.1(2) and (3), for any r ∈ X−1,

there exists a unique weak solution w ∈ X1 of (2.4.1).

Proof. We use the Lax-Milgram theorem in the Hilbert space X1, since r ∈ X−1 =

(X1)∗.

i) B : X1 ×X1 → R is coercive:

B(u, u) =
∥∥C− 1

2
1 A

−1u
∥∥2

+ λ
∥∥C− 1

2
0 u

∥∥2 ≥ λ‖u‖21, ∀u ∈ X
1.

ii) B : X1×X1 → R is continuous: indeed by the Cauchy-Schwarz inequality and

the Assumptions 2.3.1(2) and (3),

|B(u, v)| ≤
∥∥C− 1

2
1 A

−1u
∥∥∥∥C− 1

2
1 A

−1v
∥∥+ λ

∥∥C− 1
2

0 u
∥∥∥∥C− 1

2
0 v

∥∥
≤ c‖u‖β−2`

∥∥v∥∥
β−2`

+ λ‖u‖1
∥∥v∥∥

1
≤ c′‖u‖1

∥∥v∥∥
1
, ∀u, v ∈ X1.
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Remark 2.4.3. The Lax-Milgram theorem defines a bounded operator S : X−1 →
X1, such that B(Sr, v) =

〈
r, v
〉

for all v ∈ X1, which has a bounded inverse S−1 :

X1 → X−1 such that B(w, v) =
〈
S−1w, v

〉
for all v ∈ X1, [87, Section III.7].

Henceforward, we identify Bλ ≡ S−1 and B−1
λ ≡ S. Furthermore, note that in

Proposition 2.4.2, Lemma 2.4.4 below, and the two propositions in Section 2.6, we

only require ∆ > 0 and not the stronger assumption ∆ > 2s0. However, in all our

other results we actually need ∆ > 2s0.

Lemma 2.4.4. Suppose the Assumptions 2.3.1(2) and (3) hold. Then the operator

S−1 = Bλ : X1 → X−1 is identical to the operator A−1C−1
1 A−1 +λC−1

0 : X1 → X−1,

where A−1C−1
1 A−1 is defined weakly in Xβ−2`.

Proof. The Lax-Milgram theorem implies that Bλ : X1 → X−1 is bounded. More-

over, C−1
0 : X1 → X−1 is bounded, thus the operator K := Bλ − λC−1

0 : X1 → X−1

is also bounded and satisfies

〈
Ku, v

〉
=
〈
C−

1
2

1 A
−1u, C−

1
2

1 A
−1v
〉
, ∀u, v ∈ X1. (2.4.2)

Define A−1C−1
1 A−1 weakly in Xβ−2`, by the bilinear form A : Xβ−2` ×Xβ−2` → R

given by

A(u, v) =
〈
C−

1
2

1 A
−1u, C−

1
2

1 A
−1v
〉
, ∀u, v ∈ Xβ−2`.

By Assumption 2.3.1(3), A is coercive and continuous in Xβ−2`, thus by the Lax-

Milgram theorem, there exists a uniquely defined, boundedly invertible, operator

T : X2`−β → Xβ−2` such that A(u, v) =
〈
T−1u, v

〉
for all v ∈ Xβ−2`. We identify

A−1C−1
1 A−1 with the bounded operator T−1 : Xβ−2` → X2`−β. By Assumption

2.3.1(2) we have ∆ > 0 hence

∥∥A−1C−1
1 A

−1u
∥∥
−1
≤ c
∥∥A−1C−1

1 A
−1u

∥∥
2`−β ≤ c

∥∥u∥∥
β−2`

≤ c
∥∥u∥∥

1
, ∀u ∈ X1,

that is, A−1C−1
1 A−1 : X1 → X−1 is bounded. By the definition of T−1 = A−1C−1

1 A−1

and (2.4.2), this implies that K = Bλ − λC−1
0 = A−1C−1

1 A−1.

Proposition 2.4.5. Under the Assumptions 2.3.1(1),(2),(3),(4),(7), there exists a

unique weak solution, m ∈ X1 of equation (2.1.7), ν(du, dy)-almost surely.

Proof. It suffices to show that A−1C−1
1 y ∈ X−1, ν(du, dy)-almost surely. Indeed, by

Lemma 2.3.5(iv) we have that y ∈ Xρ ν(du, dy)-a.s. for all ρ < β − s0, thus by the

Assumption 2.3.1(7)

∥∥C 1
2
0 A
−1C−1

1 y
∥∥ ≤ c∥∥C 1

2
+`−β

0 y
∥∥ <∞,
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since 2β − 2`− 1 < β − s0, which holds by the Assumption 2.3.1(2).

2.5 Characterization of the Posterior using Precision

Operators

Suppose that in the problem (2.1.1) we have u ∼ µ0 = N (0, C0) and η ∼ N (0, C1),

where u is independent of η. Then we have that y|u ∼ P = N (A−1u, 1
nC1). Let µy

be the posterior measure on u|y.

In this section we prove a number of facts concerning the posterior measure µy

for u|y. First, in Theorem 2.5.1 we prove that this measure has density with respect

to the prior measure µ0, identify this density and show that µy is Lipschitz in y,

with respect to the Hellinger metric. Continuity in y will require the introduction of

the space Xs+β−2`, to which u drawn from µ0 belongs almost surely. Secondly, we

prove Theorem 2.2.1, where we show that µy is Gaussian and identify the covariance

and mean via equations (2.1.4) and (2.1.7). This identification will form the basis

for our analysis of posterior contraction in the following section.

Theorem 2.5.1. Under the Assumptions 2.3.1(1),(2),(3),(4),(5),(6), the posterior

measure µy is absolutely continuous with respect to µ0 and

dµy

dµ0
(u) =

1

Z(y)
exp(−Φ(u, y)), (2.5.1)

where

Φ(u, y) :=
n

2

∥∥C− 1
2

1 A
−1u

∥∥2 − n
〈
C−

1
2

1 y, C−
1
2

1 A
−1u

〉
(2.5.2)

and Z(y) ∈ (0,∞) is the normalizing constant. Furthermore, the map y 7→ µy is

Lipschitz continuous, with respect to the Hellinger metric: let s = s0 + ε, 0 < ε <

(∆ − 2s0) ∧ (1 − s0); then there exists c = c(r) such that for all y, y′ ∈ Xβ−s with

‖y‖β−s,
∥∥y′∥∥

β−s ≤ r
dHell(µ

y, µy
′
) ≤ c

∥∥y − y′∥∥
β−s.

Consequently, the µy-expectation of any polynomially bounded function

f : Xs+β−2` → E, where (E, ‖·‖E) is a Banach space, is locally Lipschitz continuous

in y. In particular, the posterior mean is locally Lipschitz continuous in y as a

function Xβ−s → Xs+β−2`.

The proofs of Theorem 2.5.1 and Theorem 2.2.1 are presented in the next

two subsections. Each proof is based on a series of lemmas.
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2.5.1 Proof of Theorem 2.5.1

In this subsection we prove Theorem 2.5.1. We first prove several useful estimates

regarding Φ defined in (2.5.2), for u ∈ Xs+β−2` and y ∈ Xβ−s, where s ∈ (s0, 1].

Observe that, under the Assumptions 2.3.1(1),(2),(3),(4), for s = s0 +ε where ε > 0

sufficiently small, the Lemma 2.3.5 implies on the one hand that u ∈ Xs+β−2`

µ0(du)-almost surely and on the other hand that y ∈ Xβ−s ν(du, dy)-almost surely.

Lemma 2.5.2. Under the Assumptions 2.3.1(1),(3),(5),(6), for any s ∈ (s0, 1], the

potential Φ given by (2.5.2) satisfies:

i) for every δ > 0 and r > 0, there exists an M = M(δ, r) ∈ R, such that for all

u ∈ Xs+β−2` and all y ∈ Xβ−s with ‖y‖β−s ≤ r,

Φ(u, y) ≥M − δ‖u‖2s+β−2`;

ii) for every r > 0, there exists an R = R(r) > 0, such that for all u ∈ Xs+β−2`

and y ∈ Xβ−s with ‖u‖s+β−2`, ‖y‖β−s ≤ r,

Φ(u, y) ≤ R;

iii) for every r > 0, there exists an L = L(r) > 0, such that for all u1, u2 ∈
Xs+β−2` and y ∈ Xβ−s with ‖u1‖s+β−2`, ‖u2‖s+β−2`, ‖y‖β−s ≤ r,

|Φ(u1, y)− Φ(u2, y)| ≤ L‖u1 − u2‖s+β−2`;

iv) for every δ > 0 and r > 0, there exists a c = c(δ, r) ∈ R, such that for all

y1, y2 ∈ Xβ−s with ‖y1‖β−s, ‖y2‖β−s ≤ r and for all u ∈ Xs+β−2`,

|Φ(u, y1)− Φ(u, y2)| ≤ exp
(
δ‖u‖2s+β−2` + c

)
‖y1 − y2‖β−s.

Proof.

i) By first using the Cauchy-Schwarz inequality, then the Assumptions 2.3.1 (5)

and (6), and then the Cauchy with δ′ inequality for δ′ > 0 sufficiently small,
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we have

Φ(u, y) =
n

2

∥∥C− 1
2

1 A
−1u

∥∥2 − n
〈
C
s
2
0 C
− 1

2
1 y, C−

s
2

0 C
− 1

2
1 A

−1u
〉

≥ −n
∥∥C s20 C− 1

2
1 y

∥∥∥∥C− s20 C
− 1

2
1 A

−1u
∥∥ ≥ −cn‖y‖β−s‖u‖s+β−2`

≥ − cn
4δ′
‖y‖2β−s − cnδ

′‖u‖2s+β−2` ≥M(r, δ)− δ‖u‖2s+β−2`.

ii) By the Cauchy-Schwarz inequality and the Assumptions 2.3.1(3),(5) and (6),

we have since s > s0 ≥ 0

Φ(u, y) ≤ n

2

∥∥C− 1
2

1 A
−1u

∥∥2
+ n

∥∥C s20 C− 1
2

1 y
∥∥∥∥C− s20 C

− 1
2

1 A
−1u

∥∥
≤ cn

2
‖u‖2β−2` + cn‖y‖β−s‖u‖s+β−2` ≤ R(r).

iii) By first using the Assumptions 2.3.1 (5) and (6) and the triangle inequality,

and then the Assumption 2.3.1(3) and the reverse triangle inequality, we have

since s > s0 ≥ 0

|Φ(u1, y)− Φ(u2, y)| =

n

2

∣∣∣∣∥∥C− 1
2

1 A
−1u1

∥∥2 −
∥∥C− 1

2
1 A

−1u2

∥∥2
+ 2
〈
C
s
2
0 C
− 1

2
1 y, C−

s
2

0 C
− 1

2
1 A

−1(u2 − u1)
〉∣∣∣∣

≤ n

2

∣∣∣∣∥∥C− 1
2

1 A
−1u1

∥∥2 −
∥∥C− 1

2
1 A

−1u2

∥∥2
∣∣∣∣+ cn‖y‖β−s‖u1 − u2‖s+β−2`

≤ cn‖u1 − u2‖β−2`

(
‖u1‖β−2` + ‖u2‖β−2`

)
+ cnr‖u1 − u2‖s+β−2`

≤ L(r)‖u1 − u2‖s+β−2`.

iv) By first using the Cauchy-Schwarz inequality and then the Assumptions 2.3.1(5)

and (6), we have

|Φ(u, y1)− Φ(u, y2)| = n

∣∣∣∣〈C s20 C− 1
2

1 (y1 − y2), C−
s
2

0 C
− 1

2
1 A

−1u
〉∣∣∣∣

≤ n
∥∥C s20 C− 1

2
1 (y1 − y2)

∥∥∥∥C− s20 C
− 1

2
1 A

−1u
∥∥

≤ cn‖y1 − y2‖β−s‖u‖s+β−2`

≤ exp
(
δ
∥∥u∥∥2

s+β−2`
+ c
)∥∥y1 − y2

∥∥
β−s.
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Corollary 2.5.3. Under the Assumptions 2.3.1(1),(2),(3),(5),(6)

Z(y) :=

∫
X

exp(−Φ(u, y))µ0(du) > 0,

for all y ∈ Xβ−s, s = s0 + ε where 0 < ε < (∆− 2s0) ∧ (1− s0). In particular, if in

addition the Assumption 2.3.1(4) holds, then Z(y) > 0 ν-almost surely.

Proof. Fix y ∈ Xβ−s and set r = ‖y‖β−s. Gaussian measures on separable Hilbert

spaces are full [17, Proposition 1.25], hence since by Lemma 2.3.5(i) µ0(Xs+β−2`) =

1, we have that µ0(BXs+β−2`(r)) > 0. By Lemma 2.5.2(ii), there exists R(r) > 0

such that ∫
X

exp(−Φ(u, y))µ0(du) ≥
∫
B
Xs+β−2` (r)

exp(−Φ(u, y))µ0(du)

≥
∫
B
Xs+β−2` (r)

exp(−R(r))µ0(du) > 0.

Recalling that, under the additional Assumption 2.3.1(4), by Lemma 2.3.5(iv) we

have y ∈ Xβ−s ν-almost surely for all s > s0, completes the proof.

We are now ready to prove Theorem 2.5.1:

Proof of Theorem 2.5.1. Recall that ν0 = P0(dy) ⊗ µ0(du) and ν = P(dy|u)µ0(du).

By the Cameron-Martin formula [13, Corollary 2.4.3], since by Lemma 2.3.5(ii) we

have A−1u ∈ D(C−
1
2

1 ) µ0-a.s., we get for µ0-almost all u

dP
dP0

(y|u) = exp(−Φ(u, y)),

thus we have for µ0-almost all u

dν

dν0
(y, u) = exp(−Φ(u, y)).

By [32, Lemma 5.3] and Corollary 2.5.3 we have the relation (2.5.1).

For the proof of the Lipschitz continuity of the posterior measure in y, with respect

to the Hellinger distance, we apply [78, Theorem 4.2] for Y = Xβ−s, X = Xs+β−2`,

using Lemma 2.5.2 and the fact that µ0(Xs+β−2`) = 1, by Lemma 2.3.5(i).

2.5.2 Proof of Theorem 2.2.1

We first give an overview of the proof of Theorem 2.2.1. Let y|u ∼ P = N (A−1u, 1
nC1)

and u ∼ µ0. Then by Proposition 2.4.5, there exists a unique weak solution, m ∈ X1,
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of (2.1.7), ν(du, dy)-almost surely. That is, with ν(du, dy)-probability equal to one,

there exists an m = m(y) ∈ X1 such that

B(m, v) = by(v), ∀v ∈ X1,

where the bilinear form B is defined in Section 2.4, and by(v) =
〈
A−1C−1

1 y, v
〉
. In

the following we show that µy = N (m, C), where

C−1 = nA−1C−1
1 A

−1 +
1

τ2
C−1

0 .

The proof has the same structure as the proof for the identification of the posterior

in [64]. We define the Gaussian measureN (mN , CN ), which is the independent prod-

uct of a measure identical to N (m, C) in the finite-dimensional space XN spanned

by the first N eigenfunctions of C0, and a measure identical to µ0 in (XN )⊥. We

next show that N (mN , CN ) converges weakly to the measure µy which as a weak

limit of Gaussian measures has to be Gaussian µy = N (m, C), and we then identify

m and C with m, C respectively.

Fix y drawn from ν and let PN be the orthogonal projection of X to the

finite-dimensional space span{φ1, ..., φN} := XN , where as in Section 2.3, {φj}∞j=1

is an orthonormal eigenbasis of C0 in X . Let QN = I − PN . We define µN,y by

dµN,y

dµ0
(u) =

1

ZN (y)
exp(−ΦN (u, y)) (2.5.3)

where ΦN (u, y) := Φ(PNu, y) and

ZN (y) :=

∫
X

exp(−ΦN (u, y))µ0(du).

Lemma 2.5.4. We have µN,y = N (mN , CN ), where

PNC−1PNmN = nPNA−1C−1
1 y,

PNCNPN = PNCPN , QNCNQN = τ2QNC0Q
N

and PNCNQN = QNCNPN = 0.

Proof. Let u ∈ XN . Since u = PNu we have by (2.5.3)

dµN,y(PNu) ∝ exp
(
−Φ(PNu; y)

)
dµ0(PNu).

The right hand side is N -dimensional Gaussian with density proportional to the
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exponential of the following expression

− n

2

∥∥C− 1
2

1 A
−1PNu

∥∥2
+ n

〈
C−

1
2

1 y, C−
1
2

1 A
−1PNu

〉
− 1

2τ2

∥∥C− 1
2

0 PNu
∥∥2
, (2.5.4)

which by completing the square we can write as

− 1

2

∥∥(C̃N )−
1
2 (u− m̃N )

∥∥2
+ c(y),

where C̃N is the covariance matrix and m̃N the mean. By equating with expression

(2.5.4), we find that (C̃N )−1 = PNC−1PN and (C̃N )−1m̃N = nPNA−1C−1
1 y, thus on

XN we have that µN,y = N (m̃N , C̃N ). On (XN )⊥, the Radon-Nikodym derivative

in (2.5.3) is equal to 1, hence µN,y = µ0 = N (0, τ2C0).

Proposition 2.5.5. Under the Assumptions 2.3.1(1),(2),(3),(4),(5),(6), for all y ∈
Xβ−s, s = s0 + ε, where 0 < ε < (∆ − 2s0) ∧ (1 − s0), the measures µN,y converge

weakly in X to µy, where µy is defined in Theorem 2.5.1. In particular, µN,y converge

weakly in X to µy ν-almost surely.

Proof. Fix y ∈ Xβ−s. Let f : X → R be continuous and bounded. Then by

(2.5.1), (2.5.3) and Lemma 2.3.5(i), we have that∫
X
f(u)µN,y(du) =

1

ZN

∫
Xs+β−2`

f(u)e−ΦN (u,y)µ0(du)

and ∫
X
f(u)µy(du) =

1

Z

∫
Xs+β−2`

f(u)e−Φ(u,y)µ0(du).

Let u ∈ Xs+β−2` and set r1 = max{‖u‖s+β−2`, ‖y‖β−s} to get by Lemma 2.5.2(iii)

that ΦN (u, y) → Φ(u, y) as N → ∞, since
∥∥PNu∥∥

s+β−2`
≤ ‖u‖s+β−2` ≤ r1. By

Lemma 2.5.2(i), for any δ > 0, for r2 =
∥∥y∥∥

β−s, there exists M(δ, r2) ∈ R such that∣∣∣f(u)e−ΦN (u,y)
∣∣∣ ≤ ∥∥f∥∥∞eδ‖u‖2s+β−2`−M(δ,r2), ∀u ∈ Xs+β−2`,

where the right hand side is µ0-integrable for δ sufficiently small by the Fernique

Theorem [13, Theorem 2.8.5]. Hence, by the Dominated Convergence Theorem,

we have that
∫
X f(u)µN,y(du) →

∫
X f(u)µy(du), as N → ∞, where we get the

convergence of the constants ZN → Z by choosing f ≡ 1. Thus we have µN,y ⇒ µy.

Recalling, that y ∈ Xβ−s ν-almost surely completes the proof.

We are now ready to prove Theorem 2.2.1:
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Proof of Theorem 2.2.1. By Proposition 2.5.5 we have that µN,y converge weakly in

X to the measure µy, ν-almost surely. Since by Lemma 2.5.4, the measures µN,y are

Gaussian, the limiting measure µy is also Gaussian. To see this we argue as follows.

The weak convergence of measures implies the pointwise convergence of the Fourier

transforms of the measures, thus by Levy’s continuity theorem [41, Theorem 4.3]

all the one dimensional projections of µN,y, which are Gaussian, converge weakly

to the corresponding one dimensional projections of µy. By the fact that the class

of Gaussian distributions in R is closed under weak convergence [41, Chapter 4,

Exercise 2], we get that all the one dimensional projections of the µy are Gaussian,

thus µy is a Gaussian measure in X , µy = N (m, C) for some m ∈ X and a self-

adjoint, positive semi definite, trace class linear operator C. It suffices to show that

m = m and C = C.
We use the standard Galerkin method to show that mN → m in X . Indeed,

since by their definition mN solve (2.1.7) in the N -dimensional spaces XN , for

e = m − mN , we have that B(e, v) = 0, ∀v ∈ XN . By the coercivity and the

continuity of B (see Proposition 2.4.2)

∥∥e∥∥2

1
≤ cB(e, e) = cB(e,m− z) ≤ c

∥∥e∥∥
1

∥∥m− z∥∥
1
, ∀z ∈ XN .

Choose z = PNm to obtain

∥∥m−mN
∥∥ ≤ c∥∥m− PNm∥∥

1
,

where as N →∞ the right hand side converges to zero since m ∈ X1. On the other

hand, by [13, Example 3.8.15], we have that mN → m in X , hence we conclude that

m = m, as required.

For the identification of the covariance operator, note that by the definition

of CN we have

CN = PNCPN + (I − PN )C0(I − PN ).

Recall that {φj}∞j=1 are the eigenfunctions of C0 and fix j ∈ N. Then, for N > j and

any w ∈ X , we have that

∣∣〈w, CNφj〉− 〈w, Cφj〉∣∣ =
∣∣〈w, (PN − I)Cφj

〉∣∣
≤
∥∥(PN − I)w

∥∥∥∥Cφj∥∥,
where the right hand side converges to zero as N →∞, since w ∈ X . This implies

that CNφj converges to Cφj weakly in X , as N →∞ and this holds for any j ∈ N.

40



On the other hand by [13, Example 3.8.15], we have that CNφj → Cφj in X , as

N → ∞, for all j ∈ N. It follows that Cφj = Cφj , for every j and since {φj}∞j=1 is

an orthonormal basis of X , we have that C = C.

2.6 Operator norm bounds on B−1
λ

The following propositions contain several operator norm estimates on the inverse of

Bλ and related quantities, and in particular estimates on the singular dependence of

this operator as λ→ 0. These are the key tools used in Section 2.7 to obtain posterior

contraction results. In all of them we make use of the interpolation inequality in

Hilbert scales, [22, Proposition 8.19]. Recall that we consider Bλ defined on X1, as

explained in Remark 2.4.3.

Proposition 2.6.1. Let κ = (1−θ)(β−2`)+θ, where θ ∈ [0, 1]. Under the Assump-

tion 2.3.1(3) the following operator norm bounds hold: there is c > 0 independent

of θ such that ∥∥B−1
λ

∥∥
L(X−κ,Xβ−2`)

≤ cλ−
θ
2

and ∥∥B−1
λ

∥∥
L(X−κ,X1)

≤ cλ−
θ+1

2 .

In particular, if β − 2` ≤ 0, interpolation of the two bounds gives

∥∥B−1
λ

∥∥
L(X−κ,X )

≤ cλ−
θ+θ0

2 ,

where θ0 = 2`−β
∆ ∈ [0, 1].

Proof. Let h ∈ X−κ ⊂ X−1. Then by Proposition 2.4.2 for r = h, there exists a

unique weak solution of (2.4.1), z ∈ X1. By Definition 2.4.1, for v = z ∈ X1, we get

∥∥C− 1
2

1 A
−1z
∥∥2

+ λ
∥∥C− 1

2
0 z

∥∥2
=
〈
C
κ
2
0 h, C

−κ
2

0 z
〉
.

Using the Assumption 2.3.1(3), and the Cauchy-Schwarz inequality, we get

∥∥z∥∥2

β−2`
+ λ
∥∥z∥∥2

1
≤ c
∥∥C κ20 h∥∥∥∥z∥∥κ.

We interpolate the norm on z appearing on the right hand side between the norms

on z appearing on the left hand side, then use the Cauchy with ε inequality, and

then Young’s inequality for p = 1
1−θ , q = 1

θ , to get successively, for c > 0 a changing

constant ∥∥z∥∥2

β−2`
+ λ

∥∥z∥∥2

1
≤ c
∥∥C κ20 h∥∥∥∥z∥∥1−θ

β−2`
λ−

θ
2

(
λ

1
2

∥∥z∥∥
1

)θ
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≤ c

2ε

(
λ−θ

∥∥C κ20 h∥∥2
)

+
cε

2

(∥∥z∥∥2(1−θ)
β−2`

(
λ

1
2

∥∥z∥∥
1

)2θ
)

≤ c

2ε

(
λ−θ

∥∥C κ20 h∥∥2
)

+
cε

2

(
(1− θ)

∥∥z∥∥2

β−2`
+ θλ

∥∥z∥∥2

1

)
.

By choosing ε > 0 small enough we get, for c > 0 independent of θ, λ,

∥∥z∥∥
β−2`

≤ cλ−
θ
2

∥∥C κ20 h∥∥ and
∥∥z∥∥

1
≤ cλ−

θ+1
2

∥∥C κ20 h∥∥.
Replacing z = B−1

λ h gives the result.

Proposition 2.6.2. Let κ = (1− θ)(β − 2`− s) + θ(1− s), where θ ∈ [0, 1] and s ∈
(s0, 1], where s0 ∈ [0, 1) as defined in Assumption 2.3.1(1). Under the Assumptions

2.3.1(2) and (3), the following norm bounds hold: there is c > 0 independent of θ

such that ∥∥C− s20 B
−1
λ C

− s
2

0

∥∥
L(X−κ,Xβ−2`−s)

≤ cλ−
θ
2

and ∥∥C− s20 B
−1
λ C

− s
2

0

∥∥
L(X−κ,X1−s)

≤ cλ−
θ+1

2 .

In particular,

∥∥C− s20 B
−1
λ C

− s
2

0

∥∥
L(X)

≤ cλ−
2`−β+s

∆ , ∀s ∈ ({β − 2`} ∨ s0, 1].

Proof. Let h ∈ X−κ = X(1−θ)∆+s−1. Then h ∈ Xs−1, since ∆ > 0, thus C−
s
2

0 h ∈
X−1. By Proposition 2.4.2 for r = C−

s
2

0 h, there exists a unique weak solution of

(2.4.1), z′ ∈ X1. Since for v ∈ X1−s we have that C
s
2
0 v ∈ X1, we conclude that for

any v ∈ X1−s

〈
C−

1
2

1 A
−1C

s
2
0 z, C

− 1
2

1 A
−1C

s
2
0 v
〉

+ λ
〈
C
s−1

2
0 z, C

s−1
2

0 v
〉

=
〈
C−

s
2

0 h, C
s
2
0 v
〉
,

where z = C−
s
2

0 z′ ∈ X1−s. Choosing v = z ∈ X1−s, we get

∥∥C− 1
2

1 A
−1C

s
2
0 z
∥∥2

+ λ
∥∥C s−1

2
0 z

∥∥2
= 〈h, z〉 .

By the Assumption 2.3.1(3) and the Cauchy-Schwarz inequality, we have

∥∥z∥∥2

β−2`−s + λ
∥∥z∥∥2

1−s ≤ c
∥∥h∥∥−κ∥∥z∥∥κ.

We interpolate the norm of z appearing on the right hand side between the

norms of z appearing on the left hand side, to get as in the proof of Proposition
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2.6.1, for c > 0 independent of θ, λ and s

∥∥z∥∥
β−2`−s ≤ cλ

− θ
2

∥∥h∥∥−κ and
∥∥z∥∥

1−s ≤ cλ
− θ+1

2

∥∥h∥∥−κ.
Replacing z = C−

s
2

0 B
−1
λ C

− s
2

0 h gives the first two rates.

For the last claim, note that we can always choose {β−2`}∨{s0} < s ≤ 1, since s0 <

1 and ∆ > 0. Using the first two estimates, for κ = (1−θ′)(β−2`−s)+θ′(1−s) = 0,

that is θ′ = 2`−β+s
∆ ∈ [0, 1], we have that

∥∥C− s20 B
−1
λ C

− s
2

0 h
∥∥
β−2`−s ≤ cλ

− θ
′

2

∥∥h∥∥
and ∥∥C− s20 B

−1
λ C

− s
2

0 h
∥∥

1−s ≤ cλ
− θ
′+1
2

∥∥h∥∥.
Using the interpolation inequality we then get the claim, since

∥∥C− s20 B
−1
λ C

− s
2

0 h
∥∥ ≤ ∥∥C− s20 B

−1
λ C

− s
2

0 h
∥∥1−θ′
β−2`−s

∥∥C− s20 B
−1
λ C

− s
2

0 h
∥∥θ′

1−s

≤ cλ−θ′
∥∥h∥∥.

2.7 Posterior Contraction

In this section we employ the developments of the preceding sections to study the

posterior consistency of the Bayesian solution to the inverse problem. That is, we

consider a family of data sets y = y†n given by (2.1.10) and study the limiting

behaviour of the posterior measure µy
†
n

λ,n = N (m†, C) as n → ∞. Intuitively we

would hope to recover a measure which concentrates near the true solution u† in

this limit. Following the approach in [44], [28], [83] and [24], we quantify this idea

as in (2.1.12). By the Markov inequality we have

Ey
†
nµy

†
n

λ,n

{
u :
∥∥u− u†∥∥ ≥Mnεn

}
≤ 1

M2
nε

2
n

Ey
†
n

∫ ∥∥u− u†∥∥2
µy
†
n

λ,n(du),

so that it suffices to show that

Ey
†
n

∫ ∥∥u− u†∥∥2
µy
†
n

λ,n(du) ≤ cε2n. (2.7.1)

In addition to n−1, there is a second small parameter in the problem, namely the

regularization parameter, λ = 1
nτ2 , and we will choose a relationship between n and
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λ in order to optimize the convergence rates εn. We will show that determination of

optimal convergence rates follows directly from the operator norm bounds on B−1
λ

derived in the previous section, which concern only λ dependence; relating n to λ

then follows as a trivial optimization. Thus, the λ dependence of the operator norm

bounds in the previous section forms the heart of the posterior contraction analysis.

The relationship between λ and n will induce a relationship between τ and n, where

τ being the scaling parameter in the prior covariance is the relevant parameter in

the current Bayesian framework.

We now present our convergence results. In Theorem 2.7.1 we study the

convergence of the posterior mean to the true solution in a range of norms, while

in Theorem 2.7.2 we study the concentration of the posterior near the true solution

as described in (2.1.12). The proofs of Theorems 2.7.1 and 2.7.2 are provided later

in the current section. The two main convergence results, Theorems 2.2.2 and 2.2.3

follow as direct corollaries of Remark 2.7.3 and Theorems 2.7.1 and 2.7.2 respectively.

Theorem 2.7.1. Let u† ∈ X1. Under the Assumptions 2.3.1, we have that, for the

choice τ = τ(n) = n
θ2−θ1−1

2(θ1−θ2+2) and for any θ ∈ [0, 1]

Ey
†
n
∥∥m† − u†∥∥2

κ
≤ cn

θ+θ2−2
θ1−θ2+2 ,

where κ = (1− θ)(β− 2`) + θ. The result holds for any θ1, θ2 ∈ [0, 1], chosen so that

E(ι2) < ∞, for ι = max
{∥∥η∥∥

2β−2`−κ1
,
∥∥u†∥∥

2−κ2

}
, where κi = (1 − θi)(β − 2`) +

θi, i = 1, 2.

Theorem 2.7.2. Let u† ∈ X1. Under the Assumptions 2.3.1, we have that, for

τ = τ(n) = n
θ2−θ1−1

2(θ1−θ2+2) , the convergence in (2.1.12) holds with

εn = n
θ0+θ2−2

2(θ1−θ2+2) , θ0 =

{
2`−β

∆ , if β − 2` ≤ 0

0, otherwise.

The result holds for any θ1, θ2 ∈ [0, 1], chosen so that E(ι2) <∞, for

ι = max
{∥∥η∥∥

2β−2`−κ1
,
∥∥u†∥∥

2−κ2

}
, where κi = (1− θi)(β − 2`) + θi, i = 1, 2.

Remark 2.7.3. i) To get convergence in the PDE method we need E
∥∥u†∥∥2

2−κ2
<

∞ for a θ2 ≤ 1. Under the a priori information that u† ∈ Xγ, we need

γ ≥ 2−κ2 = 1+(1−θ2)∆ for some θ2 ∈ [0, 1]. Thus the minimum requirement

for convergence is γ = 1 in agreement to our assumption u† ∈ X1. On the

other hand, to obtain the optimal rate (which corresponds to choosing θ2 as

small as possible) we need to choose θ2 = ∆+1−γ
∆ . If γ > 1 + ∆ then the right
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hand side is negative so we have to choose θ2 = 0, hence we cannot achieve

the optimal rate. We say that the method saturates at γ = 1+∆ which reflects

the fact that the true solution has more regularity than the method allows us

to exploit to obtain faster convergence rates.

ii) To get convergence we also need E
∥∥η∥∥2

2β−2`−κ1
<∞ for a θ1 ≤ 1. By Lemma

2.3.5(iii), it suffices to have θ1 >
s0
∆ . This means that we need ∆ > s0, which

holds by the Assumption 2.3.1(2), in order to be able to choose θ1 ≤ 1. On the

other hand, since ∆ > 0 and s0 ≥ 0, we have that s0
∆ ≥ 0 thus we can always

choose θ1 in an optimal way, that is, we can always choose θ1 = s0+ε
∆ where

ε > 0 is arbitrarily small.

iii) If we want draws from µ0 to be in Xγ then by Lemma 2.3.3(ii) we need 1−s0 >

γ. Since the requirement for the method to give convergence is γ ≥ 1 while

1−s0 ≤ 1, we can never have draws exactly matching the regularity of the prior.

On the other hand if we want an undersmoothing prior (which according to [44]

in the diagonal case gives asymptotic coverage equal to 1) we need 1− s0 ≤ γ,

which we always have. This, as discussed in Section 2.1, gives an explanation

to the observation that in both of the above theorems we always have τ → 0 as

n→∞.

iv) When β − 2` > 0, in Theorem 2.7.2 and in Theorem 2.2.3 below, we get

suboptimal rates. The reason is that our analysis to obtain the error in the

X -norm is based on interpolating between the error in the Xβ−2`-norm and

the error in the X1-norm. When β − 2` > 0, interpolation is not possible

since the X -norm is now weaker than the Xβ−2`-norm. However, we can

at least bound the error in the X -norm by the error in the Xβ−2`-norm, thus

obtaining a suboptimal rate. Note, that the case β−2` > 0 does not necessarily

correspond to the well posed case: by Lemma 2.3.5 we can only guarantee that

a draw from the noise distribution lives in Xρ, ρ < β − s0, while the range

of A−1 is formally X2`. Hence, in order to have a well posed problem we

need β − s0 > 2`, or equivalently ∆ < 1 − s0. This can happen despite our

assumption ∆ > 2s0, when s0 < 1/3 and for appropriate choice of ` and β.

In this case, regularization is unnecessary.

Note that, since the posterior is Gaussian, the left hand side in (2.7.1) is the

Square Posterior Contraction

SPC = Ey
†
n
∥∥m† − u†∥∥2

+ Tr(C), (2.7.2)

45



which is the sum of the mean integrated squared error (MISE) of the posterior mean

and the posterior spread. Let u† ∈ X1. By Lemma 2.4.4, the relationship (2.1.10)

between u† and y†n and the equation (2.1.11) for m†, we obtain

Bλm† = A−1C−1
1 y†n = A−1C−1A−1u† +

1√
n
A−1C−1η

and Bλu† = A−1C−1A−1u† + λC−1
0 u†,

where the equations hold in X−1, since by a similar argument to the proof of Propo-

sition 2.4.5 we have m† ∈ X1. By subtraction we get

Bλ(m† − u†) =
1√
n
A−1C−1

1 η − λC−1
0 u†.

Therefore

m† − u† = B−1
λ

(
1√
n
A−1C−1

1 η − λC−1
0 u†

)
, (2.7.3)

as an equation in X1. Using the fact that the noise has mean zero and the relation

(2.1.6), equation (2.7.3) implies that we can split the square posterior contraction

into three terms

SPC =
∥∥λB−1

λ C
−1
0 u†

∥∥2
+ E

∥∥ 1√
n
B−1
λ A

−1C−1
1 η

∥∥2
+

1

n
Tr(B−1

λ ), (2.7.4)

provided the right hand side is finite. A consequence of the proof of Theorem 2.2.1

is that B−1
λ is trace class. Note that for ζ a white noise, we have that

Tr(B−1
λ ) = E

∥∥B− 1
2

λ ζ
∥∥2

= E
〈
ζ,B−1

λ ζ
〉

= E
〈
C
s
2
0 ζ, C

− s
2

0 B
−1
λ C

− s
2

0 C
s
2
0 ζ
〉

≤
∥∥C− s20 B

−1
λ C

− s
2

0

∥∥
L(X )

E
∥∥C s20 ζ∥∥2

,

which for s > s0 since by Lemma 2.3.3 we have that E
∥∥C s20 ζ∥∥2

< ∞, provides the

bound

Tr(B−1
λ ) ≤ c

∥∥C− s20 B
−1
λ C

− s
2

0

∥∥
L(X )

, (2.7.5)

where c > 0 is independent of λ. If q is chosen sufficiently small and r sufficiently

large so that
∥∥C− q2−1

0 u†
∥∥ <∞ and E

∥∥C r20 A−1C−1
1 η

∥∥2
<∞ then we see that

SPC ≤ c
(
λ2
∥∥B−1

λ

∥∥2

L(Xq ,X )
+

1

n

∥∥B−1
λ

∥∥2

L(X−r,X )
+

1

n

∥∥C− s20 B
−1
λ C

− s
2

0

∥∥
L(X )

)
, (2.7.6)
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where c > 0 is independent of λ and n. Thus identifying εn in (2.1.12) can be

achieved simply through properties of the inverse of Bλ and its parametric depen-

dence on λ.

In the following, we are going to study convergence rates for the square

posterior contraction, (2.7.4), which by the previous analysis will secure that

Ey
†
nµy

†
n

λ,n

{
u :
∥∥u− u†∥∥ ≥ εn}→ 0,

for ε2n → 0 at a rate almost as fast as the square posterior contraction. This suggests

that the error is determined by the MISE of the posterior mean and the trace of

the posterior covariance, thus we optimize our analysis with respect to these two

quantities. In [44] the situation where C0, C1 and A are diagonalizable in the same

eigenbasis is studied, and it is shown that the third term in equation (2.7.4) is

bounded by the second term in terms of their parametric dependence on λ. The

same idea is used in the proof of Theorem 2.7.2.

We now provide the proofs of Theorem 2.7.1 and Theorem 2.7.2.

Proof of Theorem 2.7.1. Since η has zero mean, we have by (2.7.3)

E
∥∥m† − u†∥∥2

β−2`
= λ2

∥∥B−1
λ C

−1
0 u†

∥∥2

β−2`
+

1

n
E
∥∥B−1

λ A
−1C−1

1 η
∥∥2

β−2`

and

E
∥∥m† − u†∥∥2

1
= λ2

∥∥B−1
λ C

−1
0 u†

∥∥2

1
+

1

n
E
∥∥B−1

λ A
−1C−1

1 η
∥∥2

1
.

Using Proposition 2.6.1 and Assumption 2.3.1(7), we get

E
∥∥m† − u†∥∥2

β−2`
≤ cE(ι2)(λ2−θ2 +

1

n
λ−θ1) = cE(ι2)(nθ2−2τ2θ2−4 + nθ1−1τ2θ1)

and

E
∥∥m† − u†∥∥2

1
≤ cE(ι2)(λ1−θ2 +

1

n
λ−θ1−1) =

cE(ι2)

λ
(nθ2−2τ2θ2−4 + nθ1−1τ2θ1).

Since the common parenthesis term, consists of a decreasing and an increasing term

in τ , we optimize the rate by choosing τ = τ(n) = np such that the two terms

become equal, that is, p = θ2−θ1−1
2(θ1−θ2+2) . We obtain,

E
∥∥m† − u†∥∥2

β−2`
≤ cE(ι2)n

θ2−2
θ1−θ2+2 and E

∥∥m† − u†∥∥2

1
≤ cE(ι2)n

θ2−1
θ1−θ2+2 .

By interpolating between the two last estimates we obtain the claimed rate.
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Proof of Theorem 2.7.2. Recall equation (2.7.4)

SPC =
∥∥λB−1

λ C
−1
0 u†

∥∥2
+ E

∥∥ 1√
n
B−1
λ A

−1C−1
1 η

∥∥2
+

1

n
Tr(B−1

λ ).

The idea is that the third term is always dominated by the second term. Combining

equation (2.7.5) with Proposition 2.6.2, we have that

1

n
Tr(B−1

λ ) ≤ c 1

n
λ−

2`−β+s
∆ , ∀s ∈ ({β − 2`} ∨ {s0}, 1].

i) Suppose β − 2` ≤ 0, so that by Proposition 2.6.1 we have, where θ0 = 2`−β
∆ ∈

[0, 1], using Assumption 2.3.1(7)

E
∥∥ 1√

n
B−1
λ A

−1C−1
1 η

∥∥2 ≤ c 1

n
E
∥∥η∥∥2

2β−2`−κ1
λ−θ1−θ0

and ∥∥λB−1
λ C

−1
0 u†

∥∥2 ≤ c
∥∥u†∥∥2

2−κ2
λ2−θ2−θ0 .

Note that θ1 is chosen so that E
∥∥η∥∥2

2β−2`−κ1
<∞, that is, by Lemma 2.3.5(iii),

it suffices to have θ1 >
s0
∆ . Noticing that by choosing s arbitrarily close to s0,

we can have 2`−β+s
∆ arbitrarily close to 2`−β+s0

∆ , and since θ1 + θ0 >
2`−β+s0

∆ ,

we deduce that the third term in equation (2.7.4) is always dominated by the

second term. Combining, we have that

SPC ≤ cE(ι2)

λθ0
(λ2−θ2 +

1

n
λ−θ1) =

cE(ι2)

λθ0
(nθ2−2τ2θ2−4 + nθ1−1τ2θ1).

ii) Suppose β−2` > 0. Using Proposition 2.6.1 and Assumption 2.3.1(7) we have

∥∥λB−1
λ C

−1
0 u†

∥∥2 ≤ c
∥∥λB−1

λ C
−1
0 u†

∥∥2

β−2`
≤ c
∥∥u†∥∥2

2−κ2
λ2−θ2

and

E
∥∥ 1√

n
B−1
λ A

−1C−1
1 η

∥∥2 ≤ cE
∥∥ 1√

n
B−1
λ A

−1C−1
1 η

∥∥2

β−2`

≤ c 1

n
E
∥∥η∥∥2

2β−2`−κ1
λ−θ1 ,

where as before θ1 >
s0
∆ . The third term in equation (2.7.4) is again dominated

by the second term, since on the one hand θ1 >
s0
∆ and on the other hand,

since β− 2` > 0, we can always choose {β− 2`}∨{s0} < s ≤ 1∧{s0 +β− 2`}
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to get 2`−β+s
∆ ≤ s0

∆ . Combining the three estimates we have that

SPC ≤ cE(ι2)(nθ2−2τ2θ2−4 + nθ1−1τ2θ1).

In both cases, the common term in the parenthesis consists of a decreasing and an

increasing term in τ , thus we can optimize by choosing τ = τ(n) = np making the

two terms equal, that is, p = θ1−θ2+1
2θ2−2θ1−4 , to get the claimed rates.

2.8 Examples

We now present some nontrivial examples satisfying Assumptions 2.3.1.

Let Ω ⊂ Rd, d = 1, 2, 3, be a bounded and open set. We define A0 :=

−∆, where ∆ is the Dirichlet Laplacian which is the Friedrichs extension of the

classical Laplacian defined on C2
0 (Ω), that is, A0 is a self-adjoint operator with

a domain D(A0) dense in X := L2(Ω) [50]. For ∂Ω sufficiently smooth we have

D(A0) = H2(Ω) ∩ H1
0 (Ω). It is well known that A0 has a compact inverse and

that it possesses an eigensystem {ρj , ej}∞j=1, where the eigenfunctions {ej} form a

complete orthonormal basis of X and the eigenvalues ρj are positive and behave

asymptotically like j
2
d [5].

In Subsections 2.8.1 and 2.8.2, we consider the inverse problem to find u from

y, where

y = z +
1√
n
η,

for z solving the partial differential equation

−∆z + qz = u in Ω,

z = 0 on ∂Ω,

that is, A0z + qz = u, where q is a nonnegative real function of certain regularity.

We choose prior and noise distributions with covariance operators which are not

simultaneously diagonalizable with the forward operator. Later on, in Subsection

2.8.3, we consider more complicated examples and in particular, we consider frac-

tional powers of the Dirichlet Laplacian in the forward operator, as well as more

general choices of prior and noise covariance operators.

Our general strategy for proving the validity of our norm equivalence as-

sumptions is:

i) if needed, use Proposition 2.8.6 below to reduce the range of spaces required

to check an assumption’s validity to a finite set of spaces;
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ii) reformulate the assumptions as statements regarding the boundedness of op-

erators of the form considered in Lemma 2.8.7 below.

The statement of Proposition 2.8.6, which is a well known result from interpolation

theory, and the statement and proof of Lemma 2.8.7 are postponed to Subsection

2.8.4.

2.8.1 Example 1 - Non-diagonal forward operator

We study the Bayesian inversion of the operator A−1 := (A0 + Mq)
−1 where

Mq : L2(Ω) → L2(Ω) is the multiplication operator by a nonnegative function

q ∈ W 2,∞(Ω). We assume that the observational noise is white, so that C1 = I,

and we set the prior covariance operator to be C0 = A−2
0 .

The operator C0 is trace class. Indeed, let λj = ρ−2
j be its eigenvalues. Then

they behave asymptotically like j−
4
d and

∑∞
j=1 j

− 4
d < ∞ for d < 4. Furthermore,

we have that
∑∞

j=1 λ
s
j ≤ c

∑∞
j=1 j

− 4s
d <∞, provided s > d

4 , that is, the Assumption

2.3.1(1) is satisfied with

s0 =


1/4, d = 1,

1/2, d = 2,

3/4, d = 3.

We define the Hilbert scale induced by C0 = A−2
0 , that is, (Xs)s∈R, for Xs :=M‖·‖s ,

where

M =
∞⋂
l=0

D(A2l
0 ),

〈
u, v
〉
s

:=
〈
As0u,As0v

〉
and ‖u‖s :=

∥∥As0u∥∥.
Observe, X0 = X = L2(Ω).

Our aim is to show that C1 ' Cβ0 and A−1 ' C`0, where β = 0 and ` = 1
2 ,

in the sense of the Assumptions 2.3.1. We have ∆ = 2` − β + 1 = 2. Since for

d = 1, 2, 3 we have 0 < s0 < 1, the Assumption 2.3.1(2) is satisfied. Moreover, note

that since C1 = I the Assumptions 2.3.1(4) and (5) are trivially satisfied.

We now show that Assumptions 2.3.1 (3), (6), (7) are also satisfied. In this

example the three assumptions have the form

3.
∥∥(A0 +Mq)

−1u
∥∥ � ∥∥A−1

0 u
∥∥, ∀u ∈ X−1;

6.
∥∥As0(A0 +Mq)

−1u
∥∥ ≤ c3

∥∥As−1
0 u

∥∥, ∀u ∈ Xs−1, ∀s ∈ (s0, 1];

7.
∥∥A−κ0 (A0 +Mq)

−1u
∥∥ ≤ c4

∥∥A−κ−1
0 u

∥∥, ∀u ∈ X−κ−1, ∀κ ∈ [−1, 1].

Observe that Assumption (6) is implied by Assumption (7).
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Proposition 2.8.1. The Assumptions 2.3.1 are satisfied in this example.

Proof. We only need to show that Assumptions (3) and (7) hold.

3. The assumption is equivalent to T := (A0 +Mq)
−1A0 and T −1 = A−1

0 (A0 +

Mq) being bounded in X . Since T −1 = I + A−1
0 Mq which is bounded in

X , we only need to show that T is bounded. Indeed, (A0 +Mq)
−1A0 =

(I +A−1
0 Mq)

−1, which is bounded by Lemma 2.8.7 applied for t = −1, s = 1.

7. By Proposition 2.8.6, it suffices to show T ∈ L(X )∩L(X1)∩L(X−1). We have

already shown that T ∈ L(X ). For T ∈ L(X1), note that it is equivalent to

A0T A−1
0 = (I +MqA−1

0 )−1 ∈ L(X ), which holds by Lemma 2.8.7 applied for

t = s = 1. Finally, for T ∈ L(X−1), note that it is equivalent to A−1
0 T A0 =

(I + A−2
0 MqA0)−1 ∈ L(X ), which holds by Lemma 2.8.7 applied for t =

−1, s = 1.

We can now apply Theorem 2.2.2 and Theorem 2.2.3 to get the following

convergence result.

Theorem 2.8.2. Let u† ∈ Xγ , γ ≥ 1. Then, for τ = τ(n) = n
4−d−4(γ∧3)−ε

8(γ∧3)+8+2d+2ε , the

convergence in (2.1.12) holds with εn = n−e, where

e =

{
2γ

4+d+4γ+2ε , if γ < 3
6

16+d+2ε , if γ ≥ 3,

for ε > 0 arbitrarily small and where d = 1, 2, 3, is the dimension. Furthermore, for

t ∈ [−1, 1), for the same choice of τ , we have E
∥∥m† − u†∥∥2

t
≤ cn−h, where

h =

{
4γ−4t

4+d+4γ+2ε , if γ < 3
12−4t

16+d+2ε , if γ ≥ 3.

For t = 1 the above rate holds provided γ > 1.

2.8.2 Example 2 - A fully non-diagonal example

As in Example 2.8.1, we study the Bayesian inversion of the operator A−1 =

(A0 +Mq)
−1, where Mq : L2(Ω) → L2(Ω) is the multiplication operator by a

nonnegative function q ∈ W 2,∞(Ω). We assume that the observational noise is

Gaussian with covariance operator C1 := (A
1
4
0 +Mr)

−2, whereMr : L2(Ω)→ L2(Ω)

is the multiplication operator by another nonnegative function r ∈ W 4,∞(Ω). As
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before, we set the prior covariance operator to be C0 = A−2
0 , thus the Assumption

2.3.1(1) is satisfied with the same s0 and we work in the same Hilbert scale (Xs)s∈R.

We show that C1 ' Cβ0 and A−1 ' C`0, where β = 1
4 and ` = 1

2 , in the sense of

the Assumptions 2.3.1(3)-(7). First note that we have ∆ = 2`−β+ 1 = 7
4 > 2s0 for

d = 1, 2, 3, so that the Assumption 2.3.1(2) is satisfied. The rest of the assumptions

have the form

3.
∥∥(A

1
4
0 +Mr)(A0 +Mq)

−1u
∥∥ � ∥∥A− 3

4
0 u

∥∥, ∀u ∈ X− 3
4 ;

4.
∥∥Aρ0(A

1
4
0 +Mr)

−1u
∥∥ ≤ c1

∥∥Aρ− 1
4

0 u
∥∥, ∀u ∈ Xρ− 1

4 , ∀ρ ∈ [d−s0 − 3
4e,

1
4 − s0);

5.
∥∥A−s0 (A

1
4
0 +Mr)u

∥∥ ≤ c2

∥∥A 1
4
−s

0

∥∥, ∀u ∈ X 1
4
−s, ∀s ∈ (s0, 1];

6.
∥∥As0(A

1
4
0 +Mr)(A0 +Mq)

−1u
∥∥ ≤ c3

∥∥As− 3
4

0 u
∥∥, ∀u ∈ Xs− 3

4 , ∀s ∈ (s0, 1];

7.
∥∥A−κ0 (A0 +Mq)

−1(A
1
4
0 +Mr)

2u
∥∥ ≤ c4

∥∥A−κ− 1
2

0 u
∥∥, ∀u ∈ X−κ− 1

2 , ∀κ ∈ [−3
4 , 1].

Proposition 2.8.3. The Assumptions 2.3.1 are satisfied in this example.

Proof. We have already seen that the first two assumptions are satisfied.

3. We need to show that T := (A
1
4
0 +Mr)(A0 +Mq)

−1A
3
4
0 and T −1 are bounded

operators in X . Indeed, T = (I +MrA
− 1

4
0 )(I + A−

3
4

0 MqA
− 1

4
0 )−1 which is

bounded by Lemma 2.8.7 applied for t = s = 1
4 and t = 1

4 , s = 1. For T −1 we

have, T −1 = (I +A−
3
4

0 MqA
− 1

4
0 )(I +MrA

− 1
4

0 )−1, which again by Lemma 2.8.7

is the composition of two bounded operators.

4. Since 1
4 − s0 = 0,−1

4 ,−
1
2 for d = 1, 2, 3 respectively, it suffices to show that

it holds for all ρ ∈ [−1, 0]. By Proposition 2.8.6 it suffices to show that

T := (A
1
4
0 +Mr)

−1A
1
4
0 ∈ L(X ) ∩ L(X−1). This is equivalent to showing that

T = (I +A−
1
4

0 Mr)
−1 and A−1

0 T A0 = (I +A−
5
4

0 MrA0)−1 are bounded in X ,

which holds by Lemma 2.8.7.

5. By Proposition 2.8.6 it suffices to show that T := (A
1
4
0 +Mr)A

− 1
4

0 ∈ L(X ) ∩
L(X−1). Indeed, T = I +MrA

− 1
4

0 ∈ L(X ). On the other hand, to show T ∈
L(X−1) it is equivalent to show that A−1

0 T A0 ∈ L(X). Indeed, A−1
0 T A0 =

I +A−1
0 MrA

3
4
0 which is bounded by Lemma 2.8.7.

6. By Proposition 2.8.6 it suffices to show that T := (A
1
4
0 +Mr)(A0+Mq)

−1A
3
4
0 ∈

L(X ) ∩ L(X1). Indeed, we have already shown in part (3) of the current

proof that T ∈ L(X ). To show T ∈ L(X1) it is equivalent to show that
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A0T A−1
0 ∈ L(X ). Indeed, A0T A−1

0 = (I + A0MrA
− 5

4
0 )(I + A

1
4
0MqA

− 5
4

0 )−1

which by Lemma 2.8.7 is the composition of two bounded operators in X ..

7. By Proposition 2.8.6 it suffices to show that T := (A0+Mq)
−1(A

1
4
0 +Mr)

2A
1
2
0 ∈

L(X ) ∩ L(X−1) ∩ L(X1). We start by showing T ∈ L(X ). Indeed, we have

T = (I+A−1
0 Mq)

−1(I+A−1
0 MrA

3
4
0 )(I+A−

3
4

0 MrA
1
2
0 ), which by Lemma 2.8.7,

is the composition of three bounded operators. For showing T ∈ L(X−1)

it is equivalent to show that A−1
0 T A0 ∈ L(X ). Indeed, A−1

0 T A0 = (I +

A−2
0 MqA0)−1(I+A−2

0 MrA
7
4
0 )(I+A−

7
4

0 MrA
3
2
0 ), which by Lemma 2.8.7, is the

composition of three bounded operators. Finally, we show that T ∈ L(X1) or

equivalentlyA0T A−1
0 ∈ L(X ). Indeed we haveA0T A−1

0 = (I+MqA−1
0 )−1(I+

MrA
− 1

4
0 )(I + A

1
4
0MrA

− 1
2

0 ), which again by Lemma 2.8.7, is the composition

of three bounded operators.

We can now apply Theorem 2.2.2 and Theorem 2.2.3 to get the following

convergence result.

Theorem 2.8.4. Let u† ∈ Xγ , γ ≥ 1. Then, for τ = τ(n) = n
4−d−(4γ∧11)−ε

(8γ∧22)+6+2d+2ε , the

convergence in (2.1.12) holds with εn = n−e, where

e =

{
2γ

3+d+4γ+2ε , if γ < 11
4

11
28+2d+2ε , if γ ≥ 11

4 ,

for ε > 0 arbitrarily small and where d = 1, 2, 3, is the dimension. Furthermore, for

t ∈ [−3
4 , 1), for the same choice of τ , we have E

∥∥m† − u†∥∥2

t
≤ cn−h, where

h =

{
4γ−4t

3+d+4γ+2ε , if γ < 11
4

22−8t
28+2d+2ε , if γ ≥ 11

4 .

For t = 1 the above rate holds provided γ > 1.

2.8.3 Example 3 - More general lower order perturbations case

We now study the Bayesian inversion of the operator A = A`α0 +Mq for ` > 0, α > d
2

and where Mq : L2(Ω) → L2(Ω) is the multiplication operator by a nonnegative

function q ∈ W aq ,∞(Ω) where aq > 0 is sufficiently large. We assume that the

observational noise is Gaussian with covariance operator C1 := (A
βα
2

0 + Mr)
−2,

where β > 0 and Mr : L2(Ω) → L2(Ω) is the multiplication operator by another
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nonnegative function r ∈ W ar,∞(Ω) and ar is sufficiently large. We set the prior

covariance operator to be C0 = A−α0 , hence since α > d
2 we have that C0 is trace

class and Assumption 2.3.1(1) is satisfied with s0 = d
2α . We work in the Hilbert

scale (Xs)s∈R, induced by the operator A−
α
2

0 .

We show that C1 ' Cβ0 and A−1 ' C`0, in the sense of the Assumptions 2.3.1.

First note that the Assumption 2.3.1(2) is satisfied provided ∆ = 1 + 2` − β > d
α .

The rest of the assumptions have the form

3.
∥∥(A

βα
2

0 +Mr)(A`α0 +Mq)
−1u

∥∥ � ∥∥Aαβ−2`
2

0 u
∥∥, ∀u ∈ Xβ−2`;

4.
∥∥A ρα

2
0 (A

βα
2

0 +Mr)
−1u

∥∥ ≤ c1

∥∥Aα ρ−β2
0 u

∥∥, ∀u ∈ Xρ−β, ∀ρ ∈ [dβ− d
2α−1e, β− d

2α);

5.
∥∥A− sα20 (A

βα
2

0 +Mr)u
∥∥ ≤ c2

∥∥Aαβ−s2
0

∥∥, ∀u ∈ Xβ−s,∀s ∈ ( d
2α , 1];

6.
∥∥A sα

2
0 (A

βα
2

0 +Mr)(A`α0 +Mq)
−1u

∥∥ ≤ c3

∥∥Aα s+β−2`
2

0 u
∥∥, ∀u ∈ Xs+β−2`, ∀s ∈

( d
2α , 1];

7.
∥∥A− ηα20 (A`α0 +Mq)

−1(A
βα
2

0 +Mr)
2u
∥∥ ≤ c4

∥∥Aα 2β−2`−η
2

0 u
∥∥, ∀u ∈ Xβ−`−η, ∀η ∈

[β − 2`, 1].

Proposition 2.8.5. The Assumptions 2.3.1 are satisfied in this example for aq =

aq(α, β, `) and ar = ar(α, β, `) sufficiently large, provided 1 + 2`− β > d
α .

Proof. We have already discussed the first two assumptions.

3. We need to show that T := (A
βα
2

0 +Mr)(A`α0 +Mq)
−1Aα

2`−β
2

0 and T −1 are

bounded operators in X . Indeed, T = (I+MrA
−βα

2
0 )(I+Aα

β−2`
2

0 MqA
−βα

2
0 )−1,

which is bounded by Lemma 2.8.7 applied for t = s = βα
2 and t = βα

2 , s = `α.

For T −1 we have, T −1 = (I+Aα
β−2`

2
0 MqA

−βα
2

0 )(I+MrA
−βα

2
0 )−1, which again

by Lemma 2.8.7 is the composition of two bounded operators.

4. Depending on the value of β− d
2α we determine integer σ such that by interpo-

lation theory it suffices to show that T := (A
βα
2

0 +Mr)
−1A

βα
2

0 ∈ L(X )∩L(Xσ).

This is equivalent to showing that T = (I +A−
βα
2

0 Mr)
−1 and A

σα
2

0 T A
−σα

2
0 =

(I +Aα
σ−β

2
0 MrA

−σα
2

0 )−1 are bounded in X , which holds by Lemma 2.8.7.

5. By Proposition 2.8.6, it suffices to show that T := (A
βα
2

0 +Mr)A
−βα

2
0 ∈ L(X )∩

L(X−1). Indeed, T = I +MrA
−βα

2
0 ∈ L(X ). On the other hand, to show T ∈

L(X−1) it is equivalent to show that A−
α
2

0 T A
α
2
0 ∈ L(X). Indeed, A−

α
2

0 T A
α
2
0 =

I +A−
α
2

0 MrA
α
2
0 A
−βα

2
0 , which is bounded by Lemma 2.8.7.
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6. By Proposition 2.8.6, it is sufficient to show that T := (A
βα
2

0 +Mr)(A`α0 +

Mq)
−1Aα

2`−β
2

0 ∈ L(X ) ∩ L(X1). Indeed, we have already shown in part (3)

of the current proof that T ∈ L(X). To show T ∈ L(X1) it is equivalent to

show that A
α
2
0 T A

−α
2

0 ∈ L(X ). Indeed, A
α
2
0 T A

−α
2

0 = (I +A
α
2
0 MrA

−α 1+β
2

0 )(I +

Aα
β+1−2`

2
0 MqA

−α 1+β
2

0 )−1 which by Lemma 2.8.7 is the composition of two

bounded operators in X .

7. By Proposition 2.8.6, it suffices to show that T := (A`α0 +Mq)
−1(A

βα
2

0 +

Mr)
2Aα(`−β)

0 ∈ L(X ) ∩ L(Xσ) ∩ L(X−1) where σ = d2` − βe ≥ −1. Note

that σ is either equal to zero or a positive integer, by the assumption ∆ > 0.

If σ = 0, that is, if β − 2` ≥ 0, then we only need to show T ∈ L(X ) ∩
L(X−1). We start by showing T ∈ L(X ). Indeed, we have T = (I +

A−`α0 Mq)
−1(I + A−`α0 MrA

α 2`−β
2

0 )(I + Aα
β−2`

2
0 MrAα(`−β)

0 ), which by Lemma

2.8.7 is the composition of three bounded operators. For showing T ∈ L(X−1)

it is equivalent to show that A−
α
2

0 T A
α
2
0 ∈ L(X ). Indeed, A−

α
2

0 T A
α
2
0 = (I +

A−α
1+2`

2
0 MqA

α
2
0 )−1(I+A−α

1+2`
2

0 MrA
α 1+2`−β

2
0 )(I+Aα

β−1−2`
2

0 MrA
α 1+2`−2β

2
0 ), which

again by Lemma 2.8.7 is the composition of three bounded operators. Finally,

if σ > 0, we need to show that T ∈ L(Xσ) or equivalentlyA
σα
2

0 T A
−σα

2
0 ∈ L(X ).

Indeed, A
σα
2

0 T A
−σα

2
0 = (I+A−α

2`−σ
2

0 MqA
−σα

2
0 )−1(I+A−α

2`−σ
2

0 MrA
α 2`−β−σ

2
0 )(I+

Aα
β+σ−2`

2
0 MrA

α 2`−2β−σ
2

0 ), which once more by Lemma 2.8.7 is the composition

of three bounded operators.

Observe that the application of Lemma 2.8.7 imposes conditions on the values of aq

and ar which we do not make explicit in this general case. It is straightforward to

determine these conditions once the values of α, β and ` are known.

Note that we require `, β > 0 for our compactness arguments to work, how-

ever, the cases β = 0 and/or ` = 0 also work using a slightly modified proof.

As in the previous examples, one can apply Theorem 2.2.2 and Theorem 2.2.3

to get the corresponding convergence results. We do this only for Theorem 2.2.3

and for dimension d = 1. In this case we have that the spaces Xt can be identified

with Htα, where the spaces Ht are defined in Subsection 2.3.2 and are often termed

as Sobolev-classes in the statistical literature, [14]. Using Theorem 2.2.3 we get the

following result which holds for C0 = A−α0 ,A = Aˆ̀
0 +Mq, C1 = (A

β̂
2
0 +Mr)

−2, where

α > 1
2 and ˆ̀, β̂ ≥ 0 such that α+ 2ˆ̀− β̂ > 1, provided the nonnegative functions q

and r are sufficiently regular:
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Theorem 2.8.1. Assume that u† ∈ Hγ̂, where γ̂ ≥ α. Then for

τ = τ(n) = n
− 2γ̂∧(2α+2ˆ̀−β̂)−2α+1+ε

8ˆ̀−4β̂+4(γ̂∧(2α+2ˆ̀−β̂))+2+2ε ,

where ε > 0 arbitrarily small, we have that the convergence in (2.1.12) holds with

εn = n−e, where

e =


γ̂∧(2α+2ˆ̀−β̂)

4ˆ̀−2β̂+2(γ̂∧(2α+2ˆ̀−β̂))+1+ε
, if β̂ − 2ˆ̀≤ 0

2ˆ̀−β̂+γ̂∧(2α+2ˆ̀−β̂)

4ˆ̀−2β̂+2(γ̂∧(2α+2ˆ̀−β̂))+1+ε
, otherwise.

Remark 2.8.2. In the simultaneously diagonalizable case where the functions q and

r are the zero functions (see Example 2.3.2), we have that α̂ = α − 1
2 and β̂ − 1

2

are the Sobolev regularities of the prior and noise respectively, and p = 2ˆ̀− β̂ is the

degree of ill-posedness in the sense of [14]. One can then use the last theorem to get

the contraction rate for a truth u† ∈ Hγ̂: εn = n−e where

e =


γ̂∧(1+2α̂+p)

1+2(γ̂∧(1+2α̂+p))+2p+ε , if p ≥ 0

γ̂∧(1+2α̂+p)+p
1+2(γ̂∧(1+2α̂+p))+2p+ε , otherwise.

In this form, our rates can be directly compared to the minimax rates contained in

[14] as well as the rates obtained in [44]. We elaborate further on this comparison

in Section 2.9.

2.8.4 Technical results from interpolation theory

Let (Y s)s∈R be the Hilbert scale induced by a self-adjoint positive definite linear

operator Q ∈ L(X ) (cf. Section 2.3), where X is a separable Hilbert space. The

following result holds [53, Theorems 4.36, 1.18, 1.6]:

Proposition 2.8.6. For any t > 0, the couples (X , Y t) and (X , Y −t) are interpo-

lation couples and for every θ ∈ [0, 1] we have (X , Y t)θ,2 = Y θt and (X , Y −t)θ,2 =

Y −θt. In particular, for any s ∈ R, if T ∈ L(X ) ∩ L(Y s) then T ∈ L(Y θs) for any

θ ∈ [0, 1].

Let X = L2(Ω), where Ω ⊂ Rd bounded open. Let w ∈ W aw,∞(Ω) be a

nonnegative function and define the multiplication operator Mw : X → X . Note
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that by the Hölder inequality the operator Mw is bounded. The last proposition,

implies the following lemma.

Lemma 2.8.7. For any t ∈ R, At0MwA−t0 is a bounded operator in X , provided

aw ≥ 2d|t|e. Furthermore, for any s > 0 the operators K1 := At0MwA−t−s0 and

K2 := At−s0 MwA−t0 are compact in X and (I +Ki)
−1, i = 1, 2, are bounded in X .

Proof. We begin by showing that At0MwA−t0 ∈ L(X ), for t ∈ [−1, 1]. By the

last proposition applied for Q = A−2
0 , T = Mw, and since Mw is bounded, it

suffices to show that A−1
0 MwA0 and A0MwA−1

0 are bounded in X . In fact it suf-

fices to show that A0MwA−1
0 is bounded since

∥∥A−1
0 MwA0

∥∥ =
∥∥(A−1

0 MwA0)∗
∥∥ =∥∥A0MwA−1

0

∥∥. Indeed, since A0 = −∆,

∥∥A0MwA−1
0 φ

∥∥ =
∥∥∆MwA−1

0 φ
∥∥ =

∥∥(∆w)A−1
0 φ+ 2(∇w) · (∇A−1

0 φ) + w∆A−1
0 φ

∥∥
≤
∥∥w∥∥

W 2,∞(Ω)
(
∥∥A−1

0 φ
∥∥+

∥∥∇A−1
0 φ

∥∥+
∥∥φ∥∥) ≤ c

∥∥w∥∥
W 2,∞(Ω)

∥∥φ∥∥.
For general t ∈ R, let t = d|t|e ∈ N, then as before it suffices to show that At0MwA−t0

is bounded in X . Again, using the fact that A0 = −∆, we have by the product rule

for derivatives that At0MwA−t0 is bounded, provided w ∈W 2t,∞(Ω).

The operators Ki are compact in X , since they are compositions between

the compact operator A−s0 and the bounded operator At0MwA−t0 . Positivity of the

operator A0 and nonnegativity of the operator Mw show that −1 cannot be an

eigenvalue of Ki, so that by the Fredholm Alternative [33, §27, Theorem 7] we have

that (I +Ki)
−1, i = 1, 2, are bounded in X .

2.9 The Diagonal Case

In the case where C0, C1 and A, are all diagonalizable in the same eigenbasis our as-

sumptions are trivially satisfied, provided ∆ > 2s0. In [44], sharp convergence rates

are obtained for the convergence in (2.1.12), in the case where the three relevant op-

erators are simultaneously diagonalizable and have spectra that decay algebraically;

the authors only consider the case C1 = I since in this diagonal setting the colored

noise problem can be reduced to the white noise one. The rates in [44] agree with

the minimax rates provided either the scaling of the prior is optimally chosen or

the scaling is fixed and the prior matches exactly the regularity of the truth, [14].

In Figure 2.1 (cf. Section 2.2) we have in green the optimized rates of convergence

predicted by Theorem 2.2.3 (see Remark 2.8.2 which contains the rates obtained by

our method in this diagonal mildly ill-posed setting) and in blue the sharp conver-
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gence rates from [44], plotted against the regularity of the true solution, u† ∈ Xγ ,

in the case where β = ` = 1
2 and C0 has eigenvalues that decay like j−2. In this case

s0 = 1
2 and ∆ = 3

2 , so that ∆ > 2s0.

As explained in Remark 2.7.3, the minimum regularity for our method to

work is γ = 1 and our rates saturate at γ = 1 + ∆, that is, in this example at

γ = 2.5. We note that for γ ∈ [1, 2.5] our rates agree, up to ε > 0 arbitrarily small,

with the sharp rates obtained in [44], for γ > 2.5 our rates are suboptimal and for

γ < 1 the method fails. In [44], the convergence rates are obtained for γ > 0 and

the saturation point is at γ = 2∆, that is, in this example at γ = 3. In general the

PDE method can saturate earlier (if 2`−β > 0), at the same time (if 2`−β = 0), or

later (if 2` − β < 0) compared to the diagonal method presented in [44]. However,

the case 2` − β < 0 in which our method saturates later, is also the case in which

our rates are suboptimal, as explained in Remark 2.7.3(iv).

The discrepancies can be explained by the fact that in Proposition 2.6.1, the

choice of θ which determines both the minimum requirement on the regularity of

u† and the saturation point, is the same for both of the operator norm bounds.

This means that on the one hand to get convergence of the term
∥∥λB−1

λ C
−1
0 u†

∥∥ in

equation (2.7.4) in the proof of Theorem 2.7.2, we require conditions which secure

the convergence in the stronger X1-norm and on the other hand the saturation rate

for this term is the same as the saturation rate in the weaker Xβ−2`-norm. For

example, when β − 2` = 0 the saturation rate in the PDE method is the rate of the

X -norm hence we have the same saturation point as the rates in [44]. In particular,

we have agreement of the saturation rate when β = ` = 0, which corresponds to the

problem where we directly observe the unknown function polluted by white noise

(termed the white noise model).

Finally, we include in Appendix A another diagonal example which corre-

sponds to the severely ill-posed case with Gaussian priors of analytic regularity.

2.10 Conclusions

We have presented a new method of identifying the posterior distribution in a conju-

gate Gaussian Bayesian linear inverse problem setting (Section 2.2 and Section 2.5).

We used this identification to examine the posterior consistency of the Bayesian

approach in a frequentist sense (Section 2.2 and Section 2.7). We provided conver-

gence rates for the convergence of the expectation of the mean error in a range of

norms (Theorem 2.7.1, Theorem 2.2.2). We also provided posterior contraction rates

(Theorem 2.7.2, Theorem 2.2.3). Our methodology assumed a relation between the
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prior covariance, the noise covariance and the forward operator, expressed in the

form of norm equivalence relations (Assumptions 2.3.1). We considered Gaussian

noise which can be white. In order for our methods to work we required a certain

degree of ill-posedness compared to the regularity of the prior (Assumption 2.3.1(2))

and for the convergence rates to be valid a certain degree of regularity of the true

solution. In the case where the three involved operators are all diagonalizable in

the same eigenbasis, when the problem is mildly ill-posed with a sufficiently large

degree of ill-posedness with respect to the prior, and for a range of values of γ,

the parameter expressing the regularity of the true solution, our rates agree (up to

ε > 0 arbitrarily small) with the sharp (minimax over Sobolev classes) convergence

rates obtained in [44] (Section 2.9). Furthermore, again in the simultaneously di-

agonalizable setting, if the prior has analytic regularity and the problem is severely

ill-posed, then our rates agree (up to ε > 0 arbitrarily small) with the minimax rates

for severely ill-posed problems over analytic classes (see Appendix A).

Our optimized rates rely on rescaling the prior depending on the size of

the noise, achieved by choosing the scaling parameter τ2 in the prior covariance as

an appropriate function of the parameter n−
1
2 multiplying the noise. However, the

relationship between τ and n depends on the unknown regularity of the true solution

γ, which raises the question how to optimally choose τ in practice. An attempt to

address this question in a similar but more restrictive setting than ours is taken

in [24], where an empirical Bayes maximum likelihood based procedure giving a

data driven selection of τ is presented. Moreover, in [79] both the hierarchical

approach for simultaneous inference on τ and the unknown u and an empirical

Bayes approach for estimating τ from the data, are considered in the white noise

model with Gaussian priors of Sobolev regularity; it is shown that in both cases

the resulting posterior contracts at the minimax rate when the truth is in a range

of spaces determined by the regularity of the prior. A different approach is taken

in [43] in the more general simultaneously diagonalizable mildly ill-posed case with

priors of Sobolev regularity. As discussed in [44], for a fixed value of τ independent

of n, the rates are optimal only if the regularity of the prior exactly matches the

regularity of the truth. In [43], the hierarchical approach for simultaneous inference

on the regularity of the prior and the unknown u and an empirical Bayes method

for choosing the regularity of the prior from the data are presented; both methods

are shown to give minimax rates over both Sobolev and analytic regularity classes

up to slowly varying terms.

A potential extension of our method for obtaining posterior contraction rates

to empirical and hierarchical Bayesian approaches of the type discussed in the last
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paragraph is limited by our requirement that the truth is in the Cameron-Martin

space of the prior; more research is needed in order to sidestep this assumption

on the regularity of the truth. In Chapter 4 we investigate a different aspect of

hierarchical Bayesian approaches to inverse problems and in particular we study the

implementation of hierarchical methods with conjugate priors and hyper-priors for

inference simultaneously on the unknown u, the scaling parameter of the prior τ

and the noise level n−
1
2 .

The methodology presented in this chapter is extended to drift estimation

for diffusion processes in [64]. Future research includes the extension to an abstract

setting which includes both the present chapter and [64] as special cases. Other

possible directions are the consideration of nonlinear inverse problems, the use of

non-Gaussian priors and/or noise and the extension of the credibility analysis pre-

sented in [44] to a more general setting.

Finally, we remark that our assumption that the forward operator is of the

form A−1 where A is a self-adjoint positive definite operator with bounded inverse

can be relaxed to include forward operators K which are bounded and injective.

Such a generalization requires some straightforward modifications to the formulae

and norm equivalence assumptions; in particular, whenever the forward operator K

appears in front of the noise covariance operator C1, it needs to be replaced by its

adjoint operator K∗. The assumption that A is self-adjoint and positive definite

was made because we had in mind examples of the type considered in Section 2.8;

however, an inspection of our proofs shows that it was never used.
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Chapter 3

Bayesian Posterior Contraction

Rates for Linear Severely

Ill-Posed Inverse Problems

3.1 Introduction

Let X be an infinite dimensional separable Hilbert space and let K : X → X be an

injective compact linear operator with non-closed range. We consider the ill-posed

inverse problem of finding u from data y, where

y = Ku+ η, (3.1.1)

and where η represents noise. The problem (3.1.1) is called mildly or modestly ill-

posed if the singular values of the forward mapping K decay algebraically, while it

is called severely ill-posed if the singular values of K decay exponentially [22]. Our

interest is focussed on the severely ill-posed case, and on the small observational

noise limit.

The use of classical (deterministic) regularization methods for (3.1.1), and

the small-noise limit in particular, is well-studied in both the mildly ill-posed [22] and

severely ill-posed [36] cases; nonlinear inverse problems have also been studied from

this perspective [22]. However, if we wish to incorporate information concerning

the statistical structure of the noise and solution, then it is natural to adopt a

Bayesian perspective. The Bayesian approach to linear ill-posed inverse problems

was adopted in [25], in which the severely ill-posed problem of inverting the heat

kernel was considered, and then developed systematically in [54, 52]. More recently,
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nonlinear inverse problems have been given a Bayesian formulation [46, 78, 47, 48].

However, the study of the small noise limit, known as posterior consistency in the

Bayesian context, is an under-developed aspect of the Bayesian methodology for

inverse problems. Our work adds to the growing literature in this area.

For mildly ill-posed linear problems, subject to Gaussian observational noise,

Bayesian posterior consistency is considered in the recent papers [44, 3]∗. In [44],

sharp contraction rates are obtained for white observational noise when the forward

operator K and the prior covariance operator are simultaneously diagonalizable;

this allows the analysis to proceed through the study of an infinite set of uncoupled

scalar linear inverse problems. In [3]∗, the setting of [44] is generalized to allow for

non-white noise and operators which are not simultaneously diagonalizable, using

tools from PDE theory. The paper [45] is, to the best of the authors’ knowledge,

the first to study Bayesian posterior consistency for severely ill-posed problems. It

concerns the one-dimensional backward heat equation with white noise, where the

j-th eigenvalue of the (self-adjoint) forward mapping decays like e−j
2

and works in

the simultaneously diagonalizable paradigm of [44]. In this chapter, we generalize

the work in [45] by studying Bayesian posterior consistency for a class of severely

ill-posed inverse problems in which the j-th singular value of K decays as e−sj
b

for arbitrary positive s and b, again working in the simultaneously diagonalizable

paradigm of [44]. In addition to the backward heat equation considered in [45]

(b = 2), there are a variety of ill-posed inverse problems covered by our theory. For

instance, the Cauchy problem for the Laplace equation and the Cauchy problem

for the Helmholtz equation or the modified Helmholtz equation (see [88] and the

references therein): the eigenvalue decay of the forward mapping for these three

examples corresponds to b = 1. Our analysis is inspired by both the problem and

techniques used in [45]; however our generalized setting leads to some technical

improvements in the proofs, we discuss new results relating to the equivalence of

the prior and posterior and we include a numerical illustration for the Helmholtz

equation.

The rest of this chapter is organized as follows. In Section 3.2 we introduce

notation and give informal calculations for the posterior mean and covariance oper-

ator. In Section 3.3 we characterize the posterior distribution rigorously and show

that it is equivalent, in the sense of measures, to the prior – see Theorems 3.3.1 and

3.3.2. In Section 3.4 we present the main results concerning posterior consistency,

characterizing the error in the mean in Theorem 3.4.1, the contraction of the pos-

terior covariance in Theorem 3.4.2 and putting these together to estimate posterior

∗[3] is Chapter 2 in the current thesis.
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contraction rates in Theorem 3.4.3. Some technical lemmas which are essential to

the proof of Theorems 3.4.1, 3.4.2 and 3.4.3 are attached at the end of this section.

In Section 3.5 contains a simple example for which the theoretical analysis can be

applied and includes a numerical experiment which is consistent with the theory.

Finally, Section 3.6 contains concluding remarks.

3.2 Notation and Problem Setting

3.2.1 Notation

Throughout the chapter, 〈·, ·〉 and ‖ · ‖ denote the inner product and norm of the

Hilbert space X . For two sequences kj and hj of real numbers, kj � hj means that
|kj |
|hj | is bounded from above and below as j →∞, kj . hj means that

kj
hj

is bounded

from above as j → ∞, and kj ∼ hj means that
kj
hj
→ 1 as j → ∞. We will use M

to denote a constant which is different from occurrence to occurrence.

Let {φj}∞j=1 denote an orthonormal basis in X . Then we can express an

element u ∈ X as u =
∞∑
j=1

ujφj where uj = 〈u, φj〉. For γ ≥ 0 we define the

Sobolev-like spaces

Hγ = {u ∈ X :

∞∑
j=1

j2γu2
j <∞},

with norm ‖ · ‖Hγ given by

‖u‖2Hγ :=
∞∑
j=1

j2γu2
j .

For γ < 0, we define the spaces Hγ by duality: Hγ = (H−γ)∗.

In the following we consider random variables drawn from Gaussian distri-

butions in X , denoted by N (θ,Σ) where the mean θ is an element of X and the

covariance operator Σ is a positive definite, self-adjoint, trace class, linear operator

in X . The operator Σ possesses an infinite set of eigenfunctions {φj}j∈N which cor-

respond to positive eigenvalues {σj}j∈N and which form an orthonormal basis of X .

One can express a draw x from N (θ,Σ) using the Karhunen-Loeve expansion as

x = θ +

∞∑
j=1

√
σjξjφj , (3.2.1)

where ξj are independent and identically distributed N (0, 1) real random variables,

[17, 78]. In particular, the expansion coefficients xj = θj +
√
σjξj are N (θj , σj) real

random variables and it is straightforward to see that E
∥∥x∥∥2

=
∥∥θ∥∥2

+ Tr(Σ) and
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that for any bounded linear operator T in X , Tx is distributed as N (Tθ, TΣT ∗). It

is also straightforward to check that if θ = 0 and σj = j−2r for some r ∈ R, then

x ∈ Hγ almost surely , for any γ < r − 1
2 .

3.2.2 Bayesian setting and informal charaterization of the posterior

In this subsection we describe the assumptions underlying the Bayesian formulation

of the linear inverse problem. Furthermore we provide informal calculations which

motivate the expressions for the posterior mean and covariance. These will be made

precise in Section 3.3.

We place a scaled Gaussian prior on the unknown u of the form µ0 :=

N (0, τ2C0), where τ > 0 is a scale parameter and C0 is a self-adjoint, positive-

definite, trace class, linear operator on X . We assume Gaussian observational noise

in (3.1.1) which is independent of u. In particular, we model the data as

y = Ku+
1√
n
η, (3.2.2)

that is we have η = 1√
n
η in (3.1.1), where 1√

n
is a scale parameter modelling the

noise level and η is a random variable independent of u and distributed as N (0, C1).

The linear operator C1 is assumed to be self-adjoint, positive-definite, bounded, but

not necessarily trace class on X . This allows for the possibility of having irregular

noise which is not in X . For example, the case where η is white noise corresponds to

C1 = I, and can be viewed as a Gaussian random variable in H−r for r > 1
2 . Under

these assumptions, the conditional distribution of y|u, called the data likelihood, is

the translation of N (0, C1) by Ku, which is also Gaussian:

N (Ku,
1

n
C1). (3.2.3)

In finite dimensions the density of the posterior distribution, that is the

conditional distribution of u|y, is found from Bayes rule to be proportional to

exp(−J (u; y)), where

J (u; y) =
n

2
‖C−

1
2

1 (y −Ku)‖2 +
1

2τ2
‖C−

1
2

0 u‖2. (3.2.4)

This suggests that in our infinite dimensional setting, the posterior distribution is

Gaussian, µy := N (m, C), where the mean m and covariance C can be informally
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derived from (3.2.4) using completion of the square:

C−1 = nK∗C−1
1 K +

1

τ2
C−1

0 , (3.2.5)

and
1

n
C−1m = K∗C−1

1 y. (3.2.6)

Observe that the posterior mean m is the minimizer of the functional J (u; y).

If we define J0(u; y) = 1
nJ (u; y) and denote

λ :=
1

nτ2
, (3.2.7)

then m also minimizes the functional J0(u; y), that is,

m = arg min
u
J0(u; y), (3.2.8)

where

J0(u; y) =
1

2
‖C−

1
2

1 (y −Ku)‖2 +
λ

2
‖C−

1
2

0 u‖2.

Thus the posterior mean is a Tikhonov-Phillips regularized solution in the classi-

cal sense (in fact J0 is almost surely infinite and we should really consider Ψ0 =

J0 − 1
2

∥∥C− 1
2

1 y
∥∥2

which is finite; the minimizer is unaffected). This reveals the close

connection between Bayesian and classical regularization for inverse problems. In

the deterministic framework, λ is called the regularization parameter which is care-

fully chosen in order to balance consistency and stability. Similarly, for given inverse

noise level n, the scale parameter τ introduced in the prior can be judiciously chosen

to guarantee a small error between the posterior mean and the true solution, as we

will see in Section 3.4.

Posterior consistency refers, in statistical inverse problems, to studying the

relationship between the result of the statistical analysis and the truth which un-

derlies the data in either the small noise or large data limits; we concentrate on

the small noise limit. We consider the standard Bayesian variant on frequentist

posterior consistency [20, 28] for our severely ill-posed inverse problem. To this end

we consider observations which are perturbations of the image of a fixed element

u† ∈ X by a scaled Gaussian additive noise, that is, we have data y = y†n of the form

y†n = Ku† +
1√
n
η (3.2.9)

where η is a realization of N (0, C1). This choice of data model gives the posterior
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distribution as µy
†
n

λ,n := N (m†, C), where C is given by (3.2.5) and m† is given by

(3.2.6) with y = y†n. Similar to the practice in the deterministic framework, we

assume a-priori known regularity of the true solution and identify contraction rates

of the posterior µy
†
n

λ,n to a Dirac measure centered on the true solution, as the noise

disappears (n→∞).

3.2.3 Model assumptions

In this subsection we present our assumptions on the operators appearing in our

framework, that is, on the forward operator K, the prior covariance operator C0 and

the noise covariance operator C1.

Assumption 3.2.1. The operators K, C0 and C1 commute with one another, so

that K∗K, C0 and C1 have the same eigenfunctions {φj}∞j=1. The corresponding

eigenvalues {l2j}∞j=1, {c0j}∞j=1 and {c1j}∞j=1 of K∗K, C0 and C1 are assumed to satisfy

lj � exp(−sjb), c0j = j−2α, c1j = j−2β, (3.2.10)

for s > 0, b > 0, α > 1
2 , β ≥ 0. Furthermore, the fixed true solution u† belongs to Hγ

for some γ > 0.

Remark 3.2.2. As is well known in finite dimensions, in the current infinite dimen-

sional separable Hilbert-space setting, if K, C0 and C1 commute with one another,

then K∗K, C0 and C1 have the same eigenfunctions {φj}∞j=1 [51, 75].

Remark 3.2.3. One can relax the assumptions on the eigenvalues of C0 and C1 to

c0j � j−2α and c1j � j−2β without affecting any of the subsequent results.

3.3 Characterization of the Posterior

In [54, 52] it is proved in the infinite dimensional setting that the posterior is Gaus-

sian with covariance and mean given by

C = τ2C0 − τ2C0K
∗(KC0K

∗ + λC1)−1KC0 (3.3.1)

and

m = C0K
∗(KC0K

∗ + λC1)−1y, (3.3.2)

respectively. In the simultaneously diagonalizable case considered here, these for-

mulae are equivalent to the formulae (3.2.5) and (3.2.6) [78, Example 6.23]. Fur-

thermore, since K, C0 and C1 commute with one another, the equations (3.3.1) and
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(3.3.2) can be rewritten as

C = τ2C0 − τ2QKC0 (3.3.3)

and

m = Qy, (3.3.4)

where Q : X → X is the continuous linear operator

Q = C
1
2
0

(
C

1
2
0 K

∗KC
1
2
0 + λC1

)−1C
1
2
0 K

∗ = C0K
∗(KC0K

∗ + λC1)−1.

In the next two theorems we show that the Gaussian posterior distribution

µy, with covariance and mean given by (3.3.3) and (3.3.4), is a proper conditional

Gaussian distribution on X and is absolutely continuous with respect to the prior.

Theorem 3.3.1. Suppose Assumption 3.2.1 holds, then: (i) the covariance operator

C of the conditional distribution µy given by (3.3.3) is trace class on X ; (ii) the

mean m of the conditional posterior distribution given by (3.3.4) is an element of

X , almost surely with respect to the joint distribution of (u, y). Thus µy(X ) = 1

almost surely with respect to the joint distribution of (u, y).

Proof. The fact that µy(X ) = 1 follows from (i) and (ii) is well-known [17]. We thus

prove these two points.

(i) Using the basis {φj}, by equation (3.3.3) we have that the eigenvalues of

C are given by

cj = τ2c0j −
τ2c2

0jl
2
j

c0jl2j + λc1j
=

τ2λc0jc1j

c0jl2j + λc1j
≤ τ2c0j . (3.3.5)

Since C0 is trace class on X , it follows that C is trace class on X .

(ii) From (3.3.4) we have that,

E‖m‖2 = E‖Qy‖2 = E‖QKu+
1√
n
Qη‖2

= E‖QKu‖2 +
1

n
E‖Qη‖2 (3.3.6)

since η and u are independent and η has mean zero. The distribution of Qη is
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N (0,QC1Q∗) and it follows, again working in the basis {φj}∞j=1, that

E‖m‖2 = E‖QKu‖2 +
1

n
Tr(QC1Q∗)

=
∞∑
j=1

τ2c3
0jl

4
j

(l2j c0j + λc1j)2
+

1

n

∞∑
j=1

c2
0jl

2
j c1j

(l2j c0j + λc1j)2

≤ τ2

λ2

∞∑
j=1

c3
0jc
−2
1j l

4
j +

1

nλ2

∞∑
j=1

c2
0jc
−1
1j l

2
j

� τ2

λ2

∞∑
j=1

j4β−6α exp(−4sjb) +
1

nλ2

∞∑
j=1

j2β−4α exp(−2sjb)

< ∞.

Hence ‖m‖ is almost surely finite, which completes the proof.

Theorem 3.3.2. Suppose Assumption 3.2.1 holds, then the posterior measure µy =

N (m, C) with covariance and mean given by (3.3.3) and (3.3.4), respectively, is

equivalent to the prior measure µ0 = N (0, τ2C0), almost surely with respect to the

joint distribution of (u, y).

Proof. By the Feldman-Hajek theorem [18, Theorem 2.23], to show that the Gaus-

sian measure µy = N (m, C) is equivalent to µ0 = N (0, τ2C0), it suffices to show:

(i) The Cameron-Martin spaces associated with µy and µ0 are equal, that is,

D(C−
1
2 ) = D(C−

1
2

0 ) := E.

(ii) The posterior mean m lies in the Cameron-Martin space E.

(iii) The operator T = I − τ2C−
1
2C0C−

1
2 is Hilbert-Schmidt.

We now check the validity of the above conditions. For (i) it is equivalent to

show that there exists a constant M such that

〈h, Ch〉 ≤M〈h, C0h〉,∀h ∈ X (3.3.7)

and

〈h, C0h〉 ≤M〈h, Ch〉,∀h ∈ X ; (3.3.8)

this follows from [78, Lemma 6.15] using [18, Proposition B1]. Using the eigenbasis

expansion, these are equivalent to

cj ≤Mc0j (3.3.9)
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and

c0j ≤Mcj . (3.3.10)

From (3.3.5), we know that (3.3.9) is true with M = τ2. Again by (3.3.5), we have

cj =
τ2c0j

1 + λ−1l2j c0jc
−1
1j

� τ2c0j

1 + λ−1 exp(−2sjb)j2β−2α
≥Mc0j , (3.3.11)

where M = τ2

1+κ and κ is a constant.

For (ii), it is straightforward to check that E = D(C−
1
2

0 ) = Hα. The mean

square expectation of the posterior mean m in Hα can be estimated similarly to

(3.3.7):

E‖m‖2Hα = E‖C−
1
2

0 m‖2 = E‖C−
1
2

0 Qy‖
2

= E‖C−
1
2

0 QKu+
1√
n
C−

1
2

0 Qη‖
2

= E‖C−
1
2

0 QKu‖
2 +

1

n
Tr(C−

1
2

0 QC1Q∗C
− 1

2
0 )

=
∞∑
j=1

τ2c2
0jl

4
j

(l2j c0j + λc1j)2
+ λ

∞∑
j=1

c0jl
2
j c1j

(l2j c0j + λc1j)2

≤ τ2

λ2

∞∑
j=1

c2
0jc
−2
1j l

4
j +

1

λ

∞∑
j=1

c0jc
−1
1j l

2
j

� τ2

λ2

∞∑
j=1

j4β−4α exp(−4sjb) +
1

λ

∞∑
j=1

j2β−2α exp(−2sjb)

<∞, (3.3.12)

therefore m ∈ E almost surely.

For (iii), using (3.3.5) again, we have

∞∑
j=1

(
1− τ2c0j

cj

)2
=

1

λ2

∞∑
j=1

c2
0jl

4
j c
−2
1j �

∞∑
j=1

exp(−4sjb)j4β−4α <∞, (3.3.13)

demonstrating that the operator T is Hilbert-Schmidt.

The preceding result is interesting because, without the assumption that

the inverse problem is severely ill-posed, it is possible to construct linear inverse

problems of the form considered in this chapter, but for which the posterior is not

absolutely continuous with respect to the prior. For example, suppose that we

modify Assumption 3.2.1 so that the forward operator K has singular values that
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decay algebraically, lj � j−2`, but retain the same assumptions on the prior and

noise covariances. Then the posterior is again Gaussian with covariance and mean

given by the formulae (3.3.1) and (3.3.2). The following proposition shows that, if

the noise is too smooth, then the posterior is not absolutely continuous with respect

to the prior:

Proposition 3.3.3. If β ≥ α + 2` − 1
4 then the posterior µy = N (m, C) is not

absolutely continuous with respect to the prior N (0, τ2C0), independently of the data

y.

Proof. Without lost of generality we assume that τ = λ = n = 1. It suffices to show

that the third condition of the Feldman-Hajek theorem fails [18, Theorem 2.23].

Indeed, C is diagonalizable in the basis {φj}j∈N with eigenvalues cj such that

cj �
j−2α−2β

j−2β + j−4`−2α
.

Thus, the operator T := I−C−
1
2C0C−

1
2 is also diagonalizable in {φj}j∈N with eigen-

values tj , where

tj = 1− c0j

cj
� j−2α−4`+2β.

Hence, the operator T is Hilbert-Schmidt, if and only if the sequence {tj} is square

summable, that is, if and only if β < α+ 2`− 1
4 .

3.4 Posterior Contraction

In this section, we study the limiting behaviour of the posterior distribution µy
†
n

λ,n

as the noise disappears, n→∞. Intuitively, we expect the mass of the posterior to

concentrate in a small ball centered on the fixed true solution. As in [3, 44, 45, 64]∗,

we study this problem by identifying εn such that, for arbitrary positive numbers

Mn →∞, there holds

Ey
†
nµy

†
n

λ,n{u : ‖u− u†‖ ≥Mnεn} → 0. (3.4.1)

Here expectation is with respect to the random variable y†n, with probability distri-

bution given by the data likelihood N (Ku†, 1
nC1), and εn is called the contraction

rate of the posterior distribution with respect to the X -norm.

∗[3] is Chapter 2 in the current thesis.
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By the Chebyshev inequality, we have

Ey
†
nµy

†
n

λ,n{u : ‖u− u†‖ ≥Mnεn} ≤
1

M2
nε

2
n

Ey
†
n

(∫
‖u− u†‖2µy

†
n

λ,n(du)
)
, (3.4.2)

thus if

Ey
†
n

(∫
‖u− u†‖2µy

†
n

λ,n(du)
)
≤M0ε

2
n, (3.4.3)

where M0 is a constant, we get Ey
†
nµy

†
n

λ,n{u : ‖u−u†‖ ≥Mnεn} → 0 as Mn →∞. The

left hand side of (3.4.3) is the squared posterior contraction (SPC) which satisfies

SPC = Ey
†
n‖m† − u†‖2 + Tr(C), (3.4.4)

and therefore, it is enough to estimate the mean integrated squared error (MISE) of

the posterior mean Ey
†
n‖m†−u†‖2 and the trace of the posterior covariance operator

C.
By (3.3.4) we have

m† = Qy†n = QKu† +
1√
n
Qη.

Meanwhile,

u† = QKu† + (I −QK)u†

so that we get the error equation

e := m† − u† =
1√
n
Qη + (QK − I)u†.

The first part of the error comes from the noise, while the second part comes from

the regularization. Note that for λ = 0 formally we have

QK = C0K
∗(K∗)−1C−1

0 K−1K = I,

indicating that we can make the error small by ensuring that λ � 1 and n � 1.

Since λ = 1
nτ2 this indicates the possibility of an optimal choice of τ := τ(n) to

ensure that λ = 1
nτ(n)2 → 0 as n → ∞ and to balance the two sources of error. In

the next three theorems, respectively, we estimate the MISE of the posterior mean,

the trace of the covariance and the SPC.

Theorem 3.4.1 (MISE). Under Assumption 3.2.1 the MISE may be estimated as
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follows

MISE

{
� 1

nλ(lnλ−
1
2s )−

2α
b + (lnλ−

1
2s )−

2γ
b , b ≥ 1,

. 1
nλ(lnλ−

1
2s )−

2α+b−1
b + (lnλ−

1
2s )−

2γ
b , b < 1.

(3.4.5)

Proof. From the expression above for the error e, since η is centred Gaussian, we

have

Ey
†
n‖m† − u†‖2 =

1

n
Ey
†
n‖Qη‖2 + Ey

†
n‖(QK − I)u†‖2, (3.4.6)

from which it follows that

Ey
†
n‖m† − u†‖2 =

1

n
Tr(QC1Q∗) + ‖(QK − I)u†‖2

=
1

n

∞∑
j=1

j−4α−2βl2j
(j−2αl2j + λj−2β)2

+
∞∑
j=1

λ2j−4β(u†j)
2

(j−2αl2j + λj−2β)2

=
1

nλ2

∞∑
j=1

l2j j
2β−4α

(1 + 1
λ l

2
j j

2β−2α)2
+
∞∑
j=1

(u†j)
2

(1 + 1
λ l

2
j j

2β−2α)2

:= I + II. (3.4.7)

By Assumption 3.2.1, it follows that

I � 1

nλ2

∞∑
j=1

exp(−2sjb)j2β−4α

(1 + 1
λ exp(−2sjb)j2β−2α)2

,

and

II �
∞∑
j=1

(u†j)
2

(1 + 1
λ exp(−2sjb)j2β−2α)2

.

To estimate I and II we split the sum according to the dominating term in

the denominator. Define

F (j;λ) :=
1

λ
exp(−2sjb)j2β−2α

and note that F (1;λ) > 1, for λ sufficiently small. Since we are considering a limit

in which λ → 0 we assume that F (1;λ) > 1 henceforth. Let Jλ be the unique

solution of the equation F (j;λ) = 1 which exceeds 1. By Lemma 3.4.5, we have

Jλ ∼ (lnλ−
1
2s )

1
b . (3.4.8)
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For I, if 1 ≤ j ≤ Jλ,

1

λ
exp(−2sjb)j2β−2α ≤ 1 +

1

λ
exp(−2sjb)j2β−2α ≤ 2

1

λ
exp(−2sjb)j2β−2α, (3.4.9)

therefore

1

nλ2

∑
j≤Jλ

exp(−2sjb)j2β−4α

(1 + 1
λ exp(−2sjb)j2β−2α)2

� 1

n

∑
j≤Jλ

exp(2sjb)j−2β. (3.4.10)

The sum on the right hand side is bounded from above by the integral in the same

range, and values at both endpoints. By Lemma 3.4.6, we have

1

n

∑
j≤Jλ

exp(2sjb)j−2β

≤ 1

n
exp(2sJbλ)J−2β

λ +
1

n
exp(2s) +

1

n

∫ Jλ

1
exp(2sxb)x−2βdx

=
1

n
exp(2sJbλ)J−2β

λ +
1

n
exp(2s) +

M

n
exp(2sJbλ)J−2β−b+1

λ (1 + o(1))

=

{
M
n exp(2sJbλ)J−2β

λ (1 + o(1)), b ≥ 1,
M
n exp(2sJbλ)J−2β−b+1

λ (1 + o(1)), b < 1,
(3.4.11)

Since
1

n

∑
j≤Jλ

exp(2sjb)j−2β ≥ 1

n
exp(2sJbλ)J−2β

λ ,

we deduce that for, b ≥ 1,

1

n

∑
j≤Jλ

exp(2sjb)j−2β � 1

n
exp(2sJbλ)J−2β

λ =
1

nλ
J−2α
λ . (3.4.12)

For 0 < b < 1 we have

1

n

∑
j≤Jλ

exp(2sjb)j−2β .
1

n
exp(2sJbλ)J−2β−b+1

λ =
1

nλ
J−2α−b+1
λ . (3.4.13)

If j ≥ Jλ, then 1 ≤ 1 + 1
λ exp(−2sjb)j2β−2α ≤ 2, thus we have

1

nλ2

∑
j>Jλ

exp(−2sjb)j2β−4α

(1 + 1
λ exp(−2sjb)j2β−2α)2

� 1

nλ2

∑
j>Jλ

exp(−2sjb)j2β−4α.

Under our assumption on λ being sufficiently small, we have that Jλ is large enough

so that exp(−2sjb)j2β−4α is always decreasing with respect to j and hence the sum
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on the right hand side is bounded from above by the integral in the same range, and

the value at the left endpoint. By Lemma 3.4.7, we have

1

nλ2

∑
j>Jλ

exp(−2sjb)j2β−4α

≤ 1

nλ2
exp(−2sJbλ)J2β−4α

λ +
1

nλ2

∫ ∞
Jλ

exp(−2sxb)x2β−4αdx

≤ 1

nλ2
exp(−2sJbλ)J2β−4α

λ +
M

nλ2
exp(−2sJbλ)J2β−4α−b+1

λ (1 + o(1))

=

{
M
nλ2 exp(−2sJbλ)J2β−4α

λ (1 + o(1)), b ≥ 1,
M
nλ2 exp(−2sJbλ)J2β−4α−b+1

λ (1 + o(1)), b < 1.
(3.4.14)

Since 1
nλ2

∑
j>Jλ

exp(−2sjb)j2β−4α ≥ 1
nλ2 exp(−2sJbλ)J2β−4α

λ , for b ≥ 1, we have

1

nλ2

∑
j>Jλ

exp(−2sjb)j2β−4α � 1

nλ2
exp(−2sJbλ)J2β−4α

λ =
1

nλ
J−2α
λ ,

and for 0 < b < 1,

1

nλ2

∑
j>Jλ

exp(−2sjb)j2β−4α .
1

nλ2
exp(−2sJbλ)J2β−4α−b+1

λ =
1

nλ
J−2α−b+1
λ .

To estimate II, we employ an analysis similar to that applied to I. We have

∑
j≤Jλ

(u†j)
2

(1 + 1
λ exp(−2sjb)j2β−2α)2

�
∑
j≤Jλ

(u†j)
2λ2 exp(4sjb)j4α−4β

=
∑
j≤Jλ

j2γ(u†j)
2λ2 exp(4sjb)j4α−4β−2γ . (3.4.15)

For λ small enough, the terms exp(4sjb)j4α−4β−2γ for 1 ≤ j ≤ Jλ are dominated by

exp(4sJbλ)J4α−4β−2γ
λ , so we have the following upper bound for the sum (3.4.15):∑

j≤Jλ

j2γ(u†j)
2λ2 exp(4sjb)j4α−4β−2γ ≤ λ2 exp(4sJbλ)J4α−4β−2γ

λ ‖u†‖2Hγ .

Furthermore∑
j≤Jλ

j2γ(u†j)
2λ2 exp(4sjb)j4α−4β−2γ ≥ (u†Jλ)2λ2 exp(4sJbλ)J4α−4β−2γ

λ ,
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implying that, since γ > 0 and u ∈ Hγ ,∑
j≤Jλ

j2γ(u†j)
2λ2 exp(4sjb)j4α−4β−2γ � λ2 exp(4sJbλ)J4α−4β−2γ

λ = J−2γ
λ . (3.4.16)

The other part of the sum II satisfies

∑
j>Jλ

(u†j)
2

(1 + 1
λ exp(−2sjb)j2β−2α)2

�
∑
j>Jλ

(u†j)
2 =

∑
j>Jλ

j2γ(u†j)
2j−2γ .

It follows that ∑
j>Jλ

j2γ(u†j)
2j−2γ � J−2γ

λ , (3.4.17)

since u ∈ Hγ .
Combining (3.4.6) - (3.4.17) completes the proof.

Theorem 3.4.2 (Trace of C). Let Assumption 3.2.1 hold and consider the posterior

covariance operator C given by (3.2.5), with λ as in (3.2.7). Then the trace is

estimated as

Tr(C) � 1

nλ
(lnλ−

1
2s )−

2α−1
b . (3.4.18)

Proof. From (3.3.3), we have

Tr(C) =
∞∑
j=1

τ2λc0jc1j

c0jl2j + λc1j
� 1

nλ

∞∑
j=1

j−2α

1 + 1
λ exp(−2sjb)j2β−2α

. (3.4.19)

As in the proof of Theorem of 3.4.1 we split the sum according to the dominating

term in the denominator. For the first part, using equation (3.4.9), we have

1

nλ

∑
j≤Jλ

j−2α

1 + 1
λ exp(−2sjb)j2β−2α

� 1

n

∑
j≤Jλ

exp(2sjb)j−2β, (3.4.20)

where the behaviour of the right hand side is given by (3.4.12) and (3.4.13). The

other part of the sum on the right hand side of (3.4.19) satisfies

1

nλ

∑
j>Jλ

j−2α

1 + 1
λ exp(−2sjb)j2β−2α

� 1

nλ

∑
j>Jλ

j−2α.
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By [45, Lemma 6.2], the last sum can be estimated as∑
j>Jλ

j−2α � J−2α+1
λ ,

hence

1

nλ

∑
j>Jλ

j−2α

1 + 1
λ exp(−2sjb)j2β−2α

� 1

nλ
J−2α+1
λ . (3.4.21)

Combining (3.4.8), (3.4.19)-(3.4.21) completes the proof.

We combine the two preceding theorems to determine the overall contraction

rate.

Theorem 3.4.3 (Rate of Contraction). Suppose that Assumption 3.2.1 holds, λ is

given by (3.2.7) and τ(n) > 0 satisfies nτ2(n)→∞. Then the posterior distribution

µy
†
n

λ,n contracts around the true solution u† at the rate

εn =
(

ln(nτ2)
)− γ

b + τ
(

ln(nτ2)
)−α− 1

2
b . (3.4.22)

In particular, since the rate is undetermined up to a multiplicative constant inde-

pendent of n, we may take

εn =


(

lnn
)− γ∧(α− 1

2 )

b
, τ ≡ 1,(

lnn
)− γ

b
, n−

1
2

+σ . τ . (lnn)
α−γ− 1

2
b ,

(3.4.23)

where σ > 0 is some constant.

Proof. The estimate (3.4.22) follows by combining (3.4.4), Theorem 3.4.1 and The-

orem 3.4.2. The rate for τ(n) ≡ 1 follows immediately. In the case of varying τ(n),

observe that in order to balance the contributions of the two terms in (3.4.22), τ(n)

needs to be large enough so that nτ2(n)→∞ as n→∞, but small enough so that

the second term is bounded by the first one. Since the function
(

ln(·)
)−κ

, κ > 0 is

decreasing, this can be achieved by choosing n−
1
2

+σ . τ(n) . (lnn)
α−γ− 1

2
b for some
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constant σ > 0, in which case the rate becomes

εn .
(

ln(n · n−1+2σ)
)− γ

b + (lnn)
α−γ− 1

2
b
(

ln(n · n−1+2σ)
)−α− 1

2
b

=
(
2σ
)− γ

b
(

lnn
)− γ

b + (2σ)−
α− 1

2
b
(

lnn
)− γ

b

.
(

lnn
)− γ

b
.

This completes the proof.

Remark 3.4.4.

i) The rate of the MISE of the posterior mean is determined by the regularity of the

prior α, the regularity of the truth γ and the degree of ill-posedness as determined

by the power b in the eigenvalues of K (s does not affect the rate). On the other

hand, the rate of the trace of the posterior covariance is determined by α and b and

has nothing to do with the regularity of the truth γ. Finally the rate of contraction

is determined by α, γ and b. Observe that the regularity of the noise, β, does not

affect the rate. In the case of mildly ill-posed problems where the singular values

of K decay algebraically β does appear in the error estimates, but only through the

difference in regularity between the forward operator and the noise covariance [3]∗.

For our severely ill-posed problem this difference may be thought of as being infinite,

explaining why β disappears from the error estimates here.

ii) For fixed τ = 1, the rate of contraction is
(

lnn
)− γ∧(α− 1

2 )

b
, that is, as γ grows the

rate improves until γ = α − 1
2 , at which point the rate saturates at

(
lnn

)−α− 1
2

b
.

The saturation point γ = α− 1
2 is the crossover point from an undersmoothing prior

to an oversmoothing prior. For varying τ = τ(n) chosen so that n−
1
2

+σ . τ .

(lnn)
α−γ− 1

2
b , the rate is (lnn)−

γ
b and never saturates.

iii) For the appropriate choice of τ = τ(n), or for fixed τ = 1 and α ≥ γ + 1
2 , the

contraction rate is εn = (lnn)−
γ
b , which for b = 1 or 2 is optimal in the minimax

sense with L2-loss [14, 45].

We conclude the section with several technical lemmas used in the proof of

the preceding theorems.

Lemma 3.4.5. Let a, b > 0 and t ∈ R be constants. For all λ sufficiently small the

equation
1

λ
exp(−axb)xt = 1, (3.4.24)

∗[3] is Chapter 2 in the current thesis.
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has a unique solution Jλ in {x ≥ 1} and Jλ ∼ (lnλ−
1
a )

1
b as λ→ 0.

Proof. Uniqueness of a root in {x ≥ 1} follows automatically provided

λ−1 exp(−a) > 1,

since x 7→ exp(−axb)xt has at most one maximum in {x ≥ 0}. From (3.4.24), it is

straightforward to see that

1 =
lnλ−

1
a

Jbλ
+
t

a

ln Jλ

Jbλ
.

Since x ≥ 1, Jλ → ∞ as λ → 0, thus we have 1 ∼ lnλ−
1
a

Jbλ
, which completes the

proof.

Lemma 3.4.6. For a > 0, b > 0 and c ∈ R, we have as J →∞,∫ J

1
exp(axb)xcdx ∼ exp(aJb)Jc−b+1. (3.4.25)

Proof. By variable substitution xb = y and integration by parts, we get∫ J

1
exp(axb)xcdx

=
1

ab
(exp(aJb)Jc−b+1 − exp(a))− c− b+ 1

ab2

∫ Jb

1
exp(ay)y

c−2b+1
b dy,

(3.4.26)

thus letting I(J) :=
∫ Jb

1 exp(ay)y
c−2b+1

b dy, we have that it suffices to show that

lim
J→∞

I(J)

exp(aJb)Jc−b+1
= 0. (3.4.27)

Indeed, if c− 2b+ 1 ≥ 0 then we have

exp(ay)y
c−2b+1

b

exp(aJb)Jc−b+1
≤ exp(a(y − Jb))J−b,

and (3.4.27) holds. If c− 2b+ 1 < 0, we use the variable substitution eay = z to get

that

I(J) =
1

a
c−b+1
b

∫ eaJ
b

ea
(ln(z))

c−2b+1
b dz.
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By Lemma 3.4.8 below, we then have that

I(J) . exp(aJb)Jc−2b+1,

hence (3.4.27) holds.

Lemma 3.4.7. For J > 0, a > 0, b > 0 and c ∈ R we have∫ ∞
J

exp(−axb)xcdx . exp(−aJb)Jc−b+1. (3.4.28)

Proof. Similar to the proof of Lemma 3.4.6, we have∫ ∞
J

exp(−axb)xcdx

=
1

ab
exp(−aJb)Jc−b+1 +

c− b+ 1

ab2

∫ ∞
Jb

exp(−ay)y
c−2b+1

b dy.

If c−b+1
ab2

> 0, then we integrate by parts for n times until c−nb+1
ab2

< 0 for the first

time. When the constant in front of the integral finally becomes negative we can

ignore the integral on the right hand side to get∫ ∞
J

exp(−axb)xcdx ≤ 1

ab
exp(−aJb)(Jc−b+1(1 + o(1))).

Lemma 3.4.8. For any q, a > 0 we have as x→∞∫ x

ea

dz

(ln(z))q
≤ x

(ln(x))q
(2 + o(1)).

Proof. We split the integral as follows∫ x

ea

dz

(ln(z))q
=

∫ e2q

ea

dz

(ln(z))q
+

∫ x

e2q

dz

(ln(z))q

= c(q, a) +

∫ x

e2q

dz

(ln(z))q
, (3.4.29)

where c(q, a) is a real constant. For z ≥ e2q it holds

ln(z) ≥ 2q,
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hence dividing by (ln(z))q+1 and rearranging terms we get that

q

(ln(z))q+1
≤ 1

2(ln(z))q
. (3.4.30)

Integration by parts in the integral on the right hand side of (3.4.29) gives∫ x

e2q

dz

(ln(z))q
=

x

(ln(x))q
− e2q

(2q)q
+

∫ x

e2q

q

(ln(z))q+1
dz,

hence using (3.4.30) and rearranging terms, we have∫ x

e2q

dz

(ln(z))q
≤ 2

x

(ln(x))q
− 2

e2q

(2q)q

= 2
x

(ln(x))q
+ c̃(q).

Concatenating we obtain the result.

3.5 Example - The Cauchy problem for the Helmholtz

equation

In this section, we present the Cauchy problem for the Helmholtz equation as an

example to which the theoretical analysis of this chapter can be applied. For sim-

plicity, we only consider the small wave number case (0 < k < 1). For more details

regarding the more general case, we refer to [88].

Consider the following boundary value problem for the Helmholtz equation:
∆v(x1, x2) + k2v(x1, x2) = 0, (x1, x2) ∈ (0, π)× (0, 1),

vx2(x1, 0) = 0, x1 ∈ [0, π],

v(x1, 1) = u(x1), x1 ∈ [0, π],

v(0, x2) = v(π, x2) = 0, x2 ∈ [0, 1].

(3.5.1)

Problem (3.5.1) is well-posed since it corresponds to inversion of a negative-definite

elliptic operator with mixed Dirichlet/Neumann data. In fact, by the method of

separation of variables, the solution v(x1, x2) in the domain (0, π) × (0, 1) can be

expressed as

v(x1, x2) =

∞∑
j=1

cosh(x2

√
j2 − k2)

cosh(
√
j2 − k2)

ujφj(x1), (3.5.2)

where φj(x1) =
√

2
π sin(jx1) and uj = 〈u, φj〉.

80



Define the forward mapping K : D(K) ⊂ L2(0, π)→ L2(0, π) by

Ku(x1) = v(x1, 0) =

∞∑
j=1

1

cosh(
√
j2 − k2)

ujφj(x1),

which maps the boundary data of (3.5.1) on x2 = 1 into the solution on x2 = 0. Then

K is a self-adjoint, positive-definite, linear operator, with eigenvalues behaving as

lj =
1

cosh(
√
j2 − k2)

∼ exp(−j). (3.5.3)

The inverse problem is to find the function u, given noisy observations of

v(·, 0). More precisely the data y is given by

y = v(·, 0) +
1√
n
η,

= Ku+
1√
n
η.

If we place a Gaussian measure N (0, τ2C0) as prior on u and assume that η is also

Gaussian N (0, C1), then we may apply the theory developed in this chapter. Under

Assumption 3.2.1, Theorem 3.4.3 can be applied to this problem with b = 1 and s = 1

to obtain the contraction rate of the conditional Gaussian posterior distribution.

We now present a numerical simulation for obtaining the rate of the MISE

of the posterior mean as the noise disappears (n→∞), when α = 2, γ = 1 and we

have a fixed τ = 1. In this case, our theory predicts that

MISE �
(

ln(
√

n)
)−2(α∧γ)

=
(

ln(
√

n)
)−2

.

To simulate MISE we average the error over a thousand realizations of the noise

η, for n = 10k, k = 1, ..., 100. We denote the simulated MISE by M̂ISE. The

true solution u† ∈ Hγ is a fixed draw from a Gaussian measure N (0,Σ), where Σ

has eigenvalues σj = j−2γ−1−ε, for ε = 10−10. We use the first 105 Fourier modes.

In Figure 3.1 we plot −1
2 ln

(
M̂ISE

)
against ln

(
ln(
√
n)
)

in the case β = 0. The

solid line is the relation predicted by Theorem 3.4.1, that is, a line with slope 1. A

least squares fit to the simulated points gives a slope of 1.0341 with coefficient of

determination 0.9884. In Figure 3.2 we have β = 2 and all the other parameters the

same. The least squares fit gives a slope 0.9723 with coefficient of determination

0.9916, confirming that the regularity of the noise as determined by β does not affect

the rate of convergence.
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Figure 3.1: − 1
2 ln

(
M̂ISE

)
plotted against ln

(
ln(
√
n)
)

for n = 10k, k = 1, ..., 100 in the
case b = s = 1, α = 2, β = 0, γ = 1, for fixed τ = 1.
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Figure 3.2: − 1
2 ln

(
M̂ISE

)
plotted against ln

(
ln(
√
n)
)

for n = 10k, k = 1, ..., 100 in the
case b = s = 1, α = 2, β = 2, γ = 1, for fixed τ = 1.
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3.6 Conclusions

We have considered a class of Bayesian severely ill-posed linear inverse problems with

Gaussian additive noise and Gaussian priors in a diagonal setting, that is a setting

in which the three operators defining the problem are simultaneously diagonalizable.

In particular, we assumed that the forward operator K has singular values which

decay like exp(−sjb) for s, b > 0. In addition to the problem of determining the

initial condition of the heat equation considered in [45] (b = 2), our theory covers

a range of other severely ill-posed inverse problems such as the Cauchy problem for

the Helmholtz equation (b = 1).

We showed that in our severely ill-posed setting the posterior is absolutely

continuous with respect to the prior almost surely with respect to the joint distri-

bution of the unknown and the data (Theorem 3.3.2). This is in contrast to the

mildly ill-posed case where it is possible to have that the posterior and the prior

are mutually singular independently of the data; this happens if the prior is not

sufficiently regularizing (see Proposition 3.3.3).

We also showed rates of posterior contraction in the small noise limit (The-

orem 3.4.3) and in particular generalized the sharp rates obtained in [45] for the

case b = 2 to our generalized setup. Our analysis is inspired by the techniques used

in [45], however our more general setting leads to technical improvements in the

proofs (for example Lemma 3.4.5). As in [45], we have that the posterior contracts

at the minimax rate if either the prior is oversmoothing the truth (in our notation

α ≥ γ + 1
2) and the scaling of the prior is fixed, or for a prior of any regularity by

rescaling it appropriately as the noise disappears.

Finally, we presented a numerical simulation supporting the obtained con-

vergence rate of the mean integrated squared error of the posterior mean, in the

case of the Cauchy problem for the Helmholtz equation.
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Chapter 4

Dimension Dependence of

Sampling Algorithms in

Hierarchical Bayesian Inverse

Problems

4.1 Introduction

Let X be an infinite dimensional separable Hilbert space with inner product
〈
·, ·
〉

and norm ‖ · ‖. We denote by
〈
·, ·
〉
RN and ‖ · ‖RN the (possibly scaled) Euclidean

inner product and norm in RN and by ‖ ·‖2,N the corresponding Euclidean norm for

N × N matrices. We assume that this norm and inner product on RN are chosen

so that, formally, the large N limit recovers the norm on the Hilbert space.

We consider the linear inverse problem of recovering an unknown parameter

u ∈ X from a blurred noisy observation y. We adopt a Bayesian approach and

assume the additive noise model

y = Ku+ η, (4.1.1)

where K : X → X is a bounded linear operator, and η is Gaussian noise

η ∼ N (0, σ−1C1), (4.1.2)

where C1 : X → X is a bounded positive definite linear operator; we do not enforce

that C1 is trace-class, thereby allowing the case of Gaussian white noise where it is
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the identity. We put a Gaussian prior on the unknown parameter u

u ∼ N (0, δ−1C0), (4.1.3)

where C0 : X → X is a positive definite and trace-class operator. The trace-class

assumption ensures that draws from the prior are in X .

For a fixed u the likelihood is Gaussian, y|u ∼ N (Ku, σ−1C1), and by the

linearity of K we have conjugacy, that is, the posterior distribution is also Gaussian

u|y ∼ N (mσ,δ(y), Cσ,δ);

see [54, 52] where formulae for the posterior mean and covariance are provided.

Additionally, if we temporarily assume that we are in finite dimensions we have

that the log-likelihood is quadratic in u, hence by completing the square we obtain

the formulae for the inverse covariance and mean

C−1
σ,δ = σK∗C−1

1 K + δC−1
0 , (4.1.4)

C−1
σ,δmσ,δ(y) = σK∗C−1

1 y. (4.1.5)

This can be made rigorous in the separable Hilbert space setting in a range of

situations, see for instance [3, 4]∗.

In practice the unknown function is discretized and the Bayesian setup is

implemented in RN . It is then of interest to refine the model, that is, to increase

N . We study this issue, building on the recent paper [7]. We hence assume to have

a way of computing discretizations yN ∈ RN of the observation y, and we replace

the operators K, C0 and C1 by N ×N matrices, also denoted by K, C0 and C1, which

arise from a consistent (in the sense of numerical analysis) family of approximations

of the corresponding operators at discretization level N . Since we now work in RN

the formulae (4.1.4) and (4.1.5) for the posterior covariance and mean are always

valid, and in fact are always equivalent to the finite dimensional analogues of the

formulae for the posterior covariance and mean obtained in [54, 52], [78, Example

6.23].

We are interested in performing hierarchical inference simultaneously on the

unknown u and the hyper-parameters σ−1 and δ−1. Note that in the above infinite

dimensional setup the hyper-parameters σ−1 and δ−1 have a clear interpretation as

the scalings of the covariance operators of the noise and prior distributions respec-

tively. If consistent approximations of limiting infinite dimensional operators are

∗[3, 4] are Chapters 2 and 3 respectively in the current thesis.
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not used, as in [7] for example where the Bayesian setup was performed directly on

discrete problems, then it is not natural to compare δ−1 and σ−1 across different dis-

cretization levels and, in particular, to consider their limit under model-refinement;

in contrast, using consistent approximations leads to interpretable hyper-parameters

in the context of the limiting underlying infinite dimensional inverse problem. This

is clearly very desirable in the applied context where simulations will routinely be

performed at different levels of mesh-refinement.

We put inverse-Gamma hyper-priors on σ−1 and δ−1, that is we assume

that δ ∼ Gamma(α0,β0) and σ ∼ Gamma(α1,β1), where the shape parameters

α0,α1 > 0 and the rate parameters β0,β1 > 0 are chosen independently of N . It is

well known that inverse-Gamma hyper-priors on the scaling of a Gaussian prior are

conditionally conjugate, that is, δ|yN , u, σ is also Gamma. It is also straightforward

to check that we have conditional conjugacy for σ. In particular, we have (see [7]),

δ|yN , u, σ ∼ Gamma(α0 +
N

2
,β0 +

1

2

∥∥C− 1
2

0 u
∥∥2

RN ), (4.1.6)

σ|yN , u, δ ∼ Gamma(α1 +
N

2
,β1 +

1

2

∥∥C− 1
2

1 (Ku− yN)
∥∥2

RN ). (4.1.7)

We analyze the large N behaviour of algorithms for sampling the full pos-

terior on the discretized unknown u and the hyper-parameters δ and σ given the

discretized data yN . Because of the conditional conjugacy of the three components,

it is natural to use a Gibbs sampler, where we update the parameters one at a time.

The algorithm is described below:

Algorithm 1.

0. Initialize δ(0) and σ(0), and set k = 0;

1. Compute u(k) ∼ N
(
mσ(k),δ(k)(yN), Cσ(k),δ(k)

)
;

2. Compute δ(k+1) ∼ Gamma(α0 + N
2 ,β0 + 1

2

∥∥C− 1
2

0 u(k)
∥∥2

RN );

3. Compute σ(k+1) ∼ Gamma(α1 + N
2 ,β1 + 1

2

∥∥C− 1
2

1 (Ku(k) − yN)
∥∥2

RN );

4. Set k = k + 1. If k < kmax return to step 1, otherwise stop.

The steps 2 and 3 can be turned on or off depending on whether we want

to have fixed δ or σ. Note that the draws δ(k+1) and σ(k+1) appearing in the Gibbs
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sampler depend on the dimension N of the discretization of the data y and the

unknown parameter u. This dependence will be made explicit in the next section,

in which we investigate the behaviour of the Gibbs sampler in the limit N →∞.

The fact that the Gamma(α,β) distribution has mean and variance αβ−1

and αβ−2 respectively, implies that for any µ > 0, as N grows, the random variable

Gamma(α+ N
2 ,β+µN2 ) behaves like a Dirac distribution centred on µ−1. Further-

more, we will show that, because of the consistency of the approximation of the

operators defining the Bayesian inverse problem, together with scaling of the norms

on RN to reproduce the Hilbert space norm limit, it is natural to assume that

i)
∥∥C− 1

2
0 u(k)

∥∥2

RN ' (δ(k))−1N ;

ii)
∥∥C− 1

2
1 (Ku(k) − yN)

∥∥2

RN ' σ̄−1N , where σ̄−1 is the true scaling of the noise in

the data, and hence yN .

Using the limiting behaviour of the Gamma distribution described above, this means

that as the dimension N increases, on the one hand δ(k+1) ' δ(k) hence the δ-chain

makes very small moves and slows down, while on the other hand σ(k+1) ' σ̄ hence

the σ-chain goes instantly to the true value of the noise scaling in the data and stays

close to it. We will make these ideas precise in what follows.

Our results show that in the context of natural Gibbs sampling algorithms,

two seemingly similar choices of hyper-parameterization of the scale in the prior

and noise models lead to very different mixing behaviour in the algorithm, in the

limit of high dimensional approximations of the inverse problem. To alleviate the

effect of poor mixing in the δ-chain, following intuition from [72, 60], we propose a

reparametrization of the problem in which the two components on the unknown and

the prior scaling are made a priori independent (see Section 4.4). We again have

conditional conjugacy, hence use the Gibbs sampler once more. The reparametrized

algorithm is robust with respect to the increase in dimension, however, it deteriorates

as the quality of the data improves (small observational noise limit); new ideas are

required in this situation.

In addition to [7], such conditionally conjugate hierarchical setups have been

studied in the case of linear inverse problems in [79] and in the setting of nonpara-

metric drift estimation in [56]. In both [79] and [56] the hierarchical inference is

performed only on the prior scaling and is motivated by results on posterior consis-

tency in the frequentist sense, namely the fact that the optimal rates of contraction

are in general achieved by appropriately rescaling the prior depending on the quality

of the data, [44, 3, 64, 45, 4]∗. Formally, the effect of rescaling is to change the reg-

∗[3, 4] are Chapters 2 and 3 respectively in the current thesis.
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ularity of draws from the prior by changing the spectrum of its covariance operator,

in an effort to match the regularity of the unknown. Unfortunately, the optimal

relationship between the prior scaling and the quality of the data depends on the

regularity of the true solution underlying the data, which is generally not avail-

able, hence it is desirable to have a hierarchical setup in order to perform inference

simultaneously on the unknown function and the prior scaling parameter.

4.1.1 Notation

In order to avoid heavy notation in the rest of the chapter, we make the dependence

on the discretization level N explicit only in the data yN and the δ and σ-chains. In

our subsequent presentation and analysis of the Gibbs sampler we use superscripts

to denote the iteration number. We also use the notation mσ(k),δ(k) := mσ=σ(k),δ=δ(k)

and similarly for Cσ(k),δ(k) . For a random variable x which depends on the mutually

independent random variables f1 and f2, we use the notation Ef1 [x] to denote the

expectation of the random variable x with respect to the random variable f1 for

fixed f2. We use the notation x1
L
= x2 to denote that the random variables x1 and

x2 have the same law. Finally, for two sequences of positive numbers {sj} and {tj},
we use the notation sj � tj to mean that sj/tj is bounded away from zero and

infinity uniformly in j.

4.1.2 Chapter structure

The rest of the chapter proceeds as follows: in the next section we present our

main results which hold under certain assumptions on the discrete level which are

contained in the same section. We believe that our discrete level assumptions are

inherited from certain natural assumptions on the underlying infinite dimensional

model whenever consistent numerical discretizations are used. These natural infinite

dimensional assumptions are presented in Section 4.3, before providing the proofs

of our main results. In Section 4.4 we present our proposed reparametrization of

the prior scaling. In Section 4.5 we present extensions of our theory: first we show

that our analysis of the behaviour of the δ-chain holds in more general conjugate-

Gaussian settings and second we consider cases where the unknown and the data

are discretized at different levels. In Section 4.6 we exhibit four classes of inverse

problems satisfying our assumptions on the underlying infinite dimensional model.

For the first two of these classes, that is a class of mildly ill-posed and a class of

severely ill-posed linear inverse problems both in a simultaneously diagonalizable

setting, we also explicitly prove that our discrete level assumptions are inherited

88



from the infinite dimensional assumptions when discretizing via spectral truncation

(see Subsections 4.6.1 and 4.6.2). In Section 4.7 we present numerical evidence

supporting our theory in a wider class of mildly ill-posed linear inverse problems,

using both spectral truncation (Subsection 4.7.1) as well as discretization via finite

differences (Subsections 4.7.2 and 4.7.3). The main body of the chapter ends with

concluding remarks in Section 4.8, while the Appendix in Section 4.9 contains several

technical lemmas.

4.2 Main Results

We now present our main results on the large N behaviour of Algorithm 1. In order

to simplify our analysis we examine separately the case where δ is random and to

be determined through hierarchical inference while σ is fixed, and the case where σ

is random and to be determined through hierarchical inference while δ is fixed. As

hinted earlier on, we have two main results regarding the behaviour of the Gibbs

sampler in the large N limit. The first one concerns the slowing down of the δ-chain

when σ is fixed, while the second one is about the speeding up of the σ-chain when

δ is fixed.

In the following, we assume that C0 and C1 are positive definite N ×N real

matrices which are the discretizations of the positive definite operators C0 and C1

respectively, and the N ×N matrix K is the discretization of the bounded operator

K. We do not make the dependence of K, C0 and C1 on N explicit, however,we do

make explicit the dependence on N of the discretized data yN .

4.2.1 Large N behaviour of the δ-chain

In this subsection we present our result regarding the behaviour of the δ-chain for

fixed σ > 0. The Gibbs sampler in this case is as follows:

Algorithm 2.

0. Initialize δ(0) and set k = 0;

1. Compute u(k) ∼ N
(
mσ,δ(k)(yN), Cσ,δ(k)

)
;

2. Compute δ(k+1) ∼ Gamma(α0 + N
2 ,β0 + 1

2

∥∥C− 1
2

0 u(k)
∥∥2

RN );

3. Set k = k + 1. If k < kmax return to step 1, otherwise stop.
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Note that the two steps of updating u|yN , δ and δ|yN , u can be compressed

to give one step of updating δ and involving the noise in the u update. Indeed, we

denote by δ
(k+1)
N the δ-draw in the k + 1 iteration of the Gibbs sampler where the

problem is discretized in RN . This draw is made using the previous draw of u|yN , δ,

which assuming that δ
(k)
N = δ, is denoted by u

(k)
δ and can be written as

u
(k)
δ = mσ,δ(yN) + C

1
2
σ,δζ, (4.2.1)

where ζ is an N -dimensional Gaussian white noise representing the fluctuation in

step 1, and Cσ,δ,mσ,δ are given by the formulae (4.1.4), (4.1.5) respectively. Hence

we have

δ
(k+1)
N ∼ Gamma(α0 +

N

2
,β0 +

1

2

∥∥C− 1
2

0 u
(k)
δ

∥∥2

RN ). (4.2.2)

Our analysis of the δ-chain is valid under the following assumptions:

Assumptions 4.2.1.

i) For almost all data y, for any σ, δ > 0, there exists a constant c1 = c1(y;σ, δ) ≥
0, independent of N , such that

∥∥C− 1
2

0 mσ,δ(yN)
∥∥
RN ≤ c1;

ii) there exists a constant c2 ≥ 0, independent of N and y, such that

Tr(C−
1
2

1 KC0K
∗C−

1
2

1 ) ≤ c2.

The above assumptions ensure that the squared norm appearing in (4.2.2)

behaves like δ−1N , as assumed in the motivating discussion in the introduction.

Combining with the scaling property of the Gamma distribution, we show that as

the dimension increases the δ-chain makes smaller and smaller steps, and quantify

the scaling of this slowing down.

Theorem 4.2.2. For fixed σ > 0, under Assumptions 4.2.1, in the limit N → ∞,

we have almost surely with respect to y:

i) the expected step in the δ-chain scales like 2
N , that is, for any δ > 0,

N

2
E
[
δ

(k+1)
N − δ(k)

N |δ
(k)
N = δ

]
= (α0 + 1)δ − fN (δ;yN)δ2 +O(N−

1
2 ),
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where fN (δ;yN) is bounded uniformly in N . In particular, if there exists

f(δ; y) ∈ R such that fN (δ;yN)→ f(δ; y) then

N

2
E
[
δ

(k+1)
N − δ(k)

N |δ
(k)
N = δ

]
= (α0 + 1)δ − f(δ; y)δ2 + O(1);

ii) the variance of the step also scales like 2
N and in particular for any δ > 0,

N

2
E
[(
δ

(k+1)
N − δ(k)

N − E
[
δ

(k+1)
N − δ(k)

N |δ
(k)
N = δ

])2
|δ(k)
N = δ

]
= 2δ2 +O(N−

1
2 ).

All the expectations are taken with respect to the randomness in the algorithm.

Remark 4.2.3.

i) The proof of Theorem 4.2.2 is contained in Subsection 4.3.2. Moreover, in

Subsection 4.3.1, we have a discussion on our assumptions, and more detailed

intuition on the behaviour of the δ-chain based on measure theoretic arguments

in the underlying infinite dimensional model. In Subsections 4.6.1 and 4.6.2

we demonstrate two classes of linear inverse problems for which Assumptions

4.2.1 are valid when using discretization via spectral truncation. In Section

4.7 we provide numerical evidence demonstrating the conclusions of Theorem

4.2.2 using both spectral truncation and discretization via finite differences, in

several mildly ill-posed linear inverse problem settings.

ii) fN (δ;yN) := Eζ [FN (δ;yN)], where FN is defined in the proof of Lemma 4.3.3.

The assumption on the convergence of fN (δ;yN) is trivially satisfied under

Assumptions 4.2.1, if the discretization scheme used is such that if the vector

x ∈ RN and the N×N matrix T are the discretizations at level N of x ∈ X and

the linear operator T respectively, then
∥∥Tx∥∥RN is a non-decreasing sequence.

This is the case for example in spectral truncation discretization methods, when

T is diagonalizable in the orthonormal basis used (see Subsections 4.6.1 and

4.6.2).

iii) Theorem 4.2.2 suggests that almost surely with respect to the data, for large N

the δ-chain makes moves which on average are of order N−1 with fluctuations

of order N−
1
2 . As a result, it takes O(N) steps for the δ-chain to move by

O(1). This is reflected in the numerical simulations in Section 4.7, where

we observe that as the dimension N grows, the δ-chain slows down and in

particular appears to behave like the solution to a SDE.
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iv) Let δN (t) be the path inscribed by the δ-chain in N dimensions, that is, δN (t)

is the piecewise constant function defined as δ
(k)
N on [tk, tk+1) for tk = k/N .

Formally, in the case where fN has a limit, we have that almost surely with

respect to the data, as N → ∞, δN (t) can be approximated by the solution

δ = δ(t) of the SDE

dδ =
(
α0 + 1− f(δ; y)δ

)
δdt+

√
2δdW, (4.2.3)

where W = W (t) is a standard Brownian motion.

4.2.2 Large N behaviour of the σ-chain

We now present our result about the behaviour of the σ-chain for fixed δ > 0. The

Gibbs sampler in this case is as follows:

Algorithm 3.

0. Initialize σ(0) and set k = 0;

1. Compute u(k) ∼ N
(
mσ(k),δ(yN), Cσ(k),δ

)
;

2. Compute σ(k+1) ∼ Gamma(α1 + N
2 ,β1 + 1

2

∥∥C− 1
2

1 (Ku(k) − yN)
∥∥2

RN );

3. Set k = k + 1. If k < kmax return to step 1, otherwise stop.

As in Subsection 4.2.1, the two steps of updating u|yN , σ and σ|yN , u can be

compressed to give one step of updating σ and involving the noise in the u update.

Indeed, we denote by σ
(k+1)
N the σ-draw in the k + 1 iteration of the Gibbs sampler

where the problem is discretized in RN . This draw is made using the previous draw

of u|yN , σ, which assuming that σ
(k)
N = σ, is denoted by u

(k)
σ and can be written as

u(k)
σ = mσ,δ(yN) + C

1
2
σ,δζ, (4.2.4)

where ζ is an N -dimensional Gaussian white noise representing the fluctuation in

step 1, and Cσ,δ,mσ,δ are given by the formulae (4.1.4), (4.1.5) respectively. Hence

we have

σ
(k+1)
N ∼ Gamma(α1 +

N

2
,β1 +

1

2

∥∥C− 1
2

1 (Ku(k)
σ − yN)

∥∥2

RN ). (4.2.5)
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We consider data in RN of the form

yN = z + σ̄−
1
2C

1
2
1 ξ, (4.2.6)

where z is the discretization in RN of an element of the space X , also denoted by

z, which satisfies Assumption 4.2.4 below, and ξ is a Gaussian white noise in RN

which is independent of ζ. In this case, σ̄−1 is the true value of the scaling σ−1.

Assumption 4.2.4. There exists c3 = c3(z) independent of N and y, such that,

∥∥C− 1
2

1 z
∥∥
RN ≤ c3.

Assumption 4.2.4 together with Assumption 4.2.1 ensure that the squared

norm appearing in (4.2.5) behaves like σ̄−1N , as assumed in the motivating dis-

cussion in the introduction. Combining with the scaling property of the Gamma

distribution, we show that as the dimension increases the σ-chain goes to the correct

value σ̄ immediately, and quantify the scaling of this speed up.

Theorem 4.2.5. For fixed δ > 0, under Assumptions 4.2.1 and 4.2.4, we have that

in the limit N →∞, for any σ, σ̄ > 0:

i)

N

2
E
[
σ

(k+1)
N − σ̄|σ(k)

N = σ
]

= (α1 + 1)σ̄ − hN (σ, σ̄)σ̄2 +O(N−
1
2 ),

where hN (σ, σ̄) is bounded uniformly in N ;

ii)

N

2
E
[(
σ

(k+1)
N − σ̄ − E

[
σ

(k+1)
N − σ̄|σ(k)

N = σ
])2
|σ(k)
N = σ

]
= 2σ̄2 +O(N−

1
2 ).

The expectations are taken with respect to both the noise in the data and the ran-

domness in the algorithm.

Remark 4.2.6.

i) The proof of Theorem 4.2.5 can be found in Subsection 4.3.3. Moreover, in

Subsection 4.3.1, we have a discussion on our assumptions, and more detailed

intuition on the behaviour of the σ-chain based on measure theoretic arguments

in the underlying infinite dimensional model. In Subsections 4.6.1 and 4.6.2
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we demonstrate two classes of linear inverse problems for which Assumptions

4.2.1 and 4.2.4 are valid when using discretization via spectral truncation.

In Section 4.7 we provide numerical evidence demonstrating the conclusions

of Theorem 4.2.5 using both spectral truncation and discretization via finite

differences, in two mildly ill-posed diagonal linear inverse problem settings.

ii) hN (σ, σ̄) := E[HN (σ, σ̄)], where HN is defined in the proof of Lemma 4.2.4.

iii) Theorem 4.2.5 says that, on average with respect to the data and the algo-

rithmic randomness, the σ-chain makes moves which are within order N−1

distance from the true value σ̄ of σ, with fluctuations of order N−
1
2 . In fact

our numerical results in Section 4.7 illustrate that the σ-chain exhibits this

behaviour almost surely with respect to the data.

4.3 Proofs of main results

In this section we give the proofs of our two main results presented in Section 4.2.

First, in Subsection 4.3.1, we provide some more intuition on our results based on

measure theoretic arguments in the underlying infinite dimensional model. Then, in

Subsection 4.3.2 we prove Theorem 4.2.2 on the slowing down of the δ-chain when

σ is fixed, and in Subsection 4.3.3 we prove Theorem 4.2.5 on the speed up of the

σ-chain when δ is fixed. The proofs rely on a series of technical lemmas contained

in Section 4.9.

4.3.1 Intuition based on the underlying infinite dimensional model

Starting with the analysis of the δ-chain, we have that on a high level our assump-

tions express the fact that in the underlying infinite dimensional model, almost

surely with respect to the data, the Gaussian conditional posterior on u is absolutely

continuous with respect to the prior. In particular, we expect that for a reasonable

discretization scheme, Assumptions 4.2.1 are inherited from the following infinite

dimensional assumptions.

Assumptions 4.3.1 (Infinite dimensional analogue of Assumptions 4.2.1).

i) For any σ, δ > 0, we have mσ,δ(y) ∈ D(C−
1
2

0 ) almost surely with respect to y;

that is, the posterior mean belongs to the Cameron-Martin space of the prior

on u|δ;

ii) C−
1
2

1 KC0K
∗C−

1
2

1 is trace-class; that is, the prior is sufficiently regularizing.

94



It is a straightforward exercise to check that Assumption 4.3.1(ii) above im-

plies the first and third assumptions of the Feldman-Hajek theorem [18, Theorem

2.23] on the equivalence of two Gaussian measures and in particular the conditional

posterior and the prior on u, hence, together with Assumption 4.3.1(i), they imply

that the conditional posterior on u is indeed y-almost surely absolutely continu-

ous with respect to the prior on u. In infinite dimensions, the Gaussian measures

N (0, a1Σ) and N (0, a2Σ) are mutually singular unless a1 = a2, [17, Remark 2.10].

Hence, u|y, σ, δ is singular with respect to u|y, σ, δ′ for any δ′ 6= δ, since each is

absolutely continuous to the corresponding prior measure and those are mutually

singular. Statistically, this means that a single realization of u from the prior (or by

equivalence from the posterior) would perfectly identify the δ that has generated it,

that is, δ|u concentrates on a point pass. However, δ|y is not concentrated on a point

mass, precisely because u is not perfectly identified from y. For discretizations of the

model at level N , δ|u does not concentrate on a point mass but Var(δ|u) = O(N−1),

whereas Var(δ|yN) = O(1). Therefore, Algorithm 2 needs to sample a more or less

fixed distribution as N increases, while doing smaller and smaller steps, precisely

those permitted by δ|u, which are of size O(N−1/2).

For the analysis of the σ-chain, we assume that we have infinite dimensional

data of the form

y = z + σ̄−
1
2C

1
2
1 ξ,

where ξ is Gaussian white noise, σ̄−1 is the true scaling of the noise in the data, and

z ∈ X . We expect that for a reasonable discretization scheme, Assumption 4.2.4 is

inherited from the following regularity assumption on z.

Assumption 4.3.2 (Infinite dimensional analogue of Assumption 4.2.4).

z ∈ D(C−
1
2

1 ); that is, for any σ̄ > 0, z belongs to the Cameron-Martin space of the

noise measure N (0, σ̄−1C1).

The last assumption, secures that the data generating measureN (z, σ̄−1C1) is

absolutely continuous with respect to the noise measure N (0, σ̄−1C1), [17, Theorem

2.8]. Combining again with [17, Remark 2.10] on the singularity of two infinite

dimensional Gaussian measures with covariance operators which are proportional

to each other, we get that the distribution of the data N (z, σ̄−1C1), is absolutely

continuous with respect to the conditional noise distribution η|σ̄, but singular to

η|σ for any σ 6= σ̄. Since again, given C1, the value of σ can be uniquely determined

from an infinite dimensional draw of η|σ, we have that the infinite dimensional data

contain as much information about σ̄ as a draw from η|σ̄, which in turn contains full
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information about σ̄. Hence for large N , the draw σ|yN , u, δ is strongly dependent

on the data yN which, however, encode the true scaling of the noise σ̄−1, thus σ

instantly identifies the true value σ̄ underlying the data.

In Section 4.6, we present several families of inverse problems satisfying the

above underlying infinite dimensional assumptions. For two of these families, we also

show that our discrete level assumptions in Section 4.2, are inherited when using

spectral truncation (see Subsections 4.6.1 and 4.6.2). Furthermore, in Section 4.7

we provide numerical evidence supporting our theory on the behaviour of the δ and

σ-chains, using both spectral truncation as well as finite difference approximation.

4.3.2 Proof of Theorem 4.2.2

We now give the proof of Theorem 4.2.2 under Assumptions 4.2.1. Using the scal-

ing property of the Gamma distribution, Gamma(α,β)
L
= β−1Gamma(α, 1), and

multiplying and dividing by 2
N δ, we can write the δ

(k+1)
N draw in (4.2.2) as

δ
(k+1)
N

L
= δ

Γ0,N

2
N δ(β0 + 1

2

∥∥C− 1
2

0 u
(k)
δ

∥∥2

RN )
(4.3.1)

where Γ0,N ∼ Gamma(α0 + N
2 ,

N
2 ) is independent of yN and u

(k)
δ .

The following lemma forms the backbone of our analysis of the δ-chain and

in particular of the proof of Theorem 4.2.2.

Lemma 4.3.3. Under Assumptions 4.2.1, for any σ, δ > 0 we have,

β0 +
1

2

∥∥C− 1
2

0 u
(k)
δ

∥∥2

RN = δ−1N

2
+ δ−1

√
N

2
W1,N + FN (δ), (4.3.2)

where i) W1,N only depends on the white noise ζ in (4.2.1), has mean zero and vari-

ance one, higher order moments which are bounded uniformly in N , and converges

weakly to a standard normal random variable as N →∞; ii) FN (δ) depends on the

data yN and y-almost surely has finite moments of all positive orders uniformly in

N (where the expectation is taken with respect to ζ).

The proof of Lemma 4.3.3 is contained in Subsection 4.9.1. Defining

W2,N =
Γ0,N − 1− 2α0

N√
2
N + 4α0

N2

,
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we have

Γ0,N = 1 +
2α0

N
+

√
2

N
+

4α0

N2
W2,N ,

where for every N , the random variable W2,N has mean zero and variance one, third

and fourth moments which are bounded uniformly in N (see Lemma 4.9.6), and is

independent of the data yN and ζ, the white noise expressing the fluctuation in u
(k)
δ .

Concatenating we get

δ
(k+1)
N

L
= δ

1 + 2α0
N +

√
2
N + 4α0

N2 W2,N

1 +
√

2
NW1,N + 2

NFN (δ)δ
, (4.3.3)

and we are now ready to prove Theorem 4.2.2:

Proof. By the independence of W2,N and ζ and since E[W2,N ] = 0, we have

E[δ
(k+1)
N − δ(k)

N |δ
(k)
N = δ] = δE

1 + 2α0
N +

√
2
N + 4α0

N2 W2,N

1 +
√

2
NW1,N + 2FN δ

N

− 1


= δEζ

 1 + 2α0
N

1 +
√

2
NW1,N + 2FN δ

N

− 1


= δEζ

 2α0
N −

√
2
NW1,N − 2FN δ

N

1 +
√

2
NW1,N + 2FN δ

N

 .
Using the identity 1

1+x = 1− x+ x2

1+x we get

E[δ
(k+1)
N − δ(k)

N |δ
(k)
N = δ]

=δEζ
[(

2(α0 − FNδ)
N

−
√

2

N
W1,N

)(
1−

√
2

N
W1,N −

2FNδ

N

)]
+ Eζ [e1,N ],

where

e1,N = δ

(
2(α0−FN δ)

N −
√

2
NW1,N

)(
2W 2

1,N

N +
4F 2
N δ

2

N2 +
4
√

2FNW1,N δ

N
3
2

)
1 +

√
2
NW1,N + 2FN δ

N

.

Using Hölder’s inequality and the fact that FN and W1,N have moments of
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all positive orders which are bounded uniformly in N , we get

E[δ
(k+1)
N − δ(k)

N |δ
(k)
N = δ] =

2

N

(
(α0 + 1)δ − Eζ [FN ]δ2

)
+O(N−

3
2 ) + Eζ [e1,N ],

almost surely with respect to y. For the residual e1,N , by Cauchy-Schwarz inequality

and (4.3.2), we have

Eζ [e1,N ] = Eζ
[(2(α0−FN δ)

N −
√

2
NW1,N

)(
W 2

1,N + 2
NF

2
Nδ

2 + 2
√

2

N
1
2
FNW1,Nδ

)
N
2δ (1 +

√
2
NW1,N + 2FN δ

N )

]

≤
(
E
[(2(α0 − FNδ)

N
−
√

2

N
W1,N

)2(
W 2

1,N +
2F 2

Nδ
2

N
+

2
√

2FNW1,Nδ

N
1
2

)2 ]) 1
2

.

(
E
[
(β0 +

1

2

∥∥C− 1
2

0 u
(k)
δ

∥∥2

RN )−2
]) 1

2

.

The square root of the first expectation on the right hand side of the inequality is

of order N−
1
2 , while by Lemma 4.9.1 the square root of the second expectation is

of order N−1 for almost all y. Combining we get that Eζ [e1,N ] = O(N−
3
2 ), almost

surely with respect to y, hence

E[δ
(k+1)
N − δ(k)

N |δ
(k)
N = δ] =

2

N

(
(1 + α0)δ − Eζ [FN ]δ2

)
+O(N−

3
2 ),

y-almost surely.

For the expected diffusion, we have

E
[(
δ

(k+1)
N − δ(k)

N − E
[
δ

(k+1)
N − δ(k)

N |δ
(k)
N = δ

])2
|δ(k)
N = δ

]
=E

[
(δ

(k+1)
N − δ(k)

N )2|δ(k)
N = δ

]
− E

[
δ

(k+1)
N − δ(k)

N |δ
(k)
N = δ

]2
,

where by the first part of the proof the second term is O(N−2). Thus, we need only

consider the first term, which will be shown to be O(N−1). Indeed, for the first

term by equation (4.3.3) we have
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E
[
(δ

(k+1)
N − δ(k)

N )2|δ(k)
N = δ

]
= δ2E


 2α0

N +
√

2
N + 4α0

N2 W2,N −
√

2
NW1,N − 2FN δ

N

1 +
√

2
NW1,N + 2FN δ

N

2
= δ2E

 2W 2
2,N

N +
2W 2

1,N

N + VN

N
3
2(

1 +
√

2
NW1,N + 2FN δ

N

)2

 ,
where the random variable VN depends only on W1,N and FN and has higher order

moments which are bounded uniformly in N , y-almost surely (the dependence on

W2,N disappears by the independence of W2,N and ζ and the fact that W2,N has

mean zero and variance one). Using the identity 1
(1+x)2 = 1− 2x+ 3x2+2x3

(1+x)2 , we get

E
[
(δ

(k+1)
N − δ(k)

N )2|δ(k)
N = δ

]
=δ2E

[(
2W 2

2,N

N
+

2W 2
1,N

N
+
VN

N
3
2

)(
1− 2

√
2

N
W1,N −

4

N
FNδ

)]
+ E[e2,N ],

where

e2,N

=δ2

(
2W 2

2,N

N
+

2W 2
1,N

N
+
VN

N
3
2

)
3
(√

2
NW1,N + 2FN δ

N

)2

+ 2
(√

2
NW1,N + 2FN δ

N

)3

(
1 +

√
2
NW1,N + 2FN δ

N

)2

:=
ENδ

2(
1 +

√
2
NW1,N + 2FN δ

N

)2 .

Using the fact that y-almost surely W1,N , FN and VN have moments of all positive

orders which are bounded uniformly in N , by Hölder inequality (we do not need to

consider higher order moments for W2,N here, because it is independent with W1,N

and FN , hence bounding terms involving W2,N does not require the use of Hölder’s

inequality which needs higher moments), we get that

E[(δ
(k+1)
N − δ(k)

N )2|δ(k)
N = δ] =

2δ2

N

(
E[W 2

2,N ] + E[W 2
1,N ]

)
+O(N−

3
2 ) + E[e2,N ],

y-almost surely. For the residual e2,N , as before using Cauchy-Schwarz inequality
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and (4.3.2), we have

E[e2,N ] ≤ N2

4

(
E[E2

N ]
) 1

2

(
E[(β0 +

1

2

∥∥C− 1
2

0 u
(k)
δ

∥∥2

RN )−4]

) 1
2

.

Since by Lemma 4.9.6 the first four moments of W2,N are also bounded uniformly

in N , the square root of the first expectation on the right hand side is of order N−2,

while by Lemma 4.9.1 the square root of the second expectation is of order N−2,

for almost all y. Combining we get Eζ [e2,N ] = O(N−2), almost surely with respect

to y, hence since E[W 2
1,N ] = E[W 2

2,N ] = 1, we have

E[(δ
(k+1)
N − δ(k)

N )2|δ(k)
N = δ] =

4δ2

N
+O(N−

3
2 ),

y-almost surely. Concatenating, we get the result.

4.3.3 Proof of Theorem 4.2.5

We now prove Theorem 4.2.5 under Assumptions 4.2.1 and 4.2.4. Again using the

scaling property of the Gamma distribution, Gamma(α,β)
L
= β−1Gamma(α, 1), and

multiplying and dividing by 2
N σ̄, we can write the σ

(k+1)
N draw in (4.2.5) as

σ
(k+1)
N

L
= σ̄

Γ1,N

2
N σ̄(β1 + 1

2

∥∥C− 1
2

1 (Ku
(k)
σ − y)

∥∥2

RN )
(4.3.4)

where Γ1,N ∼ Γ(α1 + N
2 ,

N
2 ) is independent of yN and u

(k)
σ .

In the next lemma we expand the norm
∥∥C− 1

2
1 (yN − Ku

(k)
σ )
∥∥2

RN in (4.2.5)

for drawing σ
(k+1)
N given σ

(k)
N = σ and u

(k)
σ . This expansion forms the basis for the

analysis of the σ-chain in the linear inverse problem case and in particular for the

proof of Theorem 4.2.5.

Lemma 4.3.4. Under Assumptions 4.2.1 and 4.2.4, for any σ̄, σ, δ > 0, we have

β1 +
1

2

∥∥C− 1
2

1 (Ku(k)
σ − yN)

∥∥2

RN =
N

σ̄
+

√
2N

σ̄
Z1,N +HN (σ, σ̄), (4.3.5)

where i) Z1,N only depends on the white noise ξ in (4.2.6), has mean zero and vari-

ance one, higher order moments which are bounded uniformly in N , and converges

weakly to a standard normal random variable as N → ∞; ii) HN (σ, σ̄) depends on

both the white noise ζ in (4.2.4) and ξ, and has bounded moments of all positive

orders uniformly in N (where the expectation is taken with respect to ζ and ξ).
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The proof of Lemma 4.3.4 is contained in Subsection 4.9.2. Similar to Sub-

section 4.3.2 we define

Z2,N =
Γ1,N − 1− 2α1

N√
2
N + 4α1

N2

,

and we have

Γ1,N = 1 +
2α1

N
+

√
2

N
+

4α1

N2
Z2,N ,

where for every N the random variable Z2,N has mean zero and variance one, third

and fourth moments which are bounded uniformly in N (see Lemma 4.9.6), and is

independent of ξ and ζ. Concatenating we get

σ
(k+1)
N

L
= σ̄

1 + 2α1
N +

√
2
N + 4α1

N2 Z2,N

1 +
√

2
NZ1,N + 2

NHN (σ
(k)
N , σ̄)σ̄

, (4.3.6)

and we are now ready to prove Theorem 4.2.5:

Proof. As in the proof of Theorem 4.2.2, the independence of Z2,N and ξ, ζ, and the

fact that E[Z2,N ] = 0 give

E[σ
(k+1)
N − σ̄|σ(k)

N = σ] = σ̄Eξ,ζ
 2α1

N −
√

2
NZ1,N − 2HN σ̄

N

1 +
√

2
NZ1,N + 2HN σ̄

N


and using the identity 1

1+x = 1− x+ x2

1+x we have

E[σ
(k+1)
N − σ̄|σ(k)

N = σ]

=σ̄Eξ,ζ
[(

2(α1 −HN σ̄)

N
−
√

2

N
Z1,N

)(
1−

√
2

N
Z1,N −

2HN σ̄

N

)]
+ Eξ,ζ [d1,N ],

where

d1,N = σ̄

(
2(α1−HN σ̄)

N −
√

2
NZ1,N

)(
2Z2

1,N

N +
4H2

N σ̄
2

N2 +
4
√

2HNZ1,N σ̄

N
3
2

)
1 +

√
2
NZ1,N + 2HN σ̄

N

.

Using Hölder’s inequality and the fact that HN and Z1,N have bounded
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moments of all positive orders uniformly in N , we get that

E[σ
(k+1)
N − σ̄|σ(k)

N = σ] =
2

N

(
(α1 + 1)σ̄ − Eξ,ζ [HN ]σ̄2

)
+O(N−

3
2 ) + Eξ,ζ [d1,N ],

where in a similar way to the proof of Theorem 4.2.2, the error term d1,N , can be

shown using Cauchy-Schwarz and Lemma 4.9.2 to be of order O(N−
3
2 ).

For the expected diffusion, we have

E
[(
σ

(k+1)
N − σ̄ − E

[
σ

(k+1)
N − σ̄|σ(k)

N = σ̄
])2
|σ(k)
N = σ̄

]
=E

[
(σ

(k+1)
N − σ̄)2|σ(k)

N = σ̄
]
− E

[
σ

(k+1)
N − σ̄|σ(k)

N = σ̄
]2

where by the first part of the proof the second term is O(N−2). Thus, we only

consider the first term, which will be shown to be O(N−1). Indeed, for the first

term by equation (4.3.6) we have since Z2,N is independent of Z1,N and HN and has

mean zero,

E
[
(σ

(k+1)
N − σ̄)2|σ(k)

N = σ̄
]

= σ̄2E


 2α1

N +
√

2
N + 4α1

N2 Z2,N −
√

2
NZ1,N − 2HN σ̄

N

1 +
√

2
NZ1,N + 2HN σ̄

N

2
= σ̄2Eξ,ζ

 2Z2
2,N

N +
2Z2

1,N

N + UN

N
3
2(

1 +
√

2
NZ1,N + 2HN σ̄

N

)2

 ,
where the random variable UN depends on Z1,N and HN and has moments of every

positive order which are bounded uniformly in N (the dependence on Z2,N disap-

pears by independence and the fact that Z2,N is mean zero and variance one). Using

the identity 1
(1+x)2 = 1− 2x+ 3x2+2x3

(1+x)2 , we get

E
[
(σ

(k+1)
N − σ̄)2|σ(k)

N = σ̄
]

=σ̄2E

[(
2Z2

2,N

N
+

2Z2
1,N

N
+
UN

N
3
2

)(
1− 2

√
2

N
Z1,N −

4HN σ̄

N

)]
+ E[d2,N ],
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where

d2,N

=σ̄2

(
2Z2

2,N

N
+

2Z2
1,N

N
+
UN

N
3
2

)
3
(√

2
NZ1,N + 2HN σ̄

N

)2

+ 2
(√

2
NZ1,N + 2HN σ̄

N

)3

(
1 +

√
2
NZ1,N + 2HN σ̄

N

)2 .

Using the fact that Z1,N , HN and UN have bounded moments of all positive orders,

by Hölder inequality and independence (we do not need to consider higher order

moments for Z2,N because it is independent with Z1,N and HN , hence bounding

terms involving Z2,N does not require the use of Hölder’s inequality which needs

higher moments), and since E[Z2
1,N ] = E[Z2

2,N ] = 1, we get that

E[(σ
(k+1)
N − σ̄)2|σ(k)

N = σ] =
4σ̄2

N
+O(N−

3
2 ) + E[d2,N ].

In a similar way to the proof of Theorem 4.2.2, the error term d2,N can be shown

using the Cauchy-Schwarz inequality and Lemma 4.9.2 to be of order O(N−2).

Concatenating we get the result.

4.4 Reparametrization

In Subsection 4.2.1 we have stated our result on the slowing down of the δ-chain. As

explained in Subsection 4.3.1 this slowing down arises due to the strong dependence

between the u and δ components of the Gibbs sampler as the dimension N gets

larger. Drawing intuition from [72, 60], we propose a reparametrization of the

problem in which we make the unknown and the prior scaling a priori independent,

thus alleviating the undesirable effects of the dependency on the mixing of the Gibbs

sampler. Instead of having a prior u|δ ∼ N (0, δ−1C0) where δ ∼ Gamma(α0,β0),

we write u = τv and put Gaussian priors on τ ∈ R and v ∈ RN which are mutually

independent. We hence have the reparametrized model

yN = τKv + η (4.4.1)

where v ∼ N (0, C0), τ ∼ N (r0, q
2
0) restricted to be positive and η|σ ∼ N (0, σ−1C1),

σ ∼ Gamma(α1,β1), and where v, τ and η|σ are mutually independent. Then, the
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log-likelihood is quadratic in v, hence

v|yN , σ, τ ∼ N (mσ,τ (yN), Cσ,τ ),

where by completing the square we get the formulae for the inverse covariance and

mean

C−1
σ,τ = στ2K∗C−1

1 K + C−1
0 , (4.4.2)

C−1
σ,τmσ,τ = στK∗C−1

1 yN . (4.4.3)

Furthermore, the log-likelihood is quadratic also in τ , hence τ |yN , v, σ ∼
N (rσ,v, q

2
σ,v), where again by completing the square we obtain the formulae for the

inverse covariance and mean

1

q2
σ,v

= σ
∥∥C− 1

2
1 Kv

∥∥2

RN +
1

q2
0

(4.4.4)

and
rσ,v
q2
σ,v

= σ
〈
K∗C−1

1 yN , v
〉
RN +

r0

q2
0

. (4.4.5)

Again we have the restriction that τ |yN , v, σ > 0. As in the original parametrization,

it is straightforward to check that we have conditional conjugacy for σ

σ|yN , u, τ ∼ Gamma(α1 +
N

2
,β1 +

1

2

∥∥C− 1
2

1 (τKv − yN)
∥∥2

RN ).

We again use the notation mσ(k),τ (k) := mσ=σ(k),τ=τ (k) and in a similar way for

Cσ(k),τ (k) , rσ(k),v(k) , qσ(k),v(k) . Because of the conditional conjugacy, it is once more

natural to use the Gibbs sampler:

Algorithm 4.

0) Initialize τ (0) and σ(0), and set k = 0;

1) Compute v(k) ∼ N
(
mσ(k),τ (k)(yN), Cσ(k),τ (k)

)
;

2) Compute τ ∼ N (rσ(k),v(k) , q2
σ(k),v(k)).

Reject if τ ≤ 0 otherwise τ (k+1) = τ ;

3) Compute σ(k+1) ∼ Gamma(α1 + N
2 ,β1 + 1

2

∥∥C− 1
2

1 (τ (k)Kv(k) − yN)
∥∥2

RN );

4) Set k = k + 1. If k < kmax return to step 1, otherwise stop.
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As our numerical results show, this reparametrization is indeed robust with

respect to the increase in dimension (see Section 4.7), however, the τ -chain slows

down in the small noise limit. This is because even though v and τ are a priori

independent, they both need to explain the data hence they are a posteriori depen-

dent. If the noise is small, this dependence becomes stronger since τKv needs to be

very close to the observed data yN , hence τ and v concentrate near a lower dimen-

sional manifold and the chain mixes poorly. Hence we need new ideas to study the

Bayesian linear inverse problem with hyper-parameters in the small observational

noise limit.

4.5 Extensions

We now present two important generalizations of the theory, arising from the form

of the inverse problem considered. The first concerns nonlinear inverse problems

where the likelihood is still conjugate to a Gaussian prior, resulting in a poste-

rior distribution which is also Gaussian; however, in contrast to the linear inverse

problem, the posterior covariance can depend on the observed data y. This setting

occurs, for example, in the problem of nonparametric drift estimation in diffusions.

Here only the hierarchical parameter δ is relevant and we study the Gibbs sampler

arising for sampling (u, δ). The second generalization concerns problems where the

data is discretized at a different level from the unknown function, and indeed the

case where the data is of a fixed finite dimension.

4.5.1 General conjugate-Gaussian setting

Our analysis of the behaviour of δ, generalizes to nonlinear inverse problems in the

separable Hilbert space X , with Gaussian priors u ∼ N (0, δ−1C0) and conditionally

Gaussian posterior. We formalize this setup by assuming that almost surely with

respect to the data

u|y ∼ N (mδ(y), Cδ(y)), (4.5.1)

where the inverse covariance operator and mean have the general form

C−1
δ (y) = R∗(y)R(y) + δC−1

0 , (4.5.2)

C−1
δ (y)mδ(y) = l(y), (4.5.3)

where l(y) ∈ D(C
1
2
0 ) and R(y) : D(R(y)) → X is a possibly unbounded linear

operator and both l(y) and R(y) are independent of δ. Such models arise for example
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in the nonparametric drift estimation of SDE’s, [64, 59] (see Section 4.6).

As in the linear inverse problems case, in practice we discretize the unknown

function and we implement the Bayesian setup in RN . We assume that we have a

way of computing discretizations yN ∈ RN of the observation y, and we replace the

positive definite operator C0 by an N ×N positive definite matrix also denoted by

C0, the operator R(y) by an N × N matrix denoted by R(yN) and the functional

l(y) by a vector in RN denoted by l(yN). As before, we consider consistent dis-

cretizations, so that δ−1 retains its meaning as the scaling of the prior at different

discretization levels N . We consider the same Gamma hyper-prior on δ, and again

we have conditional conjugacy and in particular δ|yN , u is given by (4.1.6). We can

thus sample the full posterior on u and δ given the data using a Gibbs sampler which

is essentially identical to Algorithm 2 in Subsection 4.2.1:

Algorithm 5.

0. Initialize δ(0) and set k = 0;

1. Compute u(k) ∼ N
(
mδ(k)(yN), Cδ(k)(yN)

)
;

2. Compute δ(k+1) ∼ Gamma(α0 + N
2 ,β0 + 1

2

∥∥C− 1
2

0 u(k)
∥∥2

RN );

3. Set k = k + 1. If k < kmax return to step 1, otherwise stop.

As before, we denote by δ
(k+1)
N the δ-draw in the k+ 1 iteration of the Gibbs

sampler where the problem is discretized in RN . This draw is made using the

previous draw of u|yN , δ, which assuming that δ
(k)
N = δ, is denoted by u

(k)
δ and can

be written as

u
(k)
δ = mδ(yN) + C

1
2
δ (yN)ζ, (4.5.4)

where ζ is an N -dimensional Gaussian white noise representing the fluctuation in

step 1, and Cδ,mδ are given by the formulae (4.5.3), (4.5.2) respectively. Hence we

have

δ
(k+1)
N ∼ Gamma(α0 +

N

2
,β0 +

1

2

∥∥C− 1
2

0 u
(k)
δ

∥∥2

RN ). (4.5.5)

The following assumptions on the discrete level generalize Assumptions 4.2.1:

Assumptions 4.5.1 (δ-chain). For almost all data y:
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i) for any δ > 0 there exists a constant c′1 = c′1(y; δ), independent of N , such

that
∥∥C− 1

2
0 mδ(yN)

∥∥
RN ≤ c

′
1;

ii) there exists a constant c′2 = c′2(y), independent of N , such that

Tr(R(yN)C0R(yN)∗) ≤ c′2.

We again expect that for a reasonable discretization scheme, Assumptions

4.5.1 are inherited from the following infinite dimensional assumptions which gen-

eralize Assumptions 4.3.1.

Assumptions 4.5.2 (Infinite dimensional analogue of Assumptions 4.5.1). Almost

surely with respect to the data y the following two assumptions hold:

i) for any δ > 0, we have mδ(y) ∈ D(C−
1
2

0 ); that is, the posterior mean belongs

to the Cameron-Martin space of the prior on u|δ;

ii) R(y)C0R(y)∗ is trace-class; that is, the prior is sufficiently regularizing.

As in Subsection 4.3.1, it is a straightforward exercise to check that Assump-

tion 4.5.2(ii) above implies the first and third assumptions of the Feldman-Hajek

theorem [18, Theorem 2.23] on the equivalence of two Gaussian measures and in

particular the conditional posterior and the prior on u, hence, together with As-

sumption 4.5.2(i), they imply that the conditional posterior on u is y-almost surely

absolutely continuous with respect to the prior. This suggests thats our intuition

on the behaviour of the δ-chain contained in Subsection 4.3.1 is still valid, since it

relies on the absolute continuity of the posterior with respect to the prior.

Indeed, on the discrete level, Assumptions 4.5.1 enable us to show that the

squared norm appearing in (4.5.5) behaves like δ−1N , hence combining with the

scaling property of the Gamma distribution we can show the following result which

is the generalization of Theorem 4.2.2:

Theorem 4.5.3. Under Assumptions 4.5.1, in the limit N → ∞ we have almost

surely with respect to y:

i) the expected step in the δ-chain scales like 2
N , that is, for any δ > 0,

N

2
E
[
δ

(k+1)
N − δ(k)

N |δ
(k)
N = δ

]
= (α0 + 1)δ − f̃N (δ;yN)δ2 +O(N−

1
2 ),

where f̃N (δ;yN) is bounded uniformly in N . In particular, if there exists

f̃(δ; y) ∈ R such that f̃N (δ;yN)→ f̃(δ; y) then

N

2
E
[
δ

(k+1)
N − δ(k)

N |δ
(k)
N = δ

]
= (α0 + 1)δ − f̃(δ; y)δ2 + O(1);
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ii) the variance of the step also scales like 2
N and in particular for any δ > 0,

N

2
E
[(
δ

(k+1)
N − δ(k)

N − E
[
δ

(k+1)
N − δ(k)

N |δ
(k)
N = δ

])2
|δ(k)
N = δ

]
= 2δ2 +O(N−

1
2 ).

All the expectations are taken with respect to the randomness in the algorithm.

Remark 4.5.4.

i) The proof of Theorem 4.5.3 proceeds exactly as the proof of Theorem 4.2.2 in

Subsection 4.3.2, the only difference being that instead of Lemma 4.3.3 and

Lemma 4.9.1, we now use Lemma 4.9.9 and Lemma 4.9.10 to analyse the

behaviour of the rate parameter in the δ-draw (4.5.5). The statements and

proofs of the Lemmas 4.9.9 and 4.9.10 are in fact essentially identical to those

of Lemmas 4.3.3 and 4.9.1 respectively, the only difference being that instead

of Assumptions 4.2.1 we now use Assumptions 4.5.1.

ii) f̃N (δ;yN) := Eζ [F̃N (δ;yN)], where F̃N is a problem specific term defined in

Lemma 4.9.9.

iii) Parts (iii)-(iv) of Remark 4.2.3 are also valid here with obvious adjustments.

iv) In Section 4.6 we show that the nonlinear Bayesian inverse problem of non-

parametric drift estimation of SDE’s studied in [64, 59], satisfies Assumptions

4.5.2 on the underlying infinite dimensional model.

v) Since the source of the slowing down of the δ-chain is again the strong depen-

dence between the two components of Algorithm 5, we can reparametrize as in

Section 4.4 by making the unknown and the scaling a priori independent. We

write u = τv and put Gaussian priors on τ ∈ R and v ∈ RN which are mutu-

ally independent. It is straightforward to check that we again have conditional

conjugacy, making the use of a Gibbs sampler natural. As in Section 4.4, we

expect the resulting algorithm to be robust with respect to model-refinement but

to deteriorate as the quality of the data improves.

4.5.2 Differing discretization levels of data and unknown

It is often of interest to consider situations where the observation y and the unknown

parameter u live in possibly different Hilbert spaces X1 and X2 and have different

discretization levels M and N respectively. In the linear inverse problem case this
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means that the forward operator K maps X1 to X2 and its discretization is now

an M ×N matrix. In the general conjugate setting considered in Subsection 4.5.1,

it is also reasonable to have that the possibly unbounded operator R maps X1 to

another Hilbert space X3 and its discretization is an L ×N matrix. An inspection

of our proofs suggests that: i) Theorems 4.2.2 and 4.5.3 on the slowing-down of

the δ-chain generalize to the case where the dimension N of the discretization of

u goes to infinity, for any values of M and in the general conjugate setting L; ii)

Theorem 4.2.5 on the speeding-up of the σ-chain in the linear inverse problems

setting generalizes to the case where the dimension M of the discretization of y goes

to infinity, for any value of N . The only difference is that fN in Theorem 4.2.2 and

hN in Theorem 4.2.5, now also depend on M and are uniformly bounded in both N

and M , and f̃N in Theorem 4.5.3 now also depends on M and L and is uniformly

bounded in N,M and L.

One should note that it is possible to have an unknown parameter u which

is a field, but an observation y which is of a fixed finite dimension, that is X2 = RM .

According to the considerations above, our results on the slowing down of the δ-

chain as we refine the discretization of u, that is as N → ∞, also generalize to

this case. In particular, in Section 4.7 we show numerical results demonstrating the

slowing down of the δ-chain as N grows for M fixed, in a setup where we discretize

the unknown parameter u on a grid of N points and observe a blurred version of it

at only M of these points subject to additive white noise.

4.6 Examples satisfying underlying infinite dimensional

model assumptions

In this section we present several examples satisfying our assumptions on the un-

derlying infinite dimensional Bayesian inverse problem.

We first present three instances of linear inverse problems satisfying Assump-

tions 4.3.1 and 4.3.2: a family of mildly ill-posed linear inverse problems, where the

operators defining the problem are simultaneously diagonalizable, [44]; a family of

severely ill-posed inverse problems again in a diagonal setting, [45, 4]∗; a family of

mildly ill-posed inverse problems in a nondiagonal setting, [3]∗. We expect that As-

sumptions 4.2.1 and 4.2.4, will be satisfied by consistent (in the numerical analysis

sense) discretizations of these infinite dimensional models. Indeed, we show that

our discrete level assumptions are satisfied if we discretize the two diagonal exam-

ples using spectral truncation. Furthermore, in Section 4.7 we provide numerical

∗[3, 4] are Chapters 2 and 3 respectively in the current thesis.
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evidence that our ideas also apply when using other discretization schemes, and in

particular discretization via finite difference approximations.

We also present a nonlinear inverse problem satisfying our more general as-

sumptions in Section 4.5. In particular, we show that the inverse problem of non-

parametric drift estimation of SDE’s using local time, considered in [64, 59], satisfies

Assumptions 4.5.2. Again we expect that Assumptions 4.5.1 on the discrete level,

will be satisfied by consistent discretizations.

4.6.1 Linear mildly ill-posed simultaneously diagonalizable inverse

problem

We consider the linear inverse problem setting (4.1.1)-(4.1.3), where K, C0 and C1

commute with each other andK∗K, C0 and C1 are simultaneously diagonalizable with

common complete orthonormal eigenbasis {ej}j∈N. Note, that we do not assume

that K is compact, but we do assume that K?K is diagonalizable in {ej}j∈N; in

particular, we allow for K to be the identity. For any w ∈ X , let wj :=
〈
w, ej

〉
. Let

Σ be a positive definite and trace class operator in X which is diagonalizable in the

orthonormal basis {ej}j∈N, with eigenvalues {λΣ
j }j∈N. Then for any ρ ∈ X , we can

write a draw x ∼ N (ρ,Σ) as

x = ρ+
∞∑
j=1

√
λΣ
j γjej ,

where γj are independent standard normal random variables in R; this is the

Karhunen-Loeve expansion [1]. This expansion suggests that since we are in a simul-

taneously diagonalizable setting we can use the Parseval identity and work entirely

in the frequency domain. Indeed, we identify an element w ∈ X with the square

summable sequence of its coefficients {wj}j∈N, and the norm and inner product in X
with the `2-norm and inner product. Furthermore, we identify the operators C0, C1

and K with the sequences of their eigenvalues {λC0j }j∈N, {λ
C1
j }j∈N and {λKj }j∈N re-

spectively. Algebraic operations on the operators C0, C1,K are defined through the

corresponding operations on the respective sequences.

We make the following assumptions on the decay of the spectrum of K, C0

and C1:

Assumptions 4.6.1. The eigenvalues of K∗K, C0 and C1, denoted by (λKj )2, λC0j , λ
C1
j ,

respectively, satisfy

- (λKj )2 � j−4`, ` ≥ 0;
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- λC0j � j−2α, α > 1
2
∗;

- λC1j � j−2β, β ≥ 0∗.

Let ν be the joint distribution of y and u, where u|δ ∼ N (0, δ−1C0) and

y|u, σ, δ ∼ N (Ku, σ−1C1). Then in this diagonal case, it is straightforward to show

in the infinite dimensional setting that the conditional posterior u|y, σ, δ is ν-almost

surely Gaussian, N (mσ,δ(y), Cσ,δ), where Cσ,δ and mσ,δ(y) satisfy (4.1.4) and (4.1.5)

respectively. We make the following additional assumption:

Assumption 4.6.2. The parameters α, β, ` in Assumptions 4.6.1 satisfy 2α+ 4`−
2β > 1.

We show that under Assumptions 4.6.1 and 4.6.2, the Assumptions 4.3.1 on

the underlying infinite dimensional model are satisfied ν-almost surely. Without

loss of generality we assume that δ = σ = 1. For Assumption 4.3.1(i), we have using

the Karhunen-Loeve expansion and Assumption 4.6.1,

Eν
∥∥C− 1

2
0 m(y)

∥∥2 ≤ cEν
∞∑
j=1

j2α−4`+4b

(j−4`+2β + j2α)2
(j−2`−αζj + j−βξj)

2,

where {ζj}j∈N, {ξj}j∈N are two independent sequences of independent standard nor-

mal random variables. The assumption 2α + 4` − 2β > 1 secures that the right

hand side is finite, hence m(y) ∈ D(C−
1
2

0 ) ν-almost surely. For Assumption 4.3.1(ii),

the operator C−
1
2

1 KC0K
∗C−

1
2

1 has eigenvalues which decay like j−2α−4`+2β hence are

summable by Assumption 4.6.2.

We consider the additional Assumption 4.3.2 on the data required for the

analysis of the σ-chain. We first define the Sobolev-like spaces Ht, t ∈ R: for t ≥ 0,

we define

Ht := {u ∈ X :
∥∥u∥∥Ht :=

∞∑
j=1

j2t
〈
uj , ej

〉2
<∞},

and for t < 0, Ht := (H−t)∗.
We assume data of the form (4.2.6), where z is the image under K of an

underlying, sufficiently regular, true solution ū:

Assumption 4.6.3. y = Kū + σ̄−
1
2C

1
2
1 ξ, where ū ∈ Hβ−2` and ξ is a Gaussian

white noise.

∗α, β not to be confused with α,β used respectively as shape and rate parameters of the Gamma
distribution.
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Under Assumptions 4.6.1 and 4.6.3, we have that Assumption 4.3.2 is satis-

fied, since

∥∥C− 1
2

1 z
∥∥2 ≤ c

∞∑
j=1

j2β−4`ū2
j = c

∥∥ū∥∥2

Hβ−2` .

Note that under Assumptions 4.6.1, 4.6.2 and 4.6.3, it is straightforward to check

that Assumption 4.3.1(i) is also satisfied ξ-almost surely. Indeed, using the Karhunen-

Loeve expansion we have,

E
∥∥C− 1

2
0 m(y)

∥∥2 ≤ cE
∞∑
j=1

j2α−4`+4b

(j−4`+2β + j2α)2
(j−2`ū2

j + σ̄−
1
2 j−βξj)

2,

where {ξj}j∈N is a sequence of independent standard normal random variables. The

assumption 2α + 4` − 2β > 1 together with the assumption that ū ∈ Hβ−2` secure

that the right hand side is finite. Assumption 4.3.1(ii) is independent of y, hence

also holds by our previous considerations.

A natural way to discretize this setup is to truncate the Karhunen-Loeve

expansion. We define the N × N matrices C0, C1 and K by identifying them with

the truncated sequences {λC01 , ..., λ
C0
N }, {λ

C1
1 , ..., λ

C1
N } and {λK1 , ..., λKN} respectively.

As before, algebraic operations on the matrices C0, C1 and K are defined through

the corresponding operations on the corresponding truncated sequences. Further-

more, we identify y with the sequence {yj}j∈N and its discretization yN at level N

with the truncated sequence {y1, ..., yN}. In general, we consider the discretization

of an element w ∈ X at level N , by identifying it with the truncated sequence

{w1, ..., wN} ∈ RN . The Hilbert space norm of w is then replaced by the Euclidean

norm of the vector {w1, ..., wN} ∈ RN and the Hilbert space inner product of w and

v by the Euclidean inner product of the vectors {w1, ..., wN} and {v1, ..., vN}. We

consider discrete data yN which arise by discretizing y in Assumption 4.6.3. That

is, we assume

yN = Kū+ σ̄−
1
2C

1
2
1 ξ,

where K, C1, ū and ξ are discretized as explained above. We show that Assumptions

4.2.1 and 4.2.4, are satisfied under Assumptions 4.6.1, 4.6.2 and 4.6.3 for data of

this form and for this discretization scheme.

By Assumption 4.6.1, we have that there exists a constant c ≥ 0 independent
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of N , such that

E
∥∥C− 1

2
0 m(yN)

∥∥2

RN ≤ cE
N∑
j=1

j2α−4`+4b

(j−4`+2β + j2α)2
(j−2`ūj + j−βξj)

2,

where the right hand side is bounded uniformly in N , since we are summing non-

negative numbers and we have seen that under Assumptions 4.6.2 and 4.6.3 the

corresponding infinite series is summable. Furthermore, again by Assumption 4.6.1,

there exists another constant c ≥ 0 independent of N , such that

Tr(C−
1
2

1 KC0K
∗C−

1
2

1 ) ≤ c
N∑
j=1

j−2α−4`+2β,

where the right hand side is bounded uniformly in N , since we have seen that

under Assumption 4.6.2 the corresponding infinite series is summable. Finally, under

Assumption 4.6.1 there exists a constant c ≥ 0 independent of N , such that

∥∥C− 1
2

1 Kū
∥∥2

RN ≤ c
N∑
j=1

j2β−4`ū2
j ,

where the right hand side is bounded uniformly in N , since by Assumption 4.6.3

the corresponding infinite series is summable.

In Section 4.7 below we show numerical results for both the slowing down of

the δ-chain and the speeding up of the σ-chain, in this simultaneously diagonalizable

linear inverse problem setting. We first show results using the discretization via

truncation of the Karhunen-Loeve expansion presented here, and then we show

results using discretization via finite differences. We do not prove that discretization

via finite differences satisfies our discrete level assumptions, however, we expect this

to be true; our belief is supported by our numerical results.

4.6.2 Linear severely ill-posed simultaneously diagonalizable in-

verse problem

We consider the setting of [45, 4]∗, that is, a similar situation with the previous

example, where instead of having (λKj )2 � j−4` we now have (λKj )2 � e−2sjb , for

b, s > 0. The proof of the validity of Assumptions 4.3.1 ν-almost surely is identical

to the proof in the previous example, where we now have the added advantage of

the exponential decay of the eigenvalues of K∗K. Furthermore, Assumption 4.3.2

∗[4] is Chapter 3 in the current thesis.
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holds if we consider z = Kū where ū ∈ X . We can again prove that for data of the

form (4.2.6) where z = Kū, Assumption 4.3.1 is satisfied ξ-almost surely. Finally,

in a similar way to the previous example, Assumptions 4.2.1 and 4.2.4 are valid if

we discretize this setup by truncating the Karhunen-Loeve expansion.

4.6.3 Nondiagonal linear inverse problem

We consider the setting of [3]∗, that is the linear inverse problem setting where

K∗K, C0 and C1 are not necessarily simultaneously diagonalizable but they are re-

lated to each other via the norm equivalence assumptions 2.3.1. As before let ν be the

joint distribution of y and u, where u|δ ∼ N (0, δ−1C0) and y|u, σ, δ ∼ N (Ku, σ−1C1).

Then as in the simultaneously diagonalizable case examined above, we have that

the conditional posterior u|y, σ, δ is ν-almost surely N (mσ,δ(y), Cσ,δ), where Cσ,δ
and mσ,δ(y) satisfy (4.1.4) and (4.1.5) respectively (see Theorem 2.2.1). It is im-

plicit in Theorem 2.2.1 that mσ,δ(y) ∈ D(C−
1
2

0 ) ν-almost surely, hence Assumption

4.3.1(i) holds ν-almost surely. Assumption 4.3.1(ii) also holds ν-almost surely since

if {φj}j∈N is a complete orthonormal system of eigenfunctions of C0 and {λC0j }j∈N
the corresponding eigenvalues, by Assumption 2.3.1(3) we have

∥∥C− 1
2

1 KC
1
2
0 φj

∥∥2 ≤

c
∥∥C−β2 +`+ 1

2
0 φj

∥∥2
= c(λC0j )−β+2`+1 which is summable by Assumption 2.3.1(1) and

(2). Hence, we have that C−
1
2

1 KC
1
2
0 is Hilbert-Schmidt which in turn implies that

C−
1
2

1 KC0K
∗C−

1
2

1 is trace-class.

Furthermore, by Assumption 2.3.1(3), we have that Assumption 4.3.2 is sat-

isfied if we consider z = Kū, for ū ∈ Xβ−2`, where the spaces Xt are defined in

Section 2.3 of Chapter 2.

4.6.4 Nonparametric drift estimation

We consider the setting presented in [59] and analyzed in [64]. In particular, we

consider the problem of nonparametrically estimating the drift function u from an

observation of a single path up to time T of the solution of the SDE

dyt = u(yt)dt+ dWt,

where Wt is a Brownian motion and where we assume that the path lives on the

circle T = [0, 1). We work in X = L2(T), and put a Gaussian prior on u, u|δ ∼
N (0, δ−1C0), where C−1

0 = (− d2

dx2 )p + I. Let ν(y, u) be the joint density of the path

y and the drift u where y|u is given by the Girsanov theorem and u is drawn from

∗[3] is Chapter 2 in the current thesis.
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the prior. In [64], it is shown that u|y, δ ∼ N (m(y), Cσ,δ(y)) ν-almost surely, for

Cσ,δ(y)−1 = LT (.; y) + δC−1
0 ,

Cσ,δ(y)−1m(y) =
1

2
LT (.; y)′ + χT (.; y),

where LT is the semimartingale local time and χT is a function which is of O(1)

with respect to T . In particular, we are in the setting described in (4.5.1)-(4.5.2)

where R(y) is the multiplication operator L
1
2
T (.; y). We check the validity of As-

sumptions 4.5.2. Indeed, it is shown in [64] that m(y) ∈ D(C−
1
2

0 ) ν-almost surely

hence Assumption 4.5.2(i) holds ν-almost surely. On the other hand for Assump-

tion 4.5.2(ii), the Hölder inequality implies that the operator R(y) is bounded in X
ν-almost surely, hence, since the family of trace class operators is a ∗-ideal in the

space of bounded operators in X [66, Theorem VI.19], and since C0 is trace class,

we have that R(y)C0R
∗(y) is also trace class ν-almost surely.

4.7 Numerical Results

In this section we present some numerical simulations supporting our main results

contained in Section 4.2, their extensions in Section 4.5 and our intuition on the

benefits of the reparametrization introduced in Section 4.4.

We consider the mildly ill-posed diagonal setting presented in Subsection

4.6.1 and examine three instances of the linear inverse problem of determining an

unknown function u ∈ X = L2[0, 1] from a noisy observation y of a linear transforma-

tion of the signal. In Subsection 4.7.1, we discretize using the truncated Karhunen-

Loeve expansion as explained in Subsection 4.6.1 and work in the frequency domain.

This discretization scheme satisfies our assumptions (see Subsection 4.6.1), and in-

deed our theory is supported by the numerical results. In Subsection 4.7.2, we

discretize the unknown and data on a uniform grid of N points in [0, 1], and use

finite differences to approximate the operators K, C0 and C1 which are assumed to be

inverses of differential operators. We do not check the validity of Assumptions 4.2.1

and 4.2.4 in this case, however, the simulation results are again consistent with our

theory. Finally, in Subsection 4.7.3, we consider a similar but in fact nondiagonal

setting, where again we discretize the unknown on a uniform grid of N points but

we assume that we only observe M < N of these points subject to additive white

noise. As indicated in Section 4.5 our theory extends to such cases and indeed this

is supported by our numerical results.

In the first two instances, in Subsections 4.7.1 and 4.7.2, we consider hier-
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archical inference on both the prior and noise scaling parameters, despite the fact

that for simplicity our analysis presented in Section 4.2 is performed separately on

the behaviour of the δ-chain for fixed σ and on the behaviour of the σ-chain for

fixed δ. The simulation results when fixing one of the two hyper-parameters, are

qualitatively the same as the ones presented here, indicating that since σ instantly

identifies its true value, when considering hierarchical inference simultaneously on

both hyper-parameters, the two components of the joint chain (δ, σ) decorrelate

instantly.

4.7.1 Signal in white noise model using truncated Karhunen-Loeve

expansion

We consider the simultaneously diagonalizable setup described in Subsection 4.6.1,

where X = L2[0, 1] with Dirichlet boundary conditions. We consider the orthonor-

mal basis ej(x) =
√

2 sin(jπx), x ∈ [0, 1], and define the operators K, C0 and C1

directly through their eigenvalues λKj = 1, λC0j = j−3 and λC1j = 1, for all j ∈ N,

respectively. In other words, we study the problem of recovering an unknown signal

through a direct observation subject to white noise. Defining A0 to be the negative

Laplace operator in [0, 1] with Dirichlet boundary conditions, we have that we use

a Gaussian prior with covariance operator C0 which is proportional to A−
3
2

0 .

In the language of Subsection 4.6.1, we have that Assumptions 4.6.1 are

satisfied with α = 1.5 and β = ` = 0, hence since 2α+ 4`− 2β = 3 > 1, Assumption

4.6.2 is also satisfied. We assume that we have data produced from the underlying

true signal ū(x) =
∑∞

j=1 ūj
√

2 sin(jπx), for x ∈ [0, 1], where ūj = j−2.25 sin(10j)

and σ̄ = 200, and in particular we have that the coefficients of y, are given as

yj = ūj + σ̄−
1
2 ξj ,

where ξj are standard normal random variables. It is straightforward to check that

ū ∈ Ht for any t < 1.75, hence we have that Assumption 4.6.3 is also satisfied.

According to the considerations in Subsection 4.6.1, we thus have that Assumptions

4.2.1 and 4.2.4 hold when using the truncated Karhunen-Loeve expansion discretiza-

tion method.

This particular example is studied in [79] using both a hierarchical Bayesian

approach and an empirical Bayes approach to perform simultaneous inference on

the scaling of the prior covariance and the unknown function. We use the hier-

archical setup presented in Section 4.1 and in particular implement Algorithm 1.

We also implement the reparametrization presented in Section 4.4 and in particular
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Algorithm 4.

In the standard hierarchical algorithm, the values of the shape and rate

parameters in the two Gamma hyper-priors on δ and σ, are chosen to be α0 = α1 = 1

and β0 = β1 = 10−4 respectively. We do this in order to have uninformative hyper-

priors, since this choice gives that the mean is equal to α0
β0

= α1
β1

= 104 and the

variance is equal to α0

β2
0

= α1

β2
1

= 108. We choose σ(0) = 1 and δ(0) = 100. The latter

choice is made in order to pronounce the slowness of the δ-chain as the discretization

level increases, by starting the chain from a value which is a certain distance apart

from the typical value of the chain in stationarity. In the reparametrized algorithm,

in order to again have uninformative hyper-priors, we keep the same choice of α1,β1

in the Gamma prior on σ, and choose mean r0 = 1 and variance q2
0 = 104 in the

Gaussian prior on τ . We choose σ(0) = 1 and τ (0) = 1/10. The latter choice is

made in order to be consistent with the fact that τ2 acts like δ−1. We implement

the algorithms at discretization levels N = 32, 128, 512, 2048 and 8192 and in each

case we use 104 iterations of the corresponding Gibbs sampler. In order to have fair

comparisons, in the calculation of the sample mean and variance we use a fixed burn-

in time of 1000 iterations. We take the viewpoint that we have a fixed computational

budget, hence we choose not to increase the burn-in time as N increases as one can

do if infinite resources are available. This has a negative effect on the quality of the

reconstruction using the standard hierarchical algorithm, since as N increases the

burn-in time becomes insufficient for the δ-chain to reach stationarity. This is not

to suggest that the slowness of the δ-chain is only in the transition to stationarity.

Our results, both numerical presented below and theoretical (Theorem 4.2.2), show

that the δ-chain slows down both before and after reaching stationarity.

In Figure 4.1 we have in the left column the true solution (dashed black)

and discretized noisy data (blue continuous), and in the middle and right columns

the true solution (dashed black), the sample mean (red continuous) and 87.5%

credibility bounds (shaded area) using the standard hierarchical algorithm and the

reparametrized algorithm respectively, for dimensions N = 32 (top) and N = 8192

(bottom). We can see that the reconstruction and credibility bounds in the case of

the standard hierarchical algorithm deteriorate for large dimensions, while for the

reparametrized algorithm appear to be stable.

In Figure 4.2 we have the plots of the σ-chains on the left and the δ-chains

on the right, in the standard algorithm, for increasing dimension as we move from

top to bottom. As predicted by Theorems 4.2.2 and 4.2.5, the plots show that while

in small dimensions both chains appear to have a similar behaviour with a healthy

mixing, as N increases the σ-chain moves to the true value σ̄ = 200 and fluctuates
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Figure 4.1: Left column: true solution (dashed black) and noisy data (blue contin-
uous). Middle and right columns: true solution (dashed black), sample mean (red
continuous) and 87.5% credibility bounds (shaded area) for standard hierarchical
(middle) and reparametrized algorithm (right). Dimension is N = 32 (top) and
N = 8192 (bottom).

independently around it with fluctuations which decrease as N increases, while the

δ-chain becomes slower and exhibits diffusive behaviour. In Figure 4.3 we have the

plots of the σ-chains on the left and the τ2-chains on the right, in the reparametrized

algorithm for increasing dimension top to bottom. As expected, the σ-chain exhibits

the same behaviour as in the standard algorithm, but the τ2-chain appears to be

robust with respect to the increase in dimension.

Our observations in Figures 4.2 and 4.3 are also supported by the autocor-

relation plots presented in Figure 4.4. We have four panels with the plots of the

autocorrelation functions for time lag 1− 20 of the four chains at the different dis-

cretization levels N . On the left column we have the autocorrelation functions of

the σ-chains using the standard algorithm (top) and the reparametrized algorithm

(bottom) which are practically the same; in both cases the rate of decay of corre-

lations seems to increase as N increases, and indeed for N ≥ 512 even consecutive

samples are practically independent. On the right column we have the autocorrela-

tion function of the δ-chain in the case of the standard algorithm (top) and of the

τ2-chain in the case of the reparametrized algorithm (bottom). The rate of decay

of correlations in the δ-chain appears to decrease as the dimension increases, and in

particular for N = 8192 the correlations seem not to decay at all. On the contrary,

the rate of decay of correlations in the τ2-chain does not seem to be affected by the

increase in dimension.

The fact that in low dimensions the rate of decay of correlations is slower

in the τ2-chain than in the δ-chain, is due to the small noise effect explained in

Section 4.4. To highlight this effect, we run the reparametrized algorithm again in
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Figure 4.2: Standard algorithm: σ-chains (left column) and δ-chains (right column)
for dimensions N = 32, 128, 512, 2048 and 8192 top to bottom.
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Figure 4.3: reparametrized algorithm: σ-chains (left column) and τ2-chains (right
column) for dimensions N = 32, 128, 512, 2048 and 8192 top to bottom.
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Figure 4.4: Autocorrelation functions for dimensions 32 (black), 128 (blue), 512
(red), 2048 (green) and 8192 (violet). Top left is for σ-chain in standard algorithm,
top right for δ-chain in standard algorithm, bottom left for σ-chain in reparametrized
algorithm and bottom right for τ2-chain in reparametrized algorithm.
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the case of a much smaller noise, namely σ̄ = 2002, and plot the σ and τ2-chains in

Figure 4.5. As expected, the σ-chain exhibits the same behaviour as before, but the

τ2-chain mixes very poorly. New work is required to produce effective hierarchical

algorithms in this small noise limit.

Figure 4.5: reparametrized algorithm for small noise, σ̄ = 2002: σ-chain (left) and
τ2-chain (right) for dimension N = 512.

In conclusion, our numerical simulations support the results on the stan-

dard hierarchical algorithm presented in Section 4.2 as well as our intuition on the

reparametrized algorithm discussed in Section 4.4. In fact, they suggest that it

should be possible to improve Theorem 4.2.5 on the behaviour of the σ-chain to a

result formulated almost surely with respect to the data.

4.7.2 Linear Bayesian inverse problem using finite difference dis-

cretization

We again consider the simultaneously diagonalizable setup described in Subsection

4.6.1, where X = L2[0, 1] with Dirichlet boundary conditions. As in the previous

subsection we define A0 to be the negative Laplacian with Dirichlet boundary cond-

tions in [0, 1]. We consider the case where K = (I + 1
10π2A0)−1, C0 = A−1

0 and

C1 = A−
4
5

0 . In the language of Subsection 4.6.1, we have that Assumptions 4.6.1 are

satisfied with α = 1, β = 4/5 and ` = 1, hence, since 2α + 4` − 2β = 22/5 > 1,

Assumption 4.6.2 is also satisfied. We assume that we have data of the form

y = Kū+ σ̄−
1
2C

1
2
1 ξ, (4.7.1)

where

ū(x) = 0.75 · 1[0.1,0.25](x) + 0.25 · 1[0.35,0.38] + sin4(2πx) · 1[0.5,1](x), x ∈ [0, 1],

is the true underlying signal, σ̄ = 256 and ξ is a Gaussian white noise. Noticing

that β − 2` < 0, we have that ū ∈ Hβ−2` hence Assumption 4.6.3 is satisfied. We
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hence have that the infinite dimensional assumptions on the underlying model are

satisfied and our intuition presented in Subsection 4.3.1 applies.

Instead of working in the frequency domain and truncating the Karhunen-

Loeve expansion, we discretize the domain [0, 1] using a uniform grid of N points and

use finite differences to discretize A0 hence also K, C0 and C1, [7, 8]. In particular,

we replace A0 by the N ×N matrix

A0 = N2



2 −1 0 . . . 0

−1 2 −1
. . .

...

0
. . .

. . .
. . . 0

...
. . . −1 2 −1

0 . . . 0 −1 2


,

and the operators K, C0 and C1 by the corresponding N × N matrices calculated

through the appropriate functions of the matrix A0. In defining K, we also replace

the identity operator by the N × N identity matrix. We define the inner product

and norm in RN

〈
u, v
〉
RN =

1

N

N∑
j=1

ujvj ,

and

∥∥u∥∥RN =

(
1

N

N∑
j=1

u2
j

) 1
2

.

Since we consider u to be discretized on the grid, we have uj = u( jN ), and hence

have a discrete approximation of X with norm and inner product which are the

discrete analogues of the L2-norm and inner product. We do not prove that this

discretization scheme satisfies Assumptions 4.2.1 and 4.2.4, however we expect this

to be the case. In fact, instead of discretizing y in (4.7.1) by discretizing ū on the

grid and replacing the operators K and C1 by the corresponding matrices and ξ by

a white noise in RN , we do this only for N = 8192 and produce the data at the

lower discretization levels N = 32, 128, 512 and N = 2048 by subsampling. That is

we treat the data at level N = 8192 as our infinite dimensional data and discretize

it by subsampling. This is not exactly what we assume in (4.2.6), however it is very

closely related.

As in the previous subsection, we implement the two hierarchical setups
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presented in Section 4.1 and Section 4.4, with hyper-parameters α0 = α1 = r0 =

1,β0 = β1 = q2
0 = 104 chosen to give uninformative hyper-priors, that is, hyper-

priors with variance which is much larger than their mean. We use 104 iterations of

the two Gibbs samplers and chose σ(0) = 1 in both cases, δ(0) = 10 and τ (0) = 1/
√

10.

In the calculation of the sample mean and variance of the unknown, we again use a

constant burn-in time of 1000 iterations.

In Figure 4.6 we have in the left panel the true solution (dashed black)

and discretized noisy data (blue continuous), and in the middle and right pan-

els the true solution (dashed black), the sample mean (red continuous) and 87.5%

credibility bounds (shaded area) using the standard hierarchical algorithm and the

reparametrized algorithm respectively, for dimension N = 8192. The sample means

and credibility bounds at other discretization levels are similar, hence omitted.

Figure 4.6: Left panel: true solution (dashed black) and blurred noisy data (blue
continuous). Middle and right panels: true solution (dashed black), sample mean
(red continuous) and 87.5% credibility bounds (shaded area) for standard hierarchi-
cal (middle) and reparametrized algorithm (right). Dimension is N = 8192.

In Figure 4.7 we have the plots of the σ-chains on the left and the δ-chains

on the right, in the standard algorithm, for increasing dimension as we move from

top to bottom. As predicted by Theorems 4.2.2 and 4.2.5, the plots show that while

in small dimensions both chains appear to have a healthy mixing, as N increases the

σ-chain moves to the true value σ̄ = 256 and fluctuates independently around it with

fluctuations which decrease as N increases, while the δ-chain becomes slower and

exhibits diffusive behaviour. In Figure 4.8 we have the plots of the σ-chains on the

left and the τ2-chains on the right, in the reparametrized algorithm for increasing

dimension top to bottom. As expected, the σ-chain exhibits the same behaviour as

in the standard algorithm but the τ2-chain appears to be robust with respect to the

increase in dimension.

Our observations in Figures 4.7 and 4.8 are also supported by the autocor-

relation plots presented in Figure 4.9. We have four panels with the plots of the

autocorrelation functions for time lag 1− 20 of the four chains at the different dis-

cretization levels N . On the left column we have the autocorrelation functions of

the σ-chains using the standard algorithm (top) and the reparametrized algorithm
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Figure 4.7: Standard algorithm: σ-chains (left column) and δ-chains (right column)
for dimensions N = 32, 128, 512, 2048 and 8192 top to bottom.
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Figure 4.8: reparametrized algorithm: σ-chains (left column) and τ2-chains (right
column) for dimensions N = 32, 128, 512, 2048 and 8192 top to bottom.
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(bottom) which are practically the same; in both cases the rate of decay of corre-

lations seems to increase as N increases, and indeed for N ≥ 512 even consecutive

samples are practically independent. On the right column we have the autocorrela-

tion function of the δ-chain in the case of the standard algorithm (top) and of the

τ2-chain in the case of the reparametrized algorithm (bottom). The rate of decay

of correlations in the δ-chain appears to decrease as the dimension increases, and in

particular for large N the correlations seem to decay very slowly. On the contrary,

the rate of decay of correlations in the τ2-chain does not seem to be affected by the

increase in dimension.

Figure 4.9: Autocorrelation functions for dimensions 32 (black), 128 (blue), 512
(red), 2048 (green) and 8192 (violet). Top left is for σ-chain in standard algorithm,
top right for δ-chain in standard algorithm, bottom left for σ-chain in reparametrized
algorithm and bottom right for τ2-chain in reparametrized algorithm.

The fact that in low dimensions the rate of decay of correlations is slower

in the τ2-chain than in the δ-chain, is due to the small noise effect explained in

Section 4.4. To highlight this effect, we run the reparametrized algorithm again in

the case of a much smaller noise, namely σ̄ = 2562, and plot the σ and τ2-chains in

Figure 4.10. As expected, the σ-chain exhibits the same behaviour as before, but

the τ2-chain mixes very poorly. We once more highlight that new work is required
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to produce effective hierarchical algorithms in this small noise limit.

Figure 4.10: reparametrized algorithm for small noise, σ̄ = 2562: σ-chain (left
column) and τ2-chain (right column) for dimension N = 512.

In conclusion, our numerical simulations again support the results on the

standard hierarchical algorithm presented in Section 4.2 and our intuition on the

reparametrized algorithm discussed in Section 4.4. Once more, they suggest that it

should be possible to improve Theorem 4.2.5 on the behaviour of the σ-chain to a

result formulated almost surely with respect to the data.

4.7.3 Linear Bayesian inverse problem with coarse data using finite

difference discretization

We consider a slight modification of the simultaneously diagonalizable setup de-

scribed in Subsection 4.6.1, where X = L2[0, 1] with Dirichlet boundary conditions,

and where we allow K to map X into RM . In particular, we consider the problem

of recovering a true signal ū, by observing a blurred version of it at M uniformly

spaced points { 1
M , ...,

M
M }, polluted by additive noise of constant variance σ̄−1. The

forward operator K is now defined as the composition of P which is the linear

operator of pointwise evaluations at the M observation points, and the blurring op-

erator K̃ = (I + 1
100π2A0)−1, where as in the previous examples A0 is the Dirichlet

Laplacian in [0, 1], K = PK̃. We have that C1 is the M ×M identity matrix and

we choose C0 = A−1
0 . Note, that due to the presence of P , the operator K is not

simultaneously diagonalizable with C0.

As discussed in Section 4.5.2, our theory on the slowing down of the δ-

chain extends to cover such settings, and it is straightforward to check that the

generalized Assumptions 4.3.1 which allow K : X → RM and C1 : RM → RM , are

satisfied. Indeed, assuming without loss of generality that σ̄ = δ = 1, we have

by [78, Example 6.23] that the posterior covariance and mean satisfy (4.1.4) and

(4.1.5), hence C−
1
2

0 m(y) = C−
1
2

0 (C−1
0 + K∗K)−1K∗y = (I + C

1
2
0 K

∗KC
1
2
0 )−1C

1
2
0 K

∗y,

where C
1
2
0 K

?y ∈ X , and (I +C
1
2
0 K

∗KC
1
2
0 )−1 is bounded in X by the nonnegativity of
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C
1
2
0 K

∗KC
1
2
0 . Furthermore, we have that Tr(C−

1
2

1 KC0K
∗C−

1
2

1 ) = Tr(KC0K
∗), which is

finite since KC0K
∗ is an M ×M matrix. We do not check that the discretization

scheme considered satisfies the generalized Assumptions 4.2.1, however, we expect

this to be the case.

As in the previous subsection, we discretize the domain [0, 1] using a uniform

grid of N points, where now N is chosen such that N/M ∈ N. As before we use

finite differences to discretize A0, hence also K̃ and C0. Finally, we discretize P

using the M ×N matrix P = [Pi,j ], where for i ∈ {1, ...,M} and j ∈ {1, ..., N},

Pi,j =

{
1, if j = iNM
0, otherwise.

We implement this setup for M = 32, N = 32, 128, 512 and σ̄ = 103. We

use the hierarchical setups presented in Sections 4.1 and 4.4, and in particular

Algorithms 2 and 4, where in Algorithm 4 the third step is switched off. As before,

we use α0 = r0 = 1,β0 = q2
0 = 104 chosen to give uninformative hyper-priors,

that is, hyper-priors with variance which is much larger than their mean. As in

the previous examples we use 104 iterations of the two Gibbs samplers and chose

δ(0) = 10 and τ (0) = 1/
√

10. In the calculation of the sample mean and variance of

the unknown, we use a constant burn-in time of 1000 iterations.

In Figure 4.11 we have in the left column the true solution (dashed black) and

blurred noisy data (blue dots), and in the middle and right columns the true solution

(dashed black), the sample mean (red continuous) and 87.5% credibility bounds

(shaded area) using the standard hierarchical algorithm and the reparametrized

algorithm respectively, for increasing discretization level of the unknown, N , top to

bottom. We can see that as N increases, the sample mean gets worse in both cases,

which is reasonable since we observe proportionally less points. However, for large N

the standard algorithm appears to perform a lot worse than the reparametrized one,

and in particular for N = 512 fails completely to produce a decent approximation.

In Figure 4.12 we have the plots of the δ-chains on the left and the τ2-chains

on the right, in the standard hierarchical and reparametrized algorithms respectively,

for increasing N as we move from top to bottom. As predicted in Subsection 4.5.2,

while for small N the δ-chain mixes well, as N increases it becomes slower and

exhibits diffusive behaviour. On the other hand, the τ2-chain appears to be mixing

well independently of N .

Our observations in Figure 4.12 are also supported by the autocorrelation

plots presented in Figure 4.13. We have two panels with the plots of the autocorre-
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Figure 4.11: Left column: true solution (dashed black) and blurred noisy data (blue
dots). Middle and right columns: true solution (dashed black), sample mean (red
continuous) and 87.5% credibility bounds (shaded area) for standard hierarchical
(middle) and reparametrized algorithm (right). N = 32, 128, 512 top to bottom.

Figure 4.12: δ-chains in standard algorithm (left column) and τ2-chains in
reparametrized algorithm (right column) for N = 32, 128, 512 top to bottom.
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lation functions for time lag 1− 20 of the two chains at the different discretization

levels of the unknown, N . On the left panel we have the autocorrelation functions

of the δ-chains in the case of the standard algorithm and on the right the auto-

correlation functions of the τ2-chains in the case of the reparametrized algorithm.

The rate of decay of correlations in the δ-chain appears to decrease as N increases,

and in particular for N = 512 the correlations seem to decay very slowly. On the

contrary, the rate of decay of correlations in the τ2-chain actually seems to increase

as N increases.

Figure 4.13: Autocorrelation functions for dimensions 32 (black), 128 (blue) and 512
(red). Left is for δ-chain in standard algorithm, right for τ2-chain in reparametrized
algorithm.

The fact that in low dimensions the rate of decay of correlations is slower in

the τ2-chain than in the δ-chain, is due to the small noise effect explained in Section

4.4. To highlight this effect, we run the reparametrized algorithm again in the case

of a much smaller noise, namely σ̄ = 106, and plot the τ2-chain in Figure 4.14. As

expected, the τ2-chain mixes very poorly in this case and new work is required to

produce effective hierarchical algorithms in this small noise limit.

Figure 4.14: τ2-chain using reparametrized algorithm for small noise σ̄ = 106 and
N = 128.

Note that the small noise effect can also explain the increase in the rate of
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decay of correlations in the τ2-chain when increasing N . Indeed, for fixed M , as

N gets larger we observe proportionally less points of the unknown function, hence

the restriction τv ' ū is on proportionally less points. This suggests that the a

posteriori dependence between τ and v is weaker hence the better mixing in the

τ2-chain.

4.8 Conclusions

We have considered a class of Bayesian linear inverse problems with Gaussian ad-

ditive noise and Gaussian priors, for determining an unknown parameter u from

a blurred noisy observation y in a Hilbert space setting. We discretized the setup

in RN using consistent discretizations of the operators defining the problem. The

use of consistent discretizations enabled the comparison of the values of the scalings

σ−1 and δ−1 of the noise and prior covariance operators respectively, across different

discretization levels; this is very important in applied problems where it is often of

interest to perform simulations at different levels of model-refinement. We studied

a standard conditionally conjugate hierarchical setup for simultaneous inference on

the unknown u and the two scalings σ−1, δ−1. Conditional conjugacy makes natu-

ral the use of a Gibbs sampler to sample the posterior (Algorithm 1). We showed

that under assumptions on the discrete level (Assumptions 4.2.1 and 4.2.4) which

we believe, and indeed have proved in some specific scenarios, that are inherited

by reasonable discretizations from natural assumptions on the underlying infinite

dimensional problem (Assumptions 4.3.1 and 4.3.2), the behaviour of the Gibbs

sampler has two scales: an increasingly slow scale and an increasingly fast scale

on which the δ and σ-chains evolve respectively. We provided both intuition based

on the underlying infinite dimensional model (Subsection 4.3.1) as well as rigorous

theorems quantifying the slowing down of the δ-chain when σ is fixed (Theorem

4.2.2) and the speed up of the σ-chain when δ is fixed (Theorem 4.2.5).

We proposed a reparametrization of the prior scaling which is robust as the

dimension increases (Section 4.4), however, this reparametrization deteriorates as

the noise disappears. The frequentist properties of the posterior distribution in the

small noise limit using Gaussian priors with a scaling hyper-parameter are studied

in [79] in the white noise model (see Subsection 4.7.1) using two methods: i) an

empirical Bayes method for estimating the value of the prior scaling from the data;

ii) the standard hierarchical Bayesian method considered also in the present chapter

(Subsection 4.2.1) for inference simultaneously on the unknown and the scaling of the

prior. It is shown that both methods achieve optimal posterior contraction rates over
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a range of regularity classes of the true solution. However, as our results suggest,

the implementation of the hierarchical Bayesian method in the large dimensional

limit is problematic, and in particular the Gibbs sampler naturally used to sample

the posterior suffers from increasingly poor mixing as the dimension grows. On the

other hand, while the empirical Bayes method is appealing because of the lack of

mixing issues, it involves solving an optimization problem which in more complicated

models can be computationally demanding, and it does not provide uncertainty

quantification of the prior scaling which may be desirable. We believe that more

research and new ideas are required in the small noise limit.

Our theory on the slowing down of the δ-chain was extended to cover nonlin-

ear Gaussian-conjugate Bayesian inverse problems (Subsection 4.5.1) and in partic-

ular the nonparametric drift estimation in SDE’s setting considered in [64, 59, 56].

Again our main result (Theorem 4.5.3) holds under assumptions on the discrete level

(Assumptions 4.5.1) which we believe are inherited by reasonable discretizations of

natural assumptions on the underlying infinite dimensional model (Assumptions

4.5.2). We also extended our theory to cases where the discretization levels of the

data and the unknown differ (Subsection 4.5.2).

We provided four families of inverse problems satisfying our assumptions on

the underlying infinite dimensional model (Section 4.6), and for two of them, which

are families of mildly and severely ill-posed linear inverse problems in a simultane-

ously diagonal setting, we also showed that a spectral method based on the common

eigenbasis satisfies our discrete level assumptions (Subsections 4.6.1 and 4.6.2). We

also provided numerical evidence supporting our theory in more general linear in-

verse problem settings, using both spectral truncation as well as discretization via

finite differences (Section 4.7).

Future directions of interest include a rigorous proof of the diffusion limit

(4.2.3) of the δ-chain when σ is fixed, using the standard theory of diffusion approx-

imation of Markov processes [23] in a similar way as in [67, 69] and more recently

in [63], as well as exploring the properties of the limiting SDE. Furthermore, our

numerical experiments suggest that it may be possible to improve Theorem 4.2.5

and obtain a result on the speed up of the σ-chain formulated almost surely with

respect to the data. Our simulations indicate that it may also be possible to prove

a result on the joint (δ, σ)-chain, stating that the two components de-correlate in-

stantly, and the δ-chain converges to a limiting SDE while the σ-chain converges to

the true value of the noise scaling in the data.

Finally, our infinite dimensional intuition extends to hierarchical setups for

inference on other hyper-parameters, for instance the prior and noise regularity
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parameters as studied in [43]. The idea is the same as the intuition presented

in Subsection 4.3.1, since in infinite dimensions two Gaussian measures N (0,Σ1)

and N (0,Σ2), where Σ1 and Σ2 are simultaneously diagonalizable with eigenvalues

{j−a1}j∈N and {j−a2}j∈N respectively, are mutually singular unless a1 = a2. We

expect that the chain for estimating the prior regularity slows down as the dimension

increases, while the chain for estimating the noise regularity speeds up.

4.9 Appendix

In this section we present several technical results necessary for proving our main

theorems presented in Sections 4.2 and 4.5. First, in Subsections 4.9.1 and 4.9.2 we

present the proofs of Lemmas 4.3.3 and 4.3.4 which form the basis of the proofs of

Theorems 4.2.2 and 4.2.5 on the analysis of the δ and σ-chains respectively, con-

tained in Section 4.3. Then, in Subsection 4.9.3 we state and prove two lemmas

on the negative moments of the rate parameters in the δ and σ draws (4.2.2) and

(4.2.5) respectively, which allow us to control several lower order terms arising in

the proofs of our main results in Section 4.3. In Subsection 4.9.4, we present and

prove several technical probability lemmas as well as two linear algebra lemmas,

which are useful in our analysis; in particular, Lemma 4.9.8 contains several use-

ful implications of Assumptions 4.2.1. Finally, in Subsection 4.9.5 we present the

necessary generalizations of the lemmas contained in the earlier subsections of the

appendix, required for proving Theorem 4.5.3 on the analysis of the δ-chain in the

general Gaussian-conjugate setting presented in Subsection 4.5.1.

4.9.1 Proof of Lemma 4.3.3

Proof. Let {ej}Nj=1 be any orthonormal basis of RN (with respect to the possibly

scaled norm ‖ · ‖RN ) and for any w ∈ RN write wj :=
〈
w, ej

〉
RN . We then have that

ζ =
∑N

j=1 ζjej where {ζj}Nj=1 is a sequence of independent standard normal random

variables.

Using (4.2.1) we have,

∥∥C− 1
2

0 u
(k)
δ

∥∥2

RN =
∥∥C− 1

2
0 mσ,δ(yN)

∥∥2

RN +
∥∥C− 1

2
0 C

1
2
σ,δζ
∥∥2

RN + 2
〈
C−

1
2

0 mσ,δ(yN), C−
1
2

0 C
1
2
σ,δζ
〉
RN

:= AN +BN + CN .

Under Assumptions 4.2.1, we can analyze each term as follows:

A) by Assumption 4.2.1(i), for almost all data y, this term and all its positive

integer powers are bounded uniformly in N .
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B) the second term can be written as

∥∥C− 1
2

0 C
1
2
σ,δζ
∥∥2

RN =
〈
C−

1
2

0 C
1
2
σ,δζ, C

− 1
2

0 C
1
2
σ,δζ
〉
RN =

〈
C

1
2
σ,δC

−1
0 C

1
2
σ,δζ, ζ

〉
RN

= δ−1
〈
C

1
2
σ,δ(C

−1
σ,δ − σK

∗C−1
1 K)C

1
2
σ,δζ, ζ

〉
RN

= δ−1
〈
(I − σC

1
2
σ,δK

∗C−1
1 KC

1
2
σ,δ)ζ, ζ

〉
RN

= δ−1
∥∥ζ∥∥2

RN − δ
−1σ

∥∥C− 1
2

1 KC
1
2
σ,δζ
∥∥2

RN

:= b1,N − b2,N ,

where

b1) for the first term we have

b1,N = δ−1
∥∥ζ∥∥2

RN =
N

δ
+

1

δ

N∑
j=1

(ζ2
j − 1) :=

N

δ
+

√
2N

δ
W1,N ,

where as N → ∞, W1,N = 1√
2N

∑N
j=1(ζ2

j − 1) converges weakly to a

standard normal random variable by the Central Limit Theorem and by

Lemma 4.9.5 has moments of every order which are bounded uniformly

in N ;

b2) for the second term we have by Lemma 4.9.8(ii) that Eζ [b2,N ] is uniformly

bounded in N . In fact using Lemma 4.9.4 together with Lemma 4.9.8(ii),

we get that for any p ∈ N, Eζ [bp2,N ] is bounded independently of N .

C) for the third term we have

〈
C−

1
2

0 mσ,δ(yN), C−
1
2

0 C
1
2
σ,δζ
〉
RN =

〈
(C−

1
2

0 C
1
2
σ,δ)
∗C−

1
2

0 mσ,δ(yN), ζ
〉
RN

=

N∑
j=1

((C−
1
2

0 C
1
2
σ,δ)
∗C−

1
2

0 mσ,δ(yN))jζj .

It holds that

N∑
j=1

((C−
1
2

0 C
1
2
σ,δ)
∗C−

1
2

0 mσ,δ(yN))2
j =

∥∥(C−
1
2

0 C
1
2
σ,δ)
∗C−

1
2

0 mσ,δ(yN)
∥∥2

RN ,

and we claim that the norm on the right hand side is uniformly bounded in N

almost surely with respect to the data. Indeed, by (4.1.4), the Cauchy-Schwarz

inequality and the non-negative definiteness of the matrix C
1
2
0 K

∗C−1
1 KC

1
2
0 , we
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have

∥∥(C−
1
2

0 C
1
2
σ,δ)
∗u
∥∥2

RN =
〈
C−

1
2

0 Cσ,δC
− 1

2
0 u, u

〉
RN

=
〈
δ−1(I +

σ

δ
C

1
2
0 K

∗C−1
1 KC

1
2
0 )−1u, u

〉
RN

≤
∥∥δ−1(I +

σ

δ
C

1
2
0 K

∗C−1
1 KC

1
2
0 )−1u

∥∥
RN
∥∥u∥∥RN

≤ δ−1
∥∥u∥∥2

RN .

Combining with Assumption 4.2.1(i) we get the claim and therefore by Lemma

4.9.3 below we get that the third term has y-almost surely all even moments

uniformly bounded in N .

We define FN = β0 +
AN−b2,N+CN

2 and observe that since all terms have bounded

moments of every order uniformly in N y-almost surely, Hölder’s inequality secures

that FN also has bounded moments of every order uniformly in N almost surely

with respect to y.

4.9.2 Proof of Lemma 4.3.4

Proof. Let {ej}Nj=1 be any orthonormal basis of RN (with respect to the possibly

scaled norm ‖ · ‖RN ) and for any w ∈ RN write wj :=
〈
w, ej

〉
. We then have that

ζ =
∑N

j=1 ζjej and ξ =
∑N

j=1 ξjej where {ζj}Nj=1 and {ξj}Nj=1 are two independent

sequences of independent standard normal random variables.

We have

∥∥C− 1
2

1 (Ku(k)
σ − yN)

∥∥2

RN =
∥∥C− 1

2
1 (z −Ku(k)

σ )
∥∥2

RN + σ̄−1
∥∥ξ∥∥2

RN

+ 2σ̄−1
〈
C−

1
2

1 (z −Ku(k)
σ ), ξ

〉
RN

:=AN +BN + CN .

Under our assumptions we can analyze each term as follows:

A) we have using (4.1.5), (4.2.6) and the triangle inequality that

∥∥C− 1
2

1 (z −Ku(k)
σ )
∥∥2

RN =
∥∥C− 1

2
1 z − C−

1
2

1 Kmσ,δ(yN)− C−
1
2

1 KC
1
2
σ,δζ
∥∥2

RN

≤
∥∥C− 1

2
1 z

∥∥2

RN + σ
∥∥C− 1

2
1 KCσ,δK∗C

− 1
2

1 C
− 1

2
1 z

∥∥2

RN

+
σ

σ̄

∥∥C− 1
2

1 KCσ,δK∗C
− 1

2
1 ξ

∥∥2

RN +
∥∥C− 1

2
1 KC

1
2
σ,δζ
∥∥2

RN ,

hence it suffices to examine each term separately. By Assumption 4.2.4 and
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Lemma 4.9.8(iv), any positive power of the first two terms is bounded uni-

formly in N . For the third term, since for an N × N matrix A it holds∥∥A∥∥
2,N

=
∥∥A∗∥∥

2,N
=
√∥∥A∗A∥∥

2,N
, by Lemma 4.9.8(iv) we have

∥∥C− 1
2

1 KCσ,δK∗C
− 1

2
1 ξ

∥∥
RN ≤

∥∥C− 1
2

1 KC
1
2
σ,δ

∥∥
2,N

∥∥C 1
2
σ,δK

∗C−
1
2

1 ξ
∥∥
RN

≤ c
∥∥C 1

2
σ,δK

∗C−
1
2

1 ξ
∥∥
RN ,

where c ≥ 0 is independent of N . Using Lemma 4.9.8(ii) and Lemma 4.9.4 we

get that the third term has bounded moments of all positive orders uniformly

in N . Finally, Lemma 4.9.8(ii) and Lemma 4.9.4 secure that the fourth term

also has bounded moments of all positive orders uniformly in N . Hence, we

have that for any p ∈ N, Eξ,ζ [ApN ] is uniformly bounded in N .

B) for the second term we have for any ε > 0

σ̄−1
∥∥ξ∥∥2

RN =
N

σ̄
+

1

σ̄

N∑
j=1

(ξ2
j − 1) :=

N

σ̄
+

√
2N

σ̄
Z1,N ,

where as N → ∞, Z1,N = 1√
2N

∑N
j=1(ξ2

j − 1) converges weakly to a standard

normal random variable by the Central Limit Theorem and by Lemma 4.9.5

has moments of every positive order which are bounded uniformly in N .

C) we expand the third term using expression (4.2.4) for u
(k)
σ ,

2σ̄−
1
2
〈
C−

1
2

1 (z −Ku(k)
σ ), ξ

〉
RN

= 2σ̄−
1
2
〈
C−

1
2

1 (z −KC
1
2
σ,δζ), ξ

〉
RN − 2σ̄−

1
2
〈
C−

1
2

1 Kmσ,δ(yN), ξ
〉
RN .

Replacing the assumed data (4.2.6) in the mean equation (4.1.5), we have

CN = 2σ̄−
1
2
〈
C−

1
2

1 z − C−
1
2

1 KC
1
2
σ,δζ − C

− 1
2

1 KCσ,δK∗C−1
1 z, ξ

〉
RN

− 2σ̄−1
〈
C−

1
2

1 KCσ,δK∗C
− 1

2
1 ξ, ξ

〉
RN

:= 2σ̄−
1
2
〈
x, ξ
〉
RN − 2σ̄−1

∥∥C 1
2
σ,δK

∗C−
1
2

1 ξ
∥∥2

RN ,

where x = C−
1
2

1 z−C−
1
2

1 KCσ,δK∗C−1
1 z−C−

1
2

1 KC
1
2
σ,δζ is a Gaussian random vari-

able which only depends on ζ. By Lemma 4.9.8(ii) and Lemma 4.9.4 the second

term has bounded moments of any positive order. For the first term, we have

that xj = mj + tjζj , where mj and tj are deterministic real numbers, and
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by Assumption 4.2.4, Lemma 4.9.8(ii) and Lemma 4.9.8(iv),
∑N

j=1m
2
j and∑N

j=1 t
2
j are bounded uniformly in N . We claim that the random sequence

Eξ,ζ [
〈
x(ζ), ξ

〉2p

RN ], is bounded uniformly in N for any p ∈ N. Indeed,

Eξ,ζ [
〈
x(ζ), ξ

〉2p

RN ] = Eξ,ζ
[( N∑

j=1

x(ζ)jξj

)2p
]
,

and by the Minkowski inequality it suffices to separately check the bounded-

ness of Eξ
[(∑N

j=1mjξj

)2p
]

and Eξ,ζ
[(∑N

j=1 tjζjξj

)2p
]
, both of which can be

established using Lemma 4.9.3 below, since mj and tj are square summable

and both {ξj}Nj=1 and {ζjξj}Nj=1 are sequences of independent and identically

distributed random variables with finite even moments of any order and zero

odd moments. Concatenating, we have that Eξ,ζ [CpN ] is bounded indepen-

dently of N , for any p ∈ N.

We define HN = β1 + AN+CN
2 and observe that since all terms have bounded mo-

ments of every positive order uniformly in N , Hölder’s inequality secures that HN

also has bounded moments of every positive order uniformly in N .

4.9.3 Lemmas on the negative moments of the rate parameters in

the δ and σ draws

Lemma 4.9.1. Let u
(k)
δ be as in (4.2.1), for any δ, σ > 0. Under Assumptions

4.2.1, for i = 1, 2, we have

Eζ
[
(β0 +

1

2

∥∥C− 1
2

0 u
(k)
δ

∥∥2

RN )−2i

]
= O(N−2i),

as N →∞, almost surely with respect to y.

Proof. Without loss of generality we consider the case δ = σ = 1 and drop the σ and

δ dependence in u,m and C. To de-clutter our notation we also drop the dependence

of m on the data. Since β0 ≥ 0 it suffices to show it for β0 = 0. Formally, the random

variable
∥∥C− 1

2
0 u(k)

∥∥2

RN behaves like a chi-squared random variable with N degrees

of freedom. We estimate the squared norm by a random variable YN of known

moment generating function MYN (t), and use the following formula from [16] for

the calculation of negative moments of nonnegative random variables

E[Y −lN ] = Γ(l)−1

∫ ∞
0

tl−1MYN (−t)dt, l ∈ N. (4.9.1)
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We begin by showing there exists a constant c > 0 independent of N such

that
∥∥C− 1

2C
1
2
0 v
∥∥
RN ≤ c

∥∥v∥∥RN for any v ∈ RN . We have,

∥∥C− 1
2C

1
2
0 v
∥∥2

RN =
〈
C

1
2
0 C
−1C

1
2
0 v, v

〉
RN

=
〈
(I + C

1
2
0 K

∗C−1
1 KC

1
2
0 )v, v

〉
RN

=
∥∥v∥∥2

RN +
∥∥C− 1

2
1 KC

1
2
0 v
∥∥2

RN

≤ (1 + c2)
∥∥v∥∥2

RN ,

by Lemma 4.9.8(iii). The proved claim gives the estimate

∥∥C− 1
2

0 u(k)
∥∥2

RN =
∥∥C− 1

2
0 (m+ C

1
2 ζ)
∥∥2

RN =
∥∥C− 1

2
0 C

1
2 (C−

1
2m+ ζ)

∥∥2

RN

≥ c−1
∥∥C− 1

2m+ ζ
∥∥2

RN ,

hence it suffices to show that almost surely with respect to y we have Eζ [Y −2i
N ] =

O(N−2i), for YN :=
∥∥C− 1

2m + ζ
∥∥2

RN . Indeed, let {ej}Nj=1 be any orthonormal basis

of RN (with respect to the possibly scaled norm ‖ · ‖RN ), and define wj :=
〈
w, ej

〉
for any w ∈ RN . Then we have

YN =

N∑
j=1

((C−
1
2m)j + ζj)

2,

where ζj ∼ N (0, 1) are the mutually independent components of the white noise

ζ and (C−
1
2m)j are independent of ζ, therefore YN is a non-central chi-squared

random variable with N degrees of freedom and non-centrality parameter pN :=∑N
j=1(C−

1
2m)2

j ≥ 0. The definition and properties of the non-central chi-squared

distribution can be found in [39], where in particular, we find that the moment

generating function of YN is

MYN (t) = (1− 2t)−
N
2 exp

( pN t

1− 2t

)
,

hence using (4.9.1) we have for i = 1, 2,

Eζ [Y −2i
N ] = Γ(2i)−1

∫ ∞
0

t2i−1(1 + 2t)−
N
2 exp

(−pN t
1 + 2t

)
dt

≤ c
∫ ∞

0
t2i−1(1 + 2t)−

N
2 dt

= O(N−2i),
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providedN > 4i, where the last integral can by calculated analytically by integration

by parts.

Lemma 4.9.2. Let u
(k)
σ and yN be as in (4.2.4) and (4.2.6), respectively, for any

σ̄, σ, δ > 0. Then under Assumptions 4.2.1 and 4.2.4, for i = 1, 2, we have

Eξ,ζ
[
(β1 +

1

2

∥∥C− 1
2

1 (Ku(k)
σ − yN)

∥∥2

RN )−2i

]
= O(N−2i),

as N →∞.

Proof. As in Lemma 4.9.1 without loss of generality we show it for σ̄ = σ = δ = 1

and β1 = 0. We once more drop the σ and δ dependence in u,m and C. For

fixed ζ, we estimate
∥∥C− 1

2
1 (Ku

(k)
σ − yN)

∥∥2

RN by a random variable YN = YN (ζ) of

known moment generating function MYN (t; ζ) and use (4.9.1) for the calculation of

the second and fourth negative moments with respect to ξ. By (4.1.5), (4.2.4) and

(4.2.6) we have

∥∥C− 1
2

1 (Ku(k)
σ − yN)

∥∥2

RN =
∥∥C− 1

2
1 (z + C

1
2
1 ξ −KCK

∗C−1
1 z −KCK∗C−

1
2

1 ξ −KC
1
2 ζ)
∥∥2

RN

=
∥∥(I − S)C−

1
2

1 z −Qζ + (I − S)ξ
∥∥2

RN

=
∥∥(I − S)(C−

1
2

1 z − (I − S)−1Qζ + ξ)
∥∥2

RN

where Q := C−
1
2

1 KC
1
2 and S = QQ∗. Noting that S = Q0(I + Q∗0Q0)−1Q∗0, where

Q0 := C−
1
2

1 KC
1
2
0 , we have by Lemma 4.9.8(iii) and Lemma 4.9.7(ii) that the eigen-

values of S are bounded above by a non-negative constant c < 1 uniformly in N ,

hence (I −S)−1 has eigenvalues which are bounded from above by 1
1−c uniformly in

N , that is,
∥∥(I − S)−1v

∥∥
RN ≤

1
1−c
∥∥v∥∥RN uniformly in N . Moreover, we have

∥∥C− 1
2

1 (Ku(k)
σ − yN)

∥∥2

RN ≥ (1− c)
∥∥C− 1

2
1 z − (I − S)−1Qζ + ξ

∥∥2

RN ,

and it suffices to show that Eξ,ζ [Y −2i
N ] = O(N−2i), for YN :=

∥∥C− 1
2

1 z−(I−S)−1Qζ+

ξ
∥∥2

RN . Indeed, let {ej}j∈N be any orthonormal basis of RN (with respect to the

possibly scaled norm ‖ · ‖RN ), and define wj :=
〈
w, ej

〉
RN . Then as in Lemma

4.9.1, since ξ and ζ are independent white noises, we have that if we fix ζ, then

YN is a non-central chi-squared random variable with N degrees of freedom and

non-centrality parameter pN (ζ) =
∑N

j=1(C−
1
2

1 z − (I − S)−1Qζ)2
j ≥ 0. The moment
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generating function of YN for fixed ζ is

MYN (t; ζ) = (1− 2t)−
N
2 exp(

pN (ζ)t

1− 2t
),

hence using (4.9.1) we have for i = 1, 2,

Eξ[Y −2i
N ] ≤ c

∫ ∞
0

t2i−1(1 + 2t)−
N
2 dt = O(N−2i),

where the constant does not depend on ζ, hence Eξ,ζ [Y −2i
N ] ≤ O(N−2i).

4.9.4 Technical lemmas

Lemma 4.9.3. Let {Xj} be a sequence of random variables, such that Xj = cjYj,

where the Yj , j ∈ N are independent and identically distributed random variables

with finite even moments up to order 2r ∈ N and zero odd moments, and the cj , j ∈
N are deterministic real numbers. Then for any N ∈ N,

E[(
N∑
j=1

Xj)
2r] ≤ κ(

N∑
j=1

c2
j )
r,

where κ = E[Y 2r
1 ] > 0 is independent of N .

Proof. Denote by mn the 2n-th moment of Y1, mn = E[Y 2n
1 ]. Observe that since by

Hölder’s inequality for 0 < s ≤ t, E[|Y1|s]
1
s ≤ E[|Y1|t]

1
t , we have that for n1, ..., nq > 0

such that n1 + ...+ nq = r

mn1 ...mnq ≤ E[Y 2r
1 ]

n1+...+nq
r = E[Y 2r

1 ].

Using this and the fact that the random variables Yj are independent with zero odd

moments, we get

E[(
N∑
j=1

Xj)
2r] =

N∑
j=1

c2r
j mr +

N∑
j1 6=j2

c
2(r−1)
j1

mr−1c
2
j2m1 +

N∑
j1 6=j2

c
2(r−2)
j1

mr−2c
4
j2m2

+ ...+

N∑
j1 6=j2 6=... 6=jr

c2
j1c

2
j2 ...c

2
jrm

r
1 ≤ mr(

N∑
j=1

c2
j )
r.

Lemma 4.9.4. For any p ∈ N, there exists a constant c = c(p) ≥ 0, independent of
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N such that for any centered Gaussian random variable xN in RN , it holds

E[
∥∥xN∥∥2p

RN ] ≤ c(p)(E[
∥∥xN∥∥2

RN ])p.

Proof. Direct consequence of [18, Corollary 2.17].

Lemma 4.9.5. Let (γj)j∈N be a sequence of independent standard normal random

variables and define

GN :=
1√
2N

N∑
j=1

(γ2
j − 1).

Then all the integer moments of GN are bounded uniformly in N .

Proof. For k ∈ N, we have

E[GkN ] =
1

(2N)
k
2

N∑
j1,...,jk

E[(γ2
j1 − 1)...(γ2

jk
− 1)].

Since γ2
j −1 are independent and identically distributed with finite moments of every

order, the sum on the right hand side has a dependence on N which is determined

by the total number of non zero terms in the summation. By independence and the

fact that E[γ2
j −1] = 0, all the terms in the sum which contain a term with an index

ji which occurs only once in the product are equal to zero. We thus have that if k

is even the sum on the right hand side is of order N
k
2 , while if k is odd it is of order

N
k−1

2 . In both cases the k-th moment of GN is bounded uniformly in N .

Lemma 4.9.6. Let ΓN ∼ Gamma(α + N
2 ,

N
2 ), for α > 0, and define

ΘN :=
ΓN − 1− 2α

N√
2
N + 4α

N2

.

Then the first four moments of ΘN are bounded uniformly in N .

Proof. By [38] the random variable Gamma(a, 1) has mean and variance a and third

and fourth central moments 2a and 3a2 + 6a respectively. Hence by the scaling

property of the Gamma distribution, ΓN
L
= 2

NGamma(α + N
2 , 1) has mean 1 + 2α

N ,

variance 2
N + 4α

N2 , and third and fourth central moments which are both of order

N−2. It is thus straightforward to see that ΘN has mean zero, variance equal to one,

and since the denominator in ΘN is of order N−
1
2 it has third and fourth moments

which are O(N−
1
2 ) and O(1) respectively.
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Lemma 4.9.7. For any M ×N matrix A and any c > 0, it holds that

i) Tr(A(I + cA∗A)−1A∗) ≤ Tr(A∗A);

ii)
∥∥A(I +A∗A)−1A∗

∥∥
2,M
≤
∥∥A∗A∥∥

2,N

1+c
∥∥A∗A∥∥

2,N

.

Proof. By the Singular Value Decomposition, we have that there exist unitary M ×
M and N × N matrices U and V respectively such that A = UΣV ∗ where Σ is a

diagonal M ×N matrix with the square roots of the non-zero eigenvalues ρ2
1, ..., ρ

2
q

of both A∗A and AA∗, where q = rank(A), and possibly zeros on the diagonal. We

thus have that A(I + cA∗A)−1A∗ = UΣ(I + cΣ∗Σ)−1Σ∗U∗ where by the diagonal

form of Σ, the M×M matrix Σ(I+cΣ∗Σ)−1Σ∗ is also diagonal with
ρ2

1

1+cρ2
1
, ...,

ρ2
q

1+cρ2
q

and possibly zeros on the diagonal. Thus the eigenvalues of A(I + cA∗A)−1A∗ are
ρ2

1

1+cρ2
1
, ...,

ρ2
q

1+cρ2
q

and possibly zero and both claims follow immediately.

Lemma 4.9.8. Under Assumptions 4.2.1, we have that for any σ, δ > 0,

i) Tr(C−
1
2

1 KCσ,δK∗C
− 1

2
1 ) ≤ c2δ

−1;

ii) Eθ
∥∥C− 1

2
1 KC

1
2
σ,δθ
∥∥2

RN = Eθ
∥∥C 1

2
σ,δK

∗C−
1
2

1 θ
∥∥2

RN ≤ c2δ
−1, where θ is a Gaussian

white noise in RN ;

iii)
∥∥C− 1

2
1 KC

1
2
0

∥∥
2,N
≤ √c2;

iv)
∥∥C− 1

2
1 KCσ,δK∗C

− 1
2

1

∥∥
2,N
≤ c2δ

−1,

where c2 is defined in Assumption 4.2.1(ii).

Proof.

i) By (4.1.4), we have

C−
1
2

1 KCσ,δK∗C
− 1

2
1 = δ−1C−

1
2

1 KC
1
2
0 (I +

σ

δ
C

1
2
0 K

∗C−1
1 KC

1
2
0 )−1C

1
2
0 K

∗C−
1
2

1 ,

hence Lemma 4.9.7(i) together with Assumption 4.2.1(ii) and the fact that for

any matrix A it holds Tr(A∗A) = Tr(AA∗) give the claim.

ii) It is well known that for x ∼ N (0,Σ), E
∥∥x∥∥2

RN = Tr(Σ). Since for θ ∼

N (0, I) we have C−
1
2

1 KC
1
2
σ,δθ ∼ N (0, C−

1
2

1 KCσ,δK∗C
− 1

2
1 ) and C

1
2
σ,δK

∗C−
1
2

1 θ ∼

N (0, C
1
2
σ,δK

∗C−1
1 KC

1
2
σ,δ), the claim follows from part (i), using again the fact

that for any matrix A it holds Tr(A∗A) = Tr(AA∗).
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iii) It is well known that the Euclidean norm of a matrix A, is equal to the

Euclidean norm of its adjoint matrix and also equal to the square root of

the largest eigenvalue of A∗A, which by the non-negativity of A∗A is smaller

than the square root of the trace of A∗A. Hence we have
∥∥C− 1

2
1 KC

1
2
0

∥∥
2,N
≤√

Tr(C−
1
2

1 KC0K∗C
− 1

2
1 ) ≤ √c2, by Assumption 4.2.1(ii).

iv) Follows from Lemma 4.9.8(i) since for any matrix A it holds
∥∥A∗A∥∥

2,N
=∥∥A∥∥2

2,N
, and by applying the same reasoning which gives part (iii) from As-

sumption 4.2.1(ii).

4.9.5 Lemmas for Subsection 4.5.1

Lemma 4.9.9. Under Assumptions 4.5.1, for any δ > 0, we have

β0 +
1

2

∥∥C− 1
2

0 u
(k)
δ

∥∥2

RN =
N

2δ
+

√
N

2δ
W1,N + F̃N (δ), (4.9.2)

where i) W1,N only depends on the white noise ζ in (4.5.4), has mean zero and vari-

ance one, higher order moments which are bounded uniformly in N , and converges

weakly to a standard normal random variable as N →∞; ii) F̃N (δ) depends on the

data and y-almost surely has finite moments of all positive orders uniformly in N

(where the expectation is taken with respect to ζ).

Proof. In order to de-clutter our notation we drop the dependence of mσ,δ, R and

Cσ,δ on the data. We have,

∥∥C− 1
2

0 u
(k)
δ

∥∥2

RN =
∥∥C− 1

2
0 mδ

∥∥2

RN +
∥∥C− 1

2
0 C

1
2
δ ζ
∥∥2

RN + 2
〈
C−

1
2

0 mδ, C
− 1

2
0 C

1
2
δ ζ
〉
RN

:= AN +BN + CN .

Under the Assumptions 4.5.1, we can analyze each term as follows:

A) by Assumption 4.5.1(i), for almost all data y, this term and all its positive

integer powers are bounded uniformly in N .
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B) the second term can be written as

∥∥C− 1
2

0 C
1
2
δ ζ
∥∥2

RN =
〈
C−

1
2

0 C
1
2
δ ζ, C

− 1
2

0 C
1
2
δ ζ
〉
RN =

〈
C

1
2
δ C
−1
0 C

1
2
δ ζ, ζ

〉
RN

= δ−1
〈
C

1
2
δ (C−1

δ −R
∗R)C

1
2
δ ζ, ζ

〉
RN

= δ−1
〈
(I − C

1
2
δ R
∗RC

1
2
δ )ζ, ζ

〉
RN

= δ−1
∥∥ζ∥∥2

RN − δ
−1
∥∥RC 1

2
δ ζ
∥∥2

RN

:= b1,N − b2,N ,

where

b1) for the first term we have

b1,N = δ−1
∥∥ζ∥∥2

RN =
N

δ
+

1

δ

N∑
j=1

(ζ2
j − 1) :=

N

δ
+

√
2N

δ
W1,N ,

where as N → ∞, W1,N = 1√
2N

∑N
j=1(ζ2

j − 1) converges weakly to a

standard normal random variable by the Central Limit Theorem and by

Lemma 4.9.5 has moments of every order which are bounded uniformly

in N ;

b2) for the second term we have by Lemma 4.9.11(ii), that for almost all data

Eζ [b2,N ] is uniformly bounded in N . In fact using Lemma 4.9.4 together

with Lemma 4.9.11(ii), we get that for any p ∈ N, Eζ [bp2,N ] is bounded

independently of N , almost surely with respect to y.

C) for the third term we have

〈
C−

1
2

0 mδ, C
− 1

2
0 C

1
2
δ ζ
〉
RN =

〈
(C−

1
2

0 C
1
2
δ )∗C−

1
2

0 mδ, ζ
〉
RN

=
N∑
j=1

((C−
1
2

0 C
1
2
δ )∗C−

1
2

0 mδ)jζj ,

where for any w ∈ RN we write wj :=
〈
w, ej

〉
. It holds that

N∑
j=1

((C−
1
2

0 C
1
2
δ )∗C−

1
2

0 mδ)
2
j =

∥∥(C−
1
2

0 C
1
2
δ )∗C−

1
2

0 mδ

∥∥2

RN ,

and we claim that the norm on the right hand side is uniformly bounded in

N almost surely with respect to the data. Indeed, by (4.5.2), Cauchy-Schwarz

and the positive definiteness of the matrix C
1
2
0 R
∗RC

1
2
0 , we have almost surely
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with respect to y that

∥∥(C−
1
2

0 C
1
2
δ )∗u

∥∥2

RN =
〈
C−

1
2

0 CδC
− 1

2
0 u, u

〉
RN

=
〈
δ−1(I + δ−1C

1
2
0 R
∗RC

1
2
0 )−1u, u

〉
RN

≤
∥∥δ−1(I + δ−1C

1
2
0 R
∗RC

1
2
0 )−1u

∥∥
RN
∥∥u∥∥RN

≤ δ−1
∥∥u∥∥2

RN .

Combining with Assumption 4.5.1(i) we get the claim and therefore by Lemma

4.9.3 we get that the third term has y-almost surely all even moments uni-

formly bounded in N .

We define F̃N = β0 +
AN−b2,N+CN

2 and observe that since all terms have bounded

moments of every order uniformly in N y-almost surely, Hölder’s inequality secures

that F̃N also has bounded moments of every order uniformly in N almost surely

with respect to y.

Lemma 4.9.10. Let u
(k)
δ be as in (4.5.4), for any δ > 0. Under Assumptions 4.5.1,

for i = 1, 2, we have

Eζ
[
(β0 +

1

2

∥∥C− 1
2

0 u
(k)
δ

∥∥2

RN )−2i

]
= O(N−2i),

as N →∞, almost surely with respect to y.

Proof. The proof is almost identical to the proof of Lemma 4.9.10, however we

include it for completeness. Without loss of generality we consider the case δ = 1

and drop the δ dependence in u,m and C. To de-clutter our notation we also drop

the dependence of m and C on the data. Since β0 ≥ 0 it suffices to show it for

β0 = 0. Formally, the random variable
∥∥C− 1

2
0 u(k)

∥∥2

RN behaves like a chi-squared

random variable with N degrees of freedom. We estimate the squared norm by a

random variable YN of known moment generating function MYN (t), and use (4.9.1)

for the calculation of negative moments of nonnegative random variables.

We begin by showing that for almost all y there exists c = c(y) > 0 indepen-
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dent of N such that
∥∥C− 1

2C
1
2
0 v
∥∥
RN ≤ c

∥∥v∥∥RN for any v ∈ RN . We have,

∥∥C− 1
2C

1
2
0 v
∥∥2

RN =
〈
C

1
2
0 C
−1C

1
2
0 v, v

〉
RN

=
〈
(I + C

1
2
0 R
∗RC

1
2
0 )v, v

〉
RN

=
∥∥v∥∥2

RN +
∥∥RC 1

2
0 v
∥∥2

RN

≤ (1 + c′2)
∥∥v∥∥2

RN ,

by Lemma 4.9.11(iii). The proved claim gives the estimate

∥∥C− 1
2

0 u(k)
∥∥2

RN =
∥∥C− 1

2
0 (m+ C

1
2 ζ)
∥∥2

RN =
∥∥C− 1

2
0 C

1
2 (C−

1
2m+ ζ)

∥∥2

RN

≥ c−1
∥∥C− 1

2m+ ζ
∥∥2

RN ,

hence it suffices to show that almost surely with respect to y we have Eζ [Y −2i
N ] =

O(N−2i), for YN :=
∥∥C− 1

2m + ζ
∥∥2

RN . Indeed, let {ej}Nj=1 be any orthonormal basis

of RN (with respect to the possibly scaled norm ‖ · ‖RN ), and define wj :=
〈
w, ej

〉
for any w ∈ RN . Then we have

YN =
N∑
j=1

((C−
1
2m)j + ζj)

2,

where ζj ∼ N (0, 1) are the mutually independent components of the white noise

ζ and (C−
1
2m)j are independent of ζ, therefore YN is a non-central chi-squared

random variable with N degrees of freedom and non-centrality parameter pN :=∑N
j=1(C−

1
2m)2

j ≥ 0. The definition and properties of the non-central chi-squared

distribution can be found in [39], where in particular, we find that the moment

generating function of YN is

MYN (t) = (1− 2t)−
N
2 exp

( pN t

1− 2t

)
,

hence using (4.9.1) we have for i = 1, 2,

Eζ [Y −2i
N ] = Γ(2i)−1

∫ ∞
0

t2i−1(1 + 2t)−
N
2 exp

(−pN t
1 + 2t

)
dt

≤ c
∫ ∞

0
t2i−1(1 + 2t)−

N
2 dt

= O(N−2i),

providedN > 4i, where the last integral can by calculated analytically by integration
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by parts.

Lemma 4.9.11. Under Assumptions 4.5.1, we have that for any δ > 0, almost

surely with respect to y,

i) Tr(R(yN)Cδ(yN)R(yN)∗) ≤ c′2δ−1;

ii) Eθ
∥∥R(yN)C

1
2
δ (yN)ζ

∥∥2

RN ≤ c
′
2δ
−1, where θ is Gaussian white noise in RN ;

iii)
∥∥R(yN)C

1
2
0

∥∥
2,N
≤
√
c′2;

where c′2 = c′2(y) is defined in Assumptions 4.5.1(ii).

Proof.

i) By (4.5.2), we have

R(yN)CδR(yN)∗ = δ−1R(yN)C
1
2
0

(
I + δ−1C

1
2
0 R(yN)∗R(yN)C

1
2
0

)−1C
1
2
0 R(yN)∗,

hence Lemma 4.9.7(i) together with Assumption 4.5.1(ii) and the fact that for

any matrix A it holds Tr(A∗A) = Tr(AA∗) give the claim.

ii) It is well known that for x ∼ N (0,Σ), E
∥∥x∥∥2

RN = Tr(Σ). Since R(yN)C
1
2
δ θ ∼

N (0, R(yN)CδR(yN)∗), the claim follows from part (i).

iii) It is well known that the Euclidean norm of a matrix A, is equal to the

Euclidean norm of its adjoint matrix and also equal to the square root of

the largest eigenvalue of A∗A, which by the non-negativity of A∗A is smaller

than the square root of the trace of A∗A. Hence we have
∥∥R(yN)C

1
2
0

∥∥
2,N
≤√

Tr(R(yN)C0R(yN)∗) ≤
√
c′2, by Assumption 4.5.1(ii).
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Appendix A

Posterior contraction rates for

severely ill-posed problems with

Gaussian priors of analytic

regularity

We apply the theory developed in Chapter 2 to a diagonal setup where C0 has

eigenvalues λj � exp(−2αj), C1 is the identity so that the noise is white, and

A−1 = C`0 for some ` > 0. That is, using the terminology of [14], we study a severely

ill-posed problem with degree of ill-posedness ˆ̀= 2α`. Let At denote the spaces of

analytic class t as defined in [14],

At =

{
u ∈ X :

∞∑
j=1

exp(2tj)
〈
u, φj

〉2
<∞

}
,

where we recall that φj are the eigenfunctions of C0 which form a complete orthonor-

mal basis in X . We then have that the spaces Xt are identified with the spaces Aαt.

Since the eigenvalues of C0 decay exponentially, we have that s0 = 0; by Lemma

2.3.3(ii) we have that draws from the prior belong to Aα(1−s) with probability one,

for any s > 0. Furthermore, ∆ = 1 + 2` > 2s0 = 0, hence the Assumptions 2.3.1 are

satisfied and we can apply Theorem 2.2.3 to get the following convergence result:

Theorem A.0.12. Assume that u† ∈ Aγ̂, where γ̂ ≥ α. Then for

τ = τ(n) = n
− γ̂∧(2α+ˆ̀)−α+ε

2ˆ̀+2(γ̂∧(2α+ˆ̀))+2ε ,
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where ε > 0 arbitrarily small, we have that the convergence in (2.1.12) holds with

εn = n−e, where

e =
γ̂ ∧ (2α+ ˆ̀)

2ˆ̀+ 2(γ̂ ∧ (2α+ ˆ̀)) + 2ε
.

In particular, for analytic regularity γ̂ which is smaller than 2α+ ˆ̀, we have

that if we rescale the prior appropriately the posterior contracts to the truth in the

small noise limit at the optimal minimax rate (up to ε > 0 arbitrarily small), [14].
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[29] E. Giné and R. Nickl. Rates of contraction for posterior distributions in Lr-

metrics, 1 ≤ r ≤ ∞. Ann. Statist., 39(6):2883–2911, 2011.

[30] M. Hairer, J. C. C Mattingly, and M. Scheutzow. Asymptotic coupling and a

general form of Harris’ theorem with applications to stochastic delay equations.

Probability Theory and Related Fields, 149(1-2):223–259, 2011.

[31] M. Hairer, A. M. Stuart, and S. J. Vollmer. Spectral gaps for metropolis-

hastings algorithms in infinite dimensions. Submitted.

[32] M. Hairer, A. M. Stuart, and J. Voss. Analysis of SPDEs arising in path

sampling. II. The nonlinear case. Ann. Appl. Probab., 17(5-6):1657–1706, 2007.

[33] G. Helmberg. Introduction to spectral theory in Hilbert space. North-Holland

Amsterdam, 1969.

[34] A. Hofinger and H. K. Pikkarainen. Convergence rate for the Bayesian approach

to linear inverse problems. Inverse Problems, 23(6):2469, 2007.

[35] A. Hofinger and H. K. Pikkarainen. Convergence rates for linear inverse prob-

lems in the presence of an additive normal noise. Stochastic Analysis and

Applications, 27(2):240–257, 2009.

[36] T. Hohage. Regularization of exponentially ill-posed problems. Numerical func-

tional analysis and optimization, 21(3-4):439–464, 2000.

[37] T. M. Huang. Convergence rates for posterior distributions and adaptive esti-

mation. The Annals of Statistics, 32(4):1556–1593, 2004.

153



[38] N. L. Johnson, S. Kotz, and N. Balakrishnan. Continuous univariate distribu-

tions. Vol. 1. Wiley Series in Probability and Mathematical Statistics: Applied

Probability and Statistics. John Wiley & Sons Inc., New York, second edition,

1994. A Wiley-Interscience Publication.

[39] N. L. Johnson, S. Kotz, and N. Balakrishnan. Continuous univariate distribu-

tions. Vol. 2. Wiley Series in Probability and Mathematical Statistics: Applied

Probability and Statistics. John Wiley & Sons Inc., New York, second edition,

1995. A Wiley-Interscience Publication.

[40] J. P. Kaipio and E. Somersalo. Statistical and computational inverse problems,

volume 160. Springer, 2005.

[41] O. Kallenberg. Foundations of modern probability. Springer, 2002.

[42] A. Kirsch. An introduction to the mathematical theory of inverse problems,

volume 120. Springer, 2011.
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