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Chapter 1

Introduction

In this thesis we present two approaches for the solution of Inverse Prob-

lems, the Classical and the Bayesian. Inverse Problems are introduced in

Section 1.1. As a guide to our exposition we use a particular problem, the

”Laplacian-like” inverse problem, which is defined in Section 1.2 and which

simplifies the theory, enabling us to built intuition on the subject.

In Chapter 2 we give a brief presentation of the Classical Approach to

Inverse Problems. The majority of the theory presented in this chapter

is taken from [5], but is supplemented by material from [22] and [16].

In order to keep the presentation concise and simple, the proofs of the

theorems presented in this chapter are our simplified versions of the proofs

presented in [5] and [16]. Our proofs hold for the framework defined in

Section 1.2 and simplifications arise from the self-adjointness of the forward

operator. At the same time, in order to give a better picture of the theory,

we make additional remarks and present additional examples.

First, we introduce the Moore-Penrose generalized inverse, which pro-

vides a way of inverting ill-posed linear equations and then we give a short

presentation of the Classical Regularization Theory and particularly the

Tikhonov Regularization method, [21]. The chapter concludes with a pre-

sentation of the method of Tikhonov Regularization in Hilbert Scales, [18],

[17], [9]. The reason that we are mainly focused on the Tikhonov Regular-

ization method and its generalizations, is that it is related to the Bayesian

Approach to Inverse Problems, [6].
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2 CHAPTER 1. INTRODUCTION

In Chapter 3 we provide some original results for a generalized version

of the method of Tikhonov Regularization in Hilbert Scales applied to the

”Laplacian-like” inverse problem. We first supply sufficient conditions for

convergence and then proceed to give convergence rates under additional

assumptions.

Finally, in Chapter 4 we examine the Bayesian Approach to Inverse

Problems. In Section 4.1 we give a brief presentation of the theory, with-

out supplying any proofs. The theorems used for the presentation can

be found in Section 4.3. In Section 4.2 we first present some posterior

consistency results in finite dimensions and then prove original posterior

consistency results for the ”Laplacian-like” inverse problem. The posterior

consistency results presented are of two kingds: frequentist Bayesian and

subjectivistic Bayesian, [4]. We also give necessary and sufficient condi-

tions for the equivalence (in the sense of measures) of the posterior and the

prior in the ”Laplacian-like” inverse problem. In our work, we simplify the

calculation of the posterior distribution by the use of a class of conjugate

priors with respect to the data likelihood, in particular we examine the

case where both the prior and the noise is Gaussian, [1]. The presentation

in this chapter is based primarily on [20] and secondarily on [15] and [13].

The work in this thesis hence contains orginal work of two kinds: firstly

the proofs of all the results concerning classical regularization have been

developed independently from the original sources, in the particular case

where the forward operator is self-adjoint; secondly the work on the ”Laplacian-

like” inverse problem, Bayesian and Classical, presented in Chapters 3 and

4, is entirely new.

1.1 Inverse Problems

In this section we introduce the concept of an Inverse Problem. According

to [5], ”Inverse Problems are concerned with determining causes for a de-

sired or an observed effect”.

Suppose F : X → Y is a function between the spaces X and Y and
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consider the equation

y = F (u). (1.1)

To give some intuition, suppose F is the solution of a differential equation.

If we consider yδ to be a (possibly noisy) observation of the solution

yδ = F (u) + η, (1.2)

where we know that the size of the noise is less than δ (classical ap-

proach) or we have some information on the statistical behaviour of the

noise (Bayesian approach), then in Inverse Problems we are trying to de-

termine the parameter u which is the cause for the observed effect yδ. If

we consider y to be a desired solution of the differential equation, then in

Inverse Problems we are trying to determine the parameter u which steers

the solution to the desired value. In other words we are trying to invert

(1.1) or (1.2) in a general sense.

We will henceforth refer to y as the exact data or exact observation, to

yδ as the noisy data or the noisy observation and to u as the solution of

the Inverse Problem.

Inverse Problems are in general ill-posed in the Hadamard sense, since

usually at least one of the following holds:

i) The existence of solution is not guaranteed for all admissible data

y ∈ Y : the function F might not be surjective, so there might exist

y ∈ Y for which there is no u ∈ X such that y = F (u). Even if F is

surjective, in practice we have noisy observations of the data y which

might not be in the space Y , so we need a way to assign a solution u

to these observations.

ii) The uniqueness of solution is not guaranteed for all admissible data

y ∈ Y : the function F might not be injective, so there might exist

data y ∈ Y for which there are multiple u’s such that y = F (u).

More generally, in the case of noisy observations we need to be able

to assign a unique solution to every noisy measurement.

iii) The solution u does not depend continuously on the data y: this is
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currently a vague statement since we haven’t introduced any topolo-

gies in the spaces X and Y , but we will make it concrete later. It is

apparent that this is very important since in practice we have noisy

observations of the data y, so we want small errors in y to give rise

to small errors in the solution u.

In Chapter 2, we give some classical tools to deal with the ill-posedness

of inverse problems and in Section 1 of Chapter 4, we give a description of

the Bayesian approach to inverse problems. In Chapter 3 and Section 2 of

Chapter 4, we give results related to a particular inverse problem, which

we call the ”Laplacian-like” inverse problem and which we define in the

next section.

1.2 Statement of the Problem

1.2.1 General Framework

In this thesis we are concerned with Inverse Problems of the following

general form: suppose that in (1.1) and (1.2), X and Y are Hilbert spaces

and F is a compact, linear operator K : X → Y . We are trying to invert

y = Ku, u ∈ X, y ∈ Y, (1.3)

assuming that we have observations of (1.3) polluted by an additive noise

of known magnitude (classical approach)

yδ = Ku+ η, ||η|| = δ, (1.4)

or known statistics (Bayesian approach).

For a compact operator K, it is well known that its range, R(K), is

closed if and only if it is finite-dimensional [5]. This immediately shows

that in the interesting cases where the range of the operator is infinite-

dimensional there is no guarantee of solution of the inverse problem (1.3)

for all y ∈ Y . Indeed, since Y is a Hilbert space therefore closed, in these

cases we have R(K) ( Y . Furthermore, if the nullspace of K is non-trivial,

then K is not injective and therefore even if we do have existence of so-



1.2. STATEMENT OF THE PROBLEM 5

lution, we don’t have uniqueness. More importantly, as we will see in the

next section, even if we can invert (1.3), the inverse is not continuous so we

cannot calculate the solution u in a stable way. Therefore, in the general

case, the inverse problem (1.3) is ill-posed.

Later in the thesis we will additionally assume that K is injective and

self-adjoint.

WhenK is compact and self-adjoint it possesses an eigensystem {φk, νk}k∈N

where the eignevectors {φk}k∈N form an orthonormal basis of X. The as-

sumption that K is injective, implies that νk 6= 0, ∀k ∈ N.

The space X can be identified with the space H

H =

{
u =

∞∑
k=1

ukφk :
∞∑
k=1

u2
k <∞

}

which is a Hilbert space with the `2-norm and the `2-inner product.

For any u ∈ H, we can write

u =
∞∑
k=1

〈u, φk〉φk =
∞∑
k=1

ukφk, where uk := 〈u, φk〉.

We can then define fractional powers of K by

Ksu =
∑

νskukφk, s ∈ R.

For every s ∈ R we define the separable Hilbert spaces Xs by

Xs =

{
u :

∞∑
k=1

ν−4s
k u2

k <∞

}
,

with the inner product

〈u, x〉Xs := 〈K−2su,K−2sx〉
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and the norm

||u||Xs :=
∣∣∣∣K−2su

∣∣∣∣ =

(
∞∑
k=1

ν−4s
k u2

k

) 1
2

.

Notation. Throughout this thesis we use the following notation:

uk = 〈u, φk〉,

yk = 〈y, φk〉,

yδk = 〈yδ, φk〉,

and

qk = 〈u†, φk〉.

1.2.2 The Laplacian-like Inverse Problem

In particular in this thesis, we will study the inverse problem (1.3) with K

defined as a negative power of an operator A satisfying the following:

Assumption 1.2.1. A : D(A)→ H is a linear bounded operator, satisfy-

ing the following properties:

i) A is positive-definite, self-adjoint and invertible;

ii) A possesses an eigensystem {φk, µk}k∈N, where the eigenvectors {φk}k∈N

form an orthonormal basis for H;

iii) there exist c+1 , c
−
1 > 0 such that

c−1 ≤
µk
k2
≤ c+1 , ∀k ∈ N.

In other words the operator A is ”Laplacian-like” in the sense that it’s

eigenvalues {µk} grow like the eigenvalues of the Laplacian in the real line,

or as the eigenvalues of the Laplacian to the d-power in d-dimensions.

As before, we can define fractional powers of A by

Asu =
∑

µskukφk, s ∈ R,
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and for any s ∈ R we define the separable Hilbert spaces Hs by

Hs =

{
u : D → R :

∞∑
k=1

µsku
2
k <∞

}
,

with the inner product

〈u, x〉s := 〈A
s
2u,A

s
2x〉

and the norm

||u||s :=
∣∣∣∣A s

2u
∣∣∣∣ =

(
∞∑
k=1

µsku
2
k

) 1
2

.

Note thatHs is a subspace ofH if s > 0, while if s < 0 thenHs contains

H. The family of spaces (Hs)s∈R is called the Hilbert Scale induced by A.

Furthermore, note that for K = A−` the spaces Hs and Xs are connected

through scaling: indeed, since νk = µ−`k , we have that Hs = X s
4`

.

We consider (1.3) for operators K : Hγ → Hβ of the form K = A−`, ` >
0 for appropriate values of γ, β ∈ R.

Lemma 1.2.2. If K = A−`, ` > 0, then K : Hγ → Hβ is well defined and

bounded if and only if β − 2` ≤ γ.

Proof. First we show that if β− 2` ≤ γ then K is well defined. Indeed, let

u ∈ Hγ, then

||Ku||2β =
∞∑
k=1

µβ−2`
k u2

k

which is finite if and only if u ∈ Hβ−2`, i.e. γ ≥ β − 2`. To show that K is

bounded, note that

||K||2L(Hγ ,Hβ) = sup
u∈Hγ ,u 6=0

||Ku||2β
||u||2γ

= sup
u∈Hγ ,u6=0

∑∞
k=1 µ

β−2`
k u2

k∑∞
k=1 µ

γ
ku

2
k

.

If β − 2` ≤ γ, then by Assumption 1.2.1(iii), ∃c > 0 such that

µβ−2`
k ≤ cµγk, ∀k ∈ N,

thus

||K||2L(Hγ ,Hβ) ≤ c.
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Suppose that β − 2` > γ and ∀n ∈ N define u(n) = φn 6= 0. Then u(n) ∈
Hγ, ∀n ∈ N and∣∣∣∣Ku(n)

∣∣∣∣2
β

||u(n)||2γ
= µβ−2`−γ

n →∞, as n→∞,

since µn →∞ by Assumption 1.2.1(iii). Hence

||K||L(Hγ ,Hβ) =∞

and K is unbounded.

We can similarly prove the following:

Lemma 1.2.3. Suppose K = A−` : Hγ → Hβ, ` > 0, where β − 2` ≤ γ.

Then K−1 = A` : Hβ → Hγ is well defined and bounded if and only if

β = γ + 2`.

Remark 1.2.4. The last lemma may cause some confusion. As mentioned

earlier, the range of a compact operator is closed if and only if it is finite

dimensional. The last lemma implies that the range of K = A−` : Hγ →
Hγ+2` is the spaceHγ+2`, which is closed as a Hilbert space and at the same

time infinite dimensional. To resolve this subtlety, note that A−`, ` > 0,

when viewed as an operator acting between Hγ and Hγ+2` is not compact,

but it is compact when viewed as an operator acting between Hγ and Hβ

for β < γ + 2`.

Indeed, let u ∈ BHγ . Then

||Ku||2γ+2` =
∞∑
k=1

µ−2`
k µγ+2`

k u2
k = ||u||2γ ≤ 1,

thus K(BHγ ) ⊂ BHγ+2` . Conversely suppose y ∈ BHγ+2` . Then u := A`y is

an element of BHγ since

||u||2γ =
∞∑
k=1

µγkµ
2`
k y

2
k = ||y||2γ+2`
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and Ku = y. Hence BHγ+2` ⊂ K(BHγ ) and

K(BHγ ) = BHγ+2` .

Since Hγ+2` is infinite dimensional, its unit ball BHγ+2` is not compact thus

K : Hγ → Hγ+2` is not compact.

On the other hand, the ball BHγ+2` is a compact subset of Hβ for

β < γ + 2`, thus K : Hγ → Hβ, β < γ + 2` is compact, [9]. In this

case, by the last lemma, K is no longer invertible.

Observe here the importance of the noise. If there was not any noise,

we could restrict the data to Hγ+2` and then we would have the existence

and continuity of the inverse of K. The existence of the noise, may cause

the observations to be in a larger space Hβ, β < γ + 2` and in that case

we no longer have the existence, nor the continuity of the inverse of K.
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Chapter 2

The Classical Approach

In this chapter we give a brief, however self-contained, presentation of the

Classical Approach to Inverse Problems. We are mainly focused on the

Tihkonov Regularization method and its generalizations. Note that while

in this thesis we are only interested in additive noise models, the theory

developed in this chapter applies to general noise models.

2.1 The Moore-Penrose Generalized Inverse

In this section we deal with the first and second types of ill-posedness of

the inverse problem (1.3), namely the possible lack of existence of solution

and the possible lack of uniqueness of the solution. For the presentation

of this theory, which is taken from [5], we consider K : X → Y to be a

compact, linear operator.

Definition 2.1.1. [5, Definition 2.1] We define the following two gener-

alized notions of solution of (1.3):

i) u ∈ X is called a least squares solution of (1.3), if

||Ku− y|| = inf {||Kz − y|| : z ∈ X}

ii) u ∈ X is called the best-approximate solution of (1.3), if u is a least

squares solution of (1.3) and

||u|| = inf {||z|| : z is a least squares solution of (1.3)}

11
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The notion of least squares solution enforces existence of solution, while

the notion of the best-approximate solution provides a way of choosing one

of the possibly multiple least squares solutions, enforcing in this way the

uniqueness of the solution.

Definition 2.1.2. [5, Definition 2.2] The Moore-Penrose generalized in-

verse, K†, of K is the unique linear extension of K̃−1 to

D(K†) = R(K) uR(K)⊥,

such that

N (K†) = R(K)⊥,

where

K̃ = K|N (K)⊥ : N (K)⊥ → R(K)

Note that the Moore-Penrose generalized inverse is defined only for

y ∈ D(K†). Let Q be the orthogonal projector onto R(K). If the range

of K is infinite dimensional and therefore non-closed, D(K†) is a proper

subset of Y . If y ∈ D(K†) the Moore-Penrose generalized inverse projects

y onto R(K) and then gives the unique element of N (K)⊥, symbolized by

u†, for which Ku† = Qy.

The following theorem tells us that the Moore-Penrose generalized in-

verse K† is the solution operator mapping y onto the best-approximate

solution of (1.3), when such a solution exists.

Theorem 2.1.3. [5, Theorem 2.5] Let y ∈ D(K†). Then (1.3) has a

unique best-approximate solution, which is given by

u† = K†y.

The set of all least squares solutions is u† +N (K).

We can characterize a least squares solution of (1.3) by the normal

equation:

Theorem 2.1.4. [5, Theorem 2.6] Let y ∈ D(K†). Then u ∈ X is a least

squares solution of (1.3) if and only if the normal equation

K∗Ku = K∗y (2.1)
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holds.

Using the metric properties of Q we can show that u is a least squares

solution of (1.3) if and only if Ku = Qy [5]. This implies that if y /∈ D(K†),

then there is no least squares solution of (1.3) since in that case Qy /∈ R(K)

therefore there exists no u ∈ X such that Ku = Qy. Hence, D(K†) is the

natural domain for the definition of the Moore-Penrose generalized inverse.

Moreover, note that if K is injective, then there is a unique least squares

solution for every y ∈ D(K†), since Ku = Qy has a unique solution u ∈
X. The unique least squares solution is obviously the best-approximate

solution. In this case N (K)⊥ = X holds, so we have that K̃ = K and

K−1 : R(K)→ X is well defined, therefore

K†y = K−1Qy, ∀y ∈ D(K†).

The next proposition shows that even though the Moore-Penrose gener-

alized inverse enforces existence and uniqueness of the solution by weaken-

ing the notion of solution, it doesn’t deal with the instability of the inverse

problem (1.3).

Proposition 2.1.5. [5, Proposition 2.7] Let K : X → Y be compact,

dimR(K) = ∞. Then K† is a densely defined unbounded linear operator

with closed graph.

Definition 2.1.6. Let K : X → Y be a compact, linear operator. A

singular system (σk; vk, wk) for K is defined as follows: {σ2
k}k∈N are the

nonzero eigenvalues of the selfadjoint operator K∗K, written down in de-

creasing order with multiplicity, σk > 0 and {vk}k∈N is a corresponding

complete orthonormal system of eigenvectors of K∗K, spanning R(K∗K).

The {wk}k∈N are defined as

wk :=
Kvk
||Kvk||

and they form a complete orthonormal system of eigenvectors of KK∗,

spanning R(KK∗).

The following formulas, called singular value decomposition of K and
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K∗ respectively, hold:

Ku =
∞∑
k=1

σk〈u, vk〉wk, ∀u ∈ X

and

K∗y =
∞∑
k=1

σk〈y, wk〉vk, ∀y ∈ Y.

Using the Singular Value Decomposition one can find a condition for

the existence of the best-approximate solution, as well as an expression for

it, if it does exist.

Theorem 2.1.7. [5, Theorem 2.8] Let (σk; vk, wk) be a singular system

for the compact linear operator K, y ∈ Y . Then we have:

i)

y ∈ D(K†) ⇐⇒
∞∑
k=1

| 〈y, wk〉 |2

σ2
k

<∞ (2.2)

ii) For y ∈ D(K†)

K†y =
∞∑
k=1

〈y, wk〉
σk

vk. (2.3)

The condition (2.2) for the existence of a best-approximate solution is

called Picard’s criterion. It says that ”a best-approximate solution exists if

and only if the coefficients of the observation y with respect to the singular

functions wk decay fast enough related to the singular values σk” [5].

One can readily see in expression (2.3) the instability of the problem

(1.3). Indeed, in the case where the range of K is infinite dimensional, we

know from Operator Theory that the singular values σk of K accumulate

at 0, so errors in data of a fixed size can be amplified by an arbitrarily large

factor.

Remark 2.1.8. In the ”Laplacian-like” problem with which we are con-

cerned in this thesis, we have an orthonormal basis of H consisting of

eigenfunctions of K, so we don’t need to use the Singular Value Decompo-

sition, since vk ≡ wk ≡ φk and σk ≡ µ−`k , for all k ∈ N. The Hilbert scale

Hs, s ∈ R is induced by A which is diagonalizable in the same orthonormal
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basis of eigenfunctions as K, hence the above theory is simplified:

K : Hγ → Hγ is compact, self-adjoint and injective, therefore

R(K)⊥ = N (K) = {0}

and

D(K†) = R(K).

This implies that K̃ ≡ K and that the orthogonal projector Q, of Y onto

R(K), is the identity thus it no longer appears in the formulae. We hence

have

u† = K−1y, ∀y ∈ R(K).

By Lemma 1.2.3, we have that R(K) = Hγ+2`, thus

D(K†) = Hγ+2`.

Suppose y ∈ Hγ. Then by the preceding observations:

i)

y ∈ D(K†) ⇐⇒
∞∑
k=1

µγ+2`
k y2

k <∞ (2.4)

ii) If y ∈ D(K†),

u† = K−1y =
∞∑
k=1

µ`kykφk. (2.5)

The criterion (2.4) for the existence of a solution is a decay condition

on the coefficients of y similar to the Picard’s criterion in (2.2). From (2.5)

we can again see that we have instability, since µk
k→∞−→ ∞, therefore for

` > 0, µ`k
k→∞−→ ∞ and so small errors in y can be amplified by an arbitrarily

large factor and become large errors in the solution. Note that instability

here refers to the norm topology of Hγ, not to the norm topology of Hγ+2`

where by Lemma 1.2.3 the inverse K−1 is continuous.

In the next section we introduce Tikhonov Regularization, which is a

method to deal with the instability of inverse problems and in particular

the problem (1.3).
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2.2 Regularization of Inverse Problems

In this section we deal with the third type of ill-posedness of the inverse

problem (1.3), namely the instability of the solution. Since our observa-

tions are polluted by noise and therefore they are inexact, we need an

approximation uδ of the (best-approximate) solution u†, which for small

data errors is guaranteed to be close to u†. As we’ve already explained in

the previous section, the use of the best-approximate solution K†yδ is not

good for two reasons:

a) First, the additive noise can be such that yδ /∈ D(K†) and so there

exists no least squares solution at all.

b) Second and most importantly, even if yδ ∈ D(K†), in all the inter-

esting cases K† is unbounded and so even if the error level δ in the

data is very low, we can have a very large solution error
∣∣∣∣u† − uδ∣∣∣∣.

In Subsections 2.2.1 and 2.2.2 we develop some basic general regularization

theory and then in the rest of the section we discuss Tikhonov Regulariza-

tion.

2.2.1 Basic Definitions and Results of Regularization

Theory

According to [5] ”Regularization is the approximation of an ill-posed prob-

lem by a family of neighbouring well-posed problems”.

Here, we want to approximate the best-approximate solution u† = K†y

of (1.3), for the specific right hand side y ∈ D(K†) where we have polluted

data yδ ∈ Y known, such that

∣∣∣∣y − yδ∣∣∣∣ ≤ δ.

To do this, we construct a family of approximations uδλ parametrized by

the regularization parameter λ, which we want to depend continuously on

the data yδ and as δ → 0 for the appropriate choice of the regularization

parameter λ = λ(δ)

uδλ → u†.
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A choice of the regularization paramater, depending only on the error level

δ, and not on the data yδ, is called an a-priori parameter choice rule.

For y ∈ D(K†) we have the expression (2.3) for the best-approximate

solution of (1.3). Problems are caused by the factor 1
σk

in (2.3) which tends

to infinity in the ill-posed case.

The idea, according to [22], [16], is to multiply each factor 1
σk

in (2.3)

by the value of a filter function f : (0,∞) × (0, ||K||2] → R, fλ(σ
2
k) which

behaves in general terms in the following way:

i) for each λ > 0
fλ(σ

2)

σ

σ→0−→ 0

ii) for each σ ∈ (0, ||K||]
fλ(σ

2)
λ→0−→ 1

i.e. it filters out the components which correspond to small singular values

which cause the instability, and as the regularization parameter vanishes

the effect of this filter function fades away.

The regularized version of (2.3) is then defined by

Rλy =
∞∑
k=1

f(σ2
k)

σk
〈y, wk〉 vk. (2.6)

Example 2.2.1. One example of such a filter function is the Truncated SVD

filter function (TSVD) given by

fλ(σ
2) =

{
1, if σ2 > λ,

0, if σ2 ≤ λ,

for all σ ∈ (0, ||K||]. The regularized version of (2.3) becomes

RTSV D
λ y =

∑
σ2
k>λ

〈y, wk〉
σk

vk.

In [5] the same idea is applied in a more operator-theoretic context.

They introduce the theory of Functional Calculus, in order to define func-
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tions of operators [3], [11]. In our particular problem though, since we

can diagonalize the operator K in the basis {φk}, we don’t need to use the

tools of Functional Calculus.

The theory developed in the rest of Chapter 1 is primarily taken from

[5] where it is developed in greater generality for K : X → Y , bounded

linear operator. In order to simplify the proofs of this theory, we will

henceforward assume that K : X → X is compact, self-adjoint and injec-

tive, with an eigensystem {φk, νk}k∈N, as stated in Subsection 1.2.1. All of

the proofs provided in the rest of the chapter are our simplifications of the

proofs given in [5]. For illustrative purposes we will retain the statements

of the theorems as they are in the more general theory developed in [5].

From the normal equation, if K∗K is invertible, for y ∈ D(K†) we have

u† = (K∗K)−1K∗y (2.7)

In the ill-posed case where R(K) is non-closed K∗K : X → X is not invert-

ible. Indeed, R(K∗) is determined by the K∗ image of N (K∗)⊥ = R(K),

therefore, since R(K) ( R(K), we have that R(K∗K) ( X, thus K∗K is

not invertible.

The regularized version of (2.7) for y ∈ D(K†) is then defined by replac-

ing (K∗K)−1 by the values of a parameter depending family of functions

g : (0,∞)× (0, ||K||2]→ R

uλ = gλ(K
∗K)K∗y. (2.8)

For inexact data yδ ∈ Y we then define the regularized approximation

uδλ = gλ(K
∗K)K∗yδ. (2.9)

Using the diagonalization of K in the eigensystem {φk, νk}k∈N we have

uλ =
∞∑
k=1

gλ(ν
2
k)νkykφk (2.10)
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and

uδλ =
∞∑
k=1

gλ(ν
2
k)νky

δ
kφk. (2.11)

The following theorem confirms that for a properly chosen family of

functions gλ, uλ tends to the best approximate solution as the regularization

fades away.

Theorem 2.2.2. [5, Theorem 4.1] Suppose that for every λ > 0, gλ :

[0, ||K||2]→ R fulfills the following assumptions: gλ is piecewise continuous

and there exists C > 0 such that

|σgλ(σ)| ≤ C, (2.12a)

and

lim
λ→0

gλ(σ) =
1

σ
, (2.12b)

for all σ ∈ (0, ||K||2].

Then for all y ∈ D(K†),

lim
λ→0

gλ(K
∗K)K∗y = u†.

If y /∈ D(K†), then

lim
λ→0
||gλ(K∗K)K∗y|| =∞.

Proof. Suppose y ∈ D(K†), so that u† is well defined,

u† =
∞∑
k=1

yk
νk
φk ∈ X. (i)

Then by (2.10)

∣∣∣∣u† − uλ∣∣∣∣2 =
∞∑
k=1

(
1− gλ(ν2

k)ν2
k

νk

)2

y2
k. (ii)

By (2.12a) we have

|1− σgλ(σ)| ≤ 1 + |σgλ(σ)| ≤ 1 + C, ∀σ ∈ [0, ||K||2], λ > 0,
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hence (
1− gλ(ν2

k)ν2
k

νk

)2

y2
k ≤ (1 + C)2 y

2
k

ν2
k

, ∀λ > 0, ∀k ∈ N,

where by (i)
∞∑
k=1

y2
k

ν2
k

=
∣∣∣∣u†∣∣∣∣2 <∞.

Furthermore by (2.12b) we have that for all k ∈ N

1− gλ(ν2
k)ν2

k → 0, as λ→ 0

and so by applying the Dominated Convergence Theorem to (ii) we get

that

lim
λ→0

∣∣∣∣u† − uλ∣∣∣∣ = 0.

Suppose now that y /∈ D(K†) and assume that there exists a sequence

λn → 0 such that ||uλn|| is bounded. Since X is a Hilbert space therefore

reflexive, there exists a subsequence (denoted again by uλn) which converges

weakly to some u ∈ X. Since K is compact we have that

Kuλn → Ku. (iii)

On the other hand again by the Dominated Convergence Theorem using

(2.12a), (2.12b) we have

Kuλn =
∞∑
k=1

gλn(ν2
k)ν2

kykφk
n→∞−→

∞∑
k=1

ykφk = y. (iv)

By (iii) and (iv) we get Ku = y, therefore y ∈ D(K†), contradiction.

The next theorem shows the effect of the regularization to the stability

problems, i.e. it shows that the regularized approximation uλ is continuous

with respect to the data.

Theorem 2.2.3. [5, Theorem 4.2] Let gλ and C be as in Theorem 2.2.2,

uλ and uδλ be defined by (2.8) and (2.9) respectively. For λ > 0, let

Gλ := sup
{
|gλ(σ)| : σ ∈ [0, ||K||2]

}
.
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Then ∣∣∣∣Kuλ −Kuδλ∣∣∣∣ ≤ Cδ (2.13a)

and ∣∣∣∣uλ − uδλ∣∣∣∣ ≤ δ
√
CGλ (2.13b)

hold.

Proof. By (2.10), (2.11) and (2.12a) we have

∣∣∣∣Kuλ −Kuδλ∣∣∣∣2 =
∞∑
k=1

(
ν2
kgλ(ν

2
k)(yk − yδk)

)2

≤ C2

∞∑
k=1

(yk − yδk)2 = C2
∣∣∣∣y − yδ∣∣∣∣2 ≤ C2δ2

hence (2.13a) holds.

By (2.10), (2.11), (2.12a) and Cauchy-Schwarz inequality we have

∣∣∣∣uλ − uδλ∣∣∣∣2 =
∞∑
k=1

(
νkgλ(ν

2
k)(yk − yδk)

)2
(i)

≤

(
∞∑
k=1

ν4
kg

2
λ(ν

2
k)(yk − yδk)2

) 1
2
(
∞∑
k=1

g2
λ(ν

2
k)(yk − yδk)2

) 1
2

(i)
=
∣∣∣∣Kuλ −Kuδλ∣∣∣∣

(
∞∑
k=1

g2
λ(ν

2
k)(yk − yδk)2

) 1
2

(2.13a)

≤ CδGλ

(
∞∑
k=1

(yk − yδk)2

) 1
2

= CGλδ
2

hence (2.13b) holds.

The quantity
∣∣∣∣uλ − uδλ∣∣∣∣ is called propagated data error since it mea-

sures the difference between the regularized approximations, uλ and uδλ,

which is caused by the error in the data. By the last theorem we can split

the total solution error in two components

∣∣∣∣u† − uδλ∣∣∣∣ ≤ ∣∣∣∣u† − uλ∣∣∣∣+ δ
√
CGλ (2.14)
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By Theorem 2.2.2 the first term vanishes as the regularization parameter

tends to 0, but by the assumptions on g, for fixed error level δ, as λ → 0

the value of Gλ explodes. It is apparent from this observation that in order

to achieve convergence of the regularized approximation uδλ to u†, as the

error level tends to 0, we need to let the regularization parameter λ also

go to 0, but in a carefully chosen δ-dependent way.

Example 2.2.4. The Truncated SVD can also be expressed in terms of the

notation and theory developed in [5]. Indeed, for

gTSV Dλ (σ2) =

{
1
σ2 , if σ2 > λ,

0, if σ2 ≤ λ,

we get using (2.10)

uTSV Dλ =
∑
ν2
k>λ

yk
νk
φk.

Note that for every λ > 0, gTSV Dλ is piecewise continuous and that the

other two conditions of Theorem 2.2.2 are satisfied trivially (for C=1).

Furthermore, observe that GTSV D
λ = 1

λ
, for every λ > 0.

2.2.2 Order Optimality - The Worst-Case Error

We now give some results regarding convergence rates of regularization

methods satisfying the assumptions of Theorem 2.2.2.

For µ, ρ > 0 define

Xµ = R((K∗K)µ)

with the norm

||x||Xµ =
∣∣∣∣(K∗K)−µx

∣∣∣∣ , ∀x ∈ Xµ

and

Xµ,ρ = {u ∈ X : u = (K∗K)µw, ||w|| ≤ ρ} .

Note, that for K compact, self-adjoint and injective as we will always as-

sume in the proofs of the following theory, Xµ is identified with Xµ and

||.||Xµ is identified with ||.||Xµ .
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Definition 2.2.5. [16, Definition 1.18] Let Z be a subset of X and suppose

||.||Z is a stronger norm on Z, i.e. ∃c > 0 such that ||x|| ≤ c ||x||Z , ∀x ∈ Z.
Then we define

F(δ, ρ, ||.||Z) := sup {||x|| : x ∈ Z, ||Kx|| ≤ δ, ||x||Z ≤ ρ} , (2.15)

and call F(δ, ρ, ||.||Z) the worst-case error for data-error δ and a-priori in-

formation ||x||Z ≤ ρ.

The worst-case error depends on the operator K and the norms in X,Z.

It is desirable that the worst-case error not only converges to zero as the

noise-level δ tends to 0 but that is of order as close to δ as possible. To

explain the reason for this we first give the following proposition:

Proposition 2.2.6. [5, Proposition 3.10] Let µ, ρ, δ > 0 and R : Y → X

be an arbitrary map with R(0) = 0. Define

∆(δ,Xµ,ρ, R) = sup
{∣∣∣∣R(yδ)− u

∣∣∣∣ : u ∈ Xµ,ρ, y
δ ∈ Y,

∣∣∣∣Ku− yδ∣∣∣∣ ≤ δ
}
.

Then

∆(δ,Xµ,ρ, R) ≥ F(δ, ρ, ||.||Xµ). (2.16)

Proof. Let u ∈ Xµ,ρ with ||Ku|| ≤ δ be arbitrary. Then for yδ = 0 ∈
Y, R(yδ) = R(0) = 0 we have

∣∣∣∣R(yδ)− u
∣∣∣∣ = ||u||

hence

∆(δ,Xµ,ρ, R) ≥ ||R(0)− u|| = ||u|| .

By taking the supremum over all u ∈ Xµ,ρ with ||Ku|| ≤ δ we obtain (2.16).

Since we can view uδλ as

uδλ = Rλ(y
δ)
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for a map Rλ : Y → X such that Rλ(0) = 0, the last result implies that

under the a-priori assumption u† ∈ Xµ,ρ, no regularization method can

converge faster than the worst-case error F(δ, ρ, ||.||Xµ) as δ → 0. The

worst-case error is a lower bound for the solution error of a regularization

method under the a-priori information u† ∈ Xµ,ρ.

This motivates the following definition of optimality for a regularization

method [16]:

Definition 2.2.7. We say that a regularization method (Rλ, λ) is asymp-

totically optimal in Xµ,ρ, if there exists c > 0 such that under the a-priori

information u† ∈ Xµ,ρ and
∣∣∣∣y − yδ∣∣∣∣ ≤ δ, the regularized approximation

uδλ = Rλy
δ is such that

∣∣∣∣uδλ − u†∣∣∣∣ ≤ cF(δ, ρ, ||.||Xµ), ∀δ > 0.

By the last definition, a regularization method (Rλ, λ) is optimal if un-

der the a-priori information u† ∈ Xµ,ρ, as δ → 0 it achieves the same

convergence rate as the worst-case error, which by the last proposition is

the best possible convergence rate.

We now give an interpolation inequality necessary for the analysis which

follows.

Lemma 2.2.8. For q ≥ r ≥ 0

∣∣∣∣K2rx
∣∣∣∣ ≤ ∣∣∣∣K2qx

∣∣∣∣ rq ||x||1− rq (2.17)

Proof. By Hölder inequality we have

∣∣∣∣K2rx
∣∣∣∣2 =

∞∑
k=1

ν4r
k x

2
k =

∞∑
k=1

ν4r
k x

2r
q

k x
2− 2r

q

k

≤

(
∞∑
k=1

ν4q
k x

2
k

) r
q
(
∞∑
k=1

x2
k

)1− r
q

=
∣∣∣∣K2qx

∣∣∣∣ 2rq ||x||2(1− r
q
) .

The next theorem which is a generalization of [16, Theorem 1.21] based
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on a combination of [5, Proposition 3.14] and [5, Proposition 3.15], pro-

vides an estimate of the worst-case error.

Theorem 2.2.9. Let µ, ρ > 0. Under the a-priori information that x ∈ Xµ

and ||x||µ ≤ ρ we have the following estimate for the worst-case error:

F(δ, ρ, ||.||Xµ) ≤ δ
2µ

2µ+1ρ
1

2µ+1

Furthermore, there exists a sequence δk
k→∞−→ 0 such that

F(δk, ρ, ||.||Xµ) = δ
2µ

2µ+1

k ρ
1

2µ+1 ,

i.e. the estimate is asymptotically sharp.

Proof. Let x = K2µz ∈ Xµ with ||Kx|| ≤ δ and ||x||Xµ ≤ ρ

i.e. ||K2µ+1z|| ≤ δ and ||z|| ≤ ρ.

Then using the interpolation inequality (2.17) for r = µ, q = µ + 1
2
, we

have

||x|| =
∣∣∣∣K2µz

∣∣∣∣ ≤ ∣∣∣∣K2µ+1z
∣∣∣∣ 2µ

2µ+1 ||z||
1

2µ+1 ≤ δ
2µ

2µ+1ρ
1

2µ+1 ,

hence the desired estimate on the worst-case error.

For the sharpness assertion, it suffices to determine {δk} and {xk} ⊂ Xµ

such that

i) δk
k→∞−→ 0,

ii) ||xk||Xµ ≤ ρ,

iii) ||Kxk|| ≤ δk and

iv) ||xk|| = δ
2µ

2µ+1ρ
1

2µ+1 .

Define δk = ρν2µ+1
k . Since νk

k→∞−→ 0 we have that δk
k→∞−→ 0.

Observe that (
δk
ρ

) 2
2µ+1

= ν2
k . (∗)

Let xk = ρK2µφk. Obviously xk ∈ Xµ and ||xk||Xµ ≤ ρ.
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Furthermore,

xk = ρν2µ
k φk = ρ

(
δk
ρ

) 2µ
2µ+1

φk = δ
2µ

2µ+1

k ρ
1

2µ+1φk,

hence

||xk|| = δ
2µ

2µ+1

k ρ
1

2µ+1

and

K2xk = δ
2µ

2µ+1

k ρ
1

2µ+1ν2
kφk

(∗)
= δ

2µ+2
2µ+1

k ρ
−1

2µ+1φk,

hence

||Kxk||2 = 〈Kxk, Kxk〉 =
〈
K2xk, xk

〉
=

〈
δ

2µ+2
2µ+1

k ρ
−1

2µ+1φk, δ
2µ

2µ+1

k ρ
1

2µ+1φk

〉
= δ2

k.

Observe that for µ→ 0 the convergence rates become very slow.

The next theorem in conjunction with the succeeding corollary, provide

sufficient conditions which secure the optimality of a regularization method.

Theorem 2.2.10. [5, Theorem 4.3] Let gλ fulfill the assumptions of The-

orem 2.2.2 and define

rλ(σ) := 1− σgλ(σ), ∀λ > 0, σ ∈ [0, ||K||2].

Suppose µ, ρ > 0 and let ωµ : (0, λ0) → R be such that for all λ ∈ (0, λ0)

and σ ∈ [0, ||K||2]
σµ|rλ(σ)| ≤ ωµ(λ). (2.18)

Then for u† ∈ Xµ,ρ, ∣∣∣∣uλ − u†∣∣∣∣ ≤ ωµ(λ)ρ

and ∣∣∣∣Kuλ −Ku†∣∣∣∣ ≤ ωµ+ 1
2
(λ)ρ.

Proof. Let w ∈ X be such that u† = (K∗K)µw, ||w|| ≤ ρ.

By the normal equation (2.1) we have

K∗y = (K∗K)µ+1w
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or equivalently

νkyk = ν2+2µ
k wk, ∀k ∈ N,

thus

u† − uλ =
∞∑
k=1

ν2µ
k wkφk −

∞∑
k=1

gλ(ν
2
k)νkykφk

=
∞∑
k=1

ν2µ
k wkφk −

∞∑
k=1

gλ(ν
2
k)ν2+2µ

k wkφk =
∞∑
k=1

ν2µ
k (1− gλ(ν2

k)ν2
k)wkφk

=
∞∑
k=1

ν2µ
k rλ(ν

2
k)wkφk

and similarly

Ku† −Kuλ =
∞∑
k=1

ν2µ+1
k rλ(ν

2
k)wkφk.

By (2.18) ∣∣∣∣u† − uλ∣∣∣∣2 =
∞∑
k=1

(ν2µ
k rλ(ν

2
k))2w2

k

≤
∞∑
k=1

ω2
µ(λ)w2

k = ω2
µ(λ) ||w||2 ≤ ω2

µ(λ)ρ2

and ∣∣∣∣Ku† −Kuλ∣∣∣∣2 =
∞∑
k=1

(ν2µ+1
k rλ(ν

2
k))2w2

k

≤
∞∑
k=1

ω2
µ+ 1

2
(λ)w2

k = ω2
µ+ 1

2
(λ) ||w||2 ≤ ω2

µ+ 1
2
(λ)ρ2.

Corollary 2.2.11. [5, Corollary 4.4] Let gλ satisfy the assumptions of

Theorem 2.2.10 with

ωµ(λ) = cλµ, (2.19)

for some c > 0 and assume that Gλ = O( 1
λ
), as λ→ 0, where Gλ is defined

in Theorem 2.2.3. Then, with the parameter choice rule

λ ∼
(
δ

ρ

) 2
2µ+1

, (2.20)

the regularization method (Rλ, λ), defined by gλ, is of optimal order in Xµ,ρ.
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Proof. By (2.14), (2.19) and Theorem 2.2.10 we have

∣∣∣∣uδλ − u†∣∣∣∣ ≤ ∣∣∣∣uλ − u†∣∣∣∣+ δ
√
CGλ

≤ cλµρ+ δ

√
C

λ
.

By (2.20) the right hand side is bounded by

c′

(
ρ

(
δ

ρ

) 2µ
2µ+1

+ δ
(ρ
δ

) 1
2µ+1

)
= c′δ

2µ
2µ+1ρ

1
2µ+1 ,

where c′ > 0 is a constant. Hence by the definition of order optimality and

Theorem 2.2.9, the method (Rλ, λ) is of optimal order in Xµ,ρ.

Remark 2.2.12. Note that (2.19) may only be true for µ ∈ (0, µ0] for some

µ0 > 0 which according to [5] is called the qualification of the regulariza-

tion method. If (2.19) holds for all µ > 0, then the last corollary implies

that for larger values of µ, the convergence rate of the solution error to 0, as

δ → 0, under the a-priori information u† ∈ Xµ, is guaranteed to improve

eventually getting arbitrarily close to O(δ) for large enough values of µ. In

that case, we say that the regularization method does not saturate. How-

ever, for finite values of µ0 this is not always the case; the regularization

method may saturate at some rate, as we will see later is the case for the

Tikhonov Regularization method.

Example 2.2.13. We revisit Example 2.2.4 to show that the Truncated SVD

method satisfies the assumptions of Theorem 2.2.10 and Corollary 2.2.11,

which secure that it is an optimal method in Xµ,ρ. We have already seen

that GTSV D
λ = 1

λ
for all λ > 0, thus it suffices to show that there exist

c, λ0, µ0 > 0 such that

σµ|rλ(σ)| ≤ cλµ, ∀σ ∈ [0, ||K||2], ∀λ ∈ (0, λ0), ∀µ(0, µ0). (2.21)

First we observe that

rTSV Dλ (σ) =

{
0, if σ > λ,

1, if σ ≤ λ,
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thus

σµ|rTSV Dλ (σ)| =

{
0, if σ > λ,

σµ, if σ ≤ λ.

By the last calculation we have that the condition (2.21) is satisfied for

c = 1 for all λ0 > 0 and most importantly for all µ0 > 0. By the last

remark, we thus have that the Truncated SVD regularization method does

not saturate.

2.2.3 Tikhonov Regularization

In this subsection we present a particular regularization method, that is a

particular choice of the family of functions gλ introduced in the previous

subsection. This method is called Tikhonov Regularization [21], [5], [16].

Define the Tikhonov filter function

gTλ (σ) =
1

σ + λ
, λ > 0, σ ∈ [0, ||K||2],

and observe that

|σgTλ (σ)| ≤ 1, ∀λ > 0, ∀σ ∈ [0, ||K||2] (2.22)

and that for σ 6= 0

lim
λ→0

gTλ (σ) =
1

σ
(2.23)

i.e. gT satisfies the hypotheses of Theorem 2.2.2.

With this choice of filter function, the regularized approximation for

inexact data yδ ∈ Y (≡ X) is given by

uδλ = (K∗K + λI)−1K∗yδ (2.24)

or using the diagonalization of K, by

uδλ =
∞∑
k=1

νk
ν2
k + λ

yδkφk. (2.25)

Note that uδλ is well defined because for all k ∈ N we have νk
ν2
k+λ
≤ νk

λ
which
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for all λ > 0 is bounded, since K is assumed to be compact.

The following theorem provides a Variational Characterization for the

Thikhonov regularization.

Theorem 2.2.14. [5, Theorem 5.1] Let uδλ = (K∗K + λI)−1K∗yδ. Then

uδλ is the unique minimizer of the Tikhonov functional

Iλ(u) =
1

2

∣∣∣∣Ku− yδ∣∣∣∣2 +
λ

2
||u||2 (2.26)

over the space H.

Proof. In the orthonormal basis {φk}, the Tikhonov functional is given by

Iλ(u) =
1

2

∞∑
k=1

(νkuk − yδk)2 +
λ

2

∞∑
k=1

u2
k.

We minimize Iλ(u) by minimizing each term of the series over uk. We

differentiate each term of the series with respect to uk to get

ν2
kuk − νkyδk + λuk = 0,

therefore the minimum of Iλ is attained for

uk =
νky

δ
k

ν2
k + λ

Hence

argmin
u∈X

Iλ(u) =
∞∑
k=1

νky
δ
k

ν2
k + λ

φk = uδλ.

The next theorem provides a sufficient condition on the a-priori param-

eter choice rule λ = λ(δ), for the convergence of the Tikhonov regularized

approximation uδλ to u†:

Theorem 2.2.15. [5, Theorem 5.2] [16, Theorem 2.12] Suppose y ∈ R(K)

and
∣∣∣∣y − yδ∣∣∣∣ ≤ δ.
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If λ = λ(δ) is such that

lim
δ→0

λ(δ) = 0 (2.27a)

and

lim
δ→0

δ2

λ(δ)
= 0 (2.27b)

then

lim
δ→0

uδλ(δ) = u†.

Proof. By the assumption y ∈ R(K), so there exists a unique u† inN (K)⊥ =

H, such that y = Ku†.

In the orthonormal basis {φk} we have the expressions

y =
∞∑
k=1

ykφk =
∞∑
k=1

νkqkφk, where yk = 〈y, φk〉 and qk =
〈
u†, φk

〉
.

By (2.25) we have

∣∣∣∣uδλ − u†∣∣∣∣2 =
∞∑
k=1

(
νky

δ
k

ν2
k + λ

− qk
)2

=
∞∑
k=1

(
νky

δ
k − qkν2

k − λqk
ν2
k + λ

)2

≤ 2
∞∑
k=1

(
νky

δ
k − qkν2

k

ν2
k + λ

)2

+ 2
∞∑
k=1

(
λqk

ν2
k + λ

)2

= 2
∞∑
k=1

ν2
k(yδk − yk)2

(ν2
k + λ)2

+ 2λ2

∞∑
k=1

q2
k

(ν2
k + λ)2

= A+B.

We show that both A and B tend to 0 for λ = λ(δ) satisfying (2.27a) and

(2.27b) to conclude the desired result.

For the term A we have

A ≤
∞∑
k=1

(yδk − yk)2

λ
=
δ2

λ

so for λ = λ(δ) satisfying (2.27b) it vanishes.

For λ = λ(δ) satisfying (2.27a) term B also vanishes, by the Dominated
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Convergence Theorem since for all k ∈ N

2λ2q2
k

(ν2
k + λ)2

→ 0, as λ→ 0

and for each λ > 0
2λ2q2

k

(ν2
k + λ)2

≤ 2λ2q2
k

λ2
= 2q2

k

which is summable since u† ∈ H.

We now apply the results of the previous subsection to Tikhonov regu-

larization to obtain convergence rate results [5, Example 4.15]. First note

that

GT
λ = sup

{
|gTλ (σ)| : σ ∈ [0, ||K||2]

}
= sup

{∣∣∣∣ 1

σ + λ

∣∣∣∣ : σ ∈ [0, ||K||2]
}

=
1

λ
(2.28)

therefore, since we have already seen that gT satisfies the hypotheses of

Theorem 2.2.2, by Theorem 2.2.3 we have the stability estimate

∣∣∣∣uλ − uδλ∣∣∣∣ ≤ δ√
λ
.

Observe that

rTλ (σ) = 1− σgTλ (σ) =
λ

σ + λ
.

We need to compute for µ > 0, a function ωµ : (0, λ0) → R such that for

all λ ∈ (0, λ0), σ ∈ [0, ||K||2]

σµ|rTλ (σ)| ≤ ωµ(λ).

Define

hµ(σ) := σµ|rTλ (σ)| = σµ
λ

σ + λ
.

For 0 ≤ µ < 1 this function attains its maximum for σ = λµ
1−µ , therefore

hµ(σ) ≤ λµµµ

(1− µ)µ
λ

λµ
1−µ + λ

= λµµµ(1− µ)1−µ ≤ λµ

while for µ ≥ 1, hµ is strictly increasing, thus it attains its largest value
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in [0, ||K||2] at the right end of the interval

hµ(σ) ≤ ||K||2µ λ

||K||2 + λ
≤ ||K||2µ−2 λ.

This means we can take

ωµ(λ) =

{
λµ, if µ ≤ 1

cλ, if µ > 1

with c = ||K||2µ−2, thus, for µ ∈ [0, 1], we have

σµ|rTλ (σ)| ≤ λµ. (2.29)

By Corollary 2.2.11, for µ ∈ (0, 1] and ρ > 0, for the parameter choice rule

λ ∼
(
δ

ρ

) 2
2µ+1

,

the Tikhonov Regularization is of optimal order in Xµ,ρ, since

∣∣∣∣uδλ − u†∣∣∣∣ = O(δ
2µ

2µ+1ρ
1

2µ+1 ),

which is of the same order of magnitude as the worst-case error correspond-

ing to the a-priori assumption u† ∈ Xµ,ρ.

For µ = 1 we obtain the best possible convergence rate, with the above

choice, that is for regularization parameter

λ ∼
(
δ

ρ

) 2
3

,

we have ∣∣∣∣uδλ − u†∣∣∣∣ = O(δ
2
3 ),

for u† ∈ X1,ρ.

The next theorem shows that the Tikhonov regularization never yields

a convergence rate which is faster than O(δ
2
3 ). We say that the Tikhonov

regularization method saturates at this rate.
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Theorem 2.2.16. [5, Proposition 5.3] [16, Theorem 2.13] Let u† ∈ X

and assume that there exists a parameter choice rule λ(δ, yδ) such that

lim
δ→0

∣∣∣∣uδλ − u†∣∣∣∣ δ− 2
3 = 0, ∀yδ ∈ Y with

∣∣∣∣yδ − y∣∣∣∣ ≤ δ,

where uδλ is the Tikhonov regularized approximation.

Then u† = 0.

Proof. We prove this by contradiction. Assume that u† 6= 0.

We show first that λ(δ)δ−
2
3 → 0, as δ → 0.

By the definition (2.24) of the Tikhonov regularization and the normal

equation (2.1) we have that

(λ(δ)I+K∗K)(uδλ(δ)−u†) = K∗yδ−λ(δ)u†−K∗Ku† = K∗(yδ−y)−λ(δ)u†,

hence we have the estimate

|λ(δ)| ||x|| ≤ ||K|| δ + (λ(δ + ||K||2)
∣∣∣∣uδλ(δ) − u†

∣∣∣∣
and by multiplying both sides with δ−

2
3 we get

|λ(δ)|δ−
2
3 ||x|| ≤ ||K|| δ

1
3 + (λ(δ + ||K||2)

∣∣∣∣uδλ(δ) − u†
∣∣∣∣ δ− 2

3 .

By the assumption this yields that

λ(δ)

δ
2
3

→ 0 as δ → 0. (a)

Define δk = ν3
k and yδk = y+ δkφk, for every k ∈ N. Then δk

k→∞−→ 0 and

for λk = λ(δk)

uδkλk − u
† = (uδkλk − uλk) + (uλk − u†)

=
δkνk

λk + ν2
k

φk + (uλk − u†). (b)

Since the assumption implies that also

∣∣∣∣uλk − u†∣∣∣∣ δ− 2
3

k

k→∞−→ 0,
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we conclude by multiplying both sides of (b) by δ−
2
3 , that

δ
1
3
k νk

λk + ν2
k

→ 0, as k →∞. (c)

The contradiction follows using (a), since

δ
1
3
k νk

λk + ν2
k

=
ν2
k

λk + ν2
k

= (1 + λkδ
− 2

3
k )−1 → 1, as k →∞,

which contradicts (c).

This result says that the Tikhonov regularization method is not optimal

under stronger assumptions on the solution u†, i.e. under the assumption

u† ∈ Xµ, µ > 1. As mentioned earlier we say that the Tikhonov regular-

ization method saturates for µ = 1. Note that the assertion in the last

theorem is proved not only for a-priori parameter choice rules, but for

general parameter choice rules.

2.3 Tikhonov Regularization in Hilbert Scales

We now give a brief introduction to the method of Tikhonov Regularization

in Hilbert Scales, first introduced by Natterer [18].

We develop this theory directly for the problem that we will examine in

the next chapter, that is for K = A−`, ` > 0 where the form of A is given

in Section 1.2.2 and for the Hilbert Scale Hs introduced in Section 1.2.2.

In this section we consider K to be a map H → H. The theory is taken

from [5] with some modifications, but again the proofs presented below

are simplifications for the particular case examined in this thesis. In [5]

the theory is developed in greater generality, not only for Tikhonov Regu-

larization, for more general operators K and for a Hilbert Scale induced by

an operator L which has a weaker relation to K than the relation between

A and K in our case. In this context L is called the regularizing operator.

A detailed discussion in the case of the Tikhonov Regularization in Hilbert

Scales, for different choices of the regularizing operator L, can be found in
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[17].

Natterer’s idea was to regularize the problem Ku = y by minimizing

the slightly generalized Tikhonov functional

Iλ,α(u) =
1

2

∣∣∣∣Ku− yδ∣∣∣∣2 +
λ

2
||u||2α , (2.30)

where α ≥ 0, thus he defined the regularized approximation as

uδλ,α = argmin
u∈Hα

Iλ,α(u).

This time we start with a variational characterization for the Tikhonov

Regularization in Hilbert Scales, so we would like to have an operator-

theoretic characterization for it, provided by the following proposition:

Proposition 2.3.1. Let uδλ,α = argmin
u∈Hα

Iλ,α(u).

Then uδλ,α is given by

uδλ,α = gTλ (A−αK∗K)A−αK∗yδ (2.31)

or using the diagonalization of A by

uδλ,α =
∞∑
k=1

µ−`k y
δ
k

µ−2`
k + λµαk

φk (2.32)

Proof. In the orthonormal basis {φk}, the generalized Tikhonov functional

is given by

Iλ,α(u) =
1

2

∞∑
k=1

(µ−`k uk − y
δ
k)

2 +
λ

2

∞∑
k=1

µαku
2
k.

We minimize Iλ,α(u) by minimizing each term of the series over uk. We

differentiate each term of the series with respect to uk to get

µ−2`
k uk − µ−`k y

δ
k + λµαkuk = 0,

therefore the minimum of Iλ,α is attained for

uk =
µ−`k y

δ
k

µ−2`
k + λµαk



2.3. TIKHONOV REGULARIZATION IN HILBERT SCALES 37

and

argmin
u∈Hα

Iλ,α(u) =
∞∑
k=1

µ−`k y
δ
k

µ−2`
k + λµαk

φk = uδλ,α.

On the other hand, using the diagonalization of A in the orthonormal basis

{φk} we have

gTλ (A−αK∗K)A−αK∗yδ =
∞∑
k=1

1

µ−αk µ−2`
k + λ

µ−αk µ−`k y
δ
kφk

=
∞∑
k=1

µ−`k y
δ
k

µ−2`
k + λµαk

φk = uδλ,α.

Remark 2.3.2. Consider the restriction of K to Hα, Kα : Hα → H. Then

for every u ∈ Hα and x ∈ H we have on the one hand that

〈Kαu, x〉 = 〈Ku, x〉 = 〈u,K∗x〉

and on the other hand that

〈Kαu, x〉 = 〈u, (Kα)∗x〉α = 〈u,Aα(Kα)∗x〉 .

This implies that (Kα)∗ = A−αK∗. After this observation, we can rewrite

(2.31) as

uδλ,α = gTλ ((Kα)∗Kα)K∗αy
δ (2.33)

and since this expression has the form of (2.9), all the convergence results

with respect to the norm in space Hα, of Section 2.2 hold.

For Natterer’s theory to work, he required operators K satisfying the

inequality

m ||u||−p ≤ ||Ku|| ≤ m ||u||−p , ∀u ∈ H, (2.34)

for some p > 0 and 0 < m ≤ m < ∞ in order for an essential for his

analysis inequality by Heinz [10], to hold [5].
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In our case inequality (2.34) holds trivially for p = 2`, since

||Ku|| =
∣∣∣∣A−`u∣∣∣∣ = ||u||−2` , ∀u ∈ H

and Heinz’s inequality degenerates to equation (2.35) given below:

Proposition 2.3.3. Let α ≥ 0 and define B = A−αK∗K. Then for every

ν ∈ R ∣∣∣∣B ν
2u
∣∣∣∣ = ||u||−ν(2`+α) , ∀u ∈ D

(
B

ν
2

)
(2.35)

and

R(Bν) = H2ν(2`+α). (2.36)

Proof. For u ∈ D(B
ν
2 ) we have

∣∣∣∣B ν
2u
∣∣∣∣ =

∣∣∣∣KνA−
αν
2 u
∣∣∣∣ =

∣∣∣∣A−ν`A−αν2 u∣∣∣∣ = ||u||−ν(2`+α) .

For the second assertion, we have y ∈ R(Bν) if and only if B−νy ∈ H,
which is equivalent to

∑∞
k=1 µ

2ν(2`+α)
k y2

k <∞, i.e. y ∈ H2ν(2`+α).

By a similar calculation as in the previous section, we can verify that

the Tikhonov filter function gTλ (σ) = 1
σ+λ

, satisfies the following conditions

for every σ ∈ [0, ||B||] and λ > 0:

|σgTλ (σ)| ≤ 1 (2.37)

lim
λ→0

gTλ (σ) =
1

σ
, σ 6= 0, (2.38)

|gTλ (σ)| ≤ 1

λ
, ∀λ > 0 (2.39)

and

σµ|rTλ (σ)| ≤ λµ, ∀µ ∈ [0, µ0], ∀λ > 0. (2.40)

Lemma 2.3.4. For every 0 ≤ t ≤ 1

σt|gTλ (σ)| ≤ 2λt−1, ∀σ ∈ [0, ||B||] , λ > 0. (2.41)

Proof. Fix 0 ≤ t ≤ 1, σ ∈ [0, ||B||] and λ > 0.
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By (2.40) for µ = 0 we have

|rTλ (σ)| ≤ 1,

so since

σ|gTλ (σ)| − 1 ≤ |rTλ (σ)|,

we get

σ|gTλ (σ)| ≤ 2,

thus, since 0 ≤ t ≤ 1, we deduce that

σt|gTλ (σ)|t ≤ 2t. (i)

By (2.39) we have

|gTλ (σ)|1−t ≤ λt−1

therefore

|gTλ (σ)|t ≥ |gTλ (σ)|λ1−t. (ii)

Combining (i) and (ii) we get

σt|gTλ (σ)|λ1−t
(ii)

≤ σt|gTλ (σ)|t
(i)

≤ 2t ≤ 2,

hence

σt|gTλ (σ)| ≤ 2λt−1.

The following theorem which is a modified version of [5, Theorem 8.23],

establishes convergence results with respect to weaker norms, even when

u† /∈ Hα.

Theorem 2.3.5. Let α ≥ 0 and let uδλ,α be the generalized Tikhonov regu-

larized approximation given by (2.31). Then under the a-priori information

u† ∈ Hm, for the parameter choice

λ =

(
δ

||u†||m

) 2(2`+α)
2`+m

(2.42)
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and if m ≤ 4`+ 2α, we obtain the estimate

∣∣∣∣uδλ,α − u†∣∣∣∣ ≤ Cδ
m

2`+m

∣∣∣∣u†∣∣∣∣ 2`
2`+m

m
,

for some constant C > 0.

Proof. By the triangular inequality we have

∣∣∣∣uδλ,α − u†∣∣∣∣ ≤ ∣∣∣∣uδλ,α − uλ,α∣∣∣∣+
∣∣∣∣uλ,α − u†∣∣∣∣ .

We first estimate the propagated data error
∣∣∣∣uδλ,α − uλ,α∣∣∣∣.

Since the operators gTλ (B), K and A are diagonalizable in the same

orthonormal basis {φk} , they commute, therefore

∣∣∣∣uδλ,α − uλ,α∣∣∣∣ =
∣∣∣∣gTλ (B)A−αK∗(yδ − y)

∣∣∣∣ =
∣∣∣∣A−α2 gTλ (B)A−

α
2K∗(yδ − y)

∣∣∣∣
=
∣∣∣∣gTλ (B)A−

α
2K∗(yδ − y)

∣∣∣∣
−α =

∣∣∣∣∣∣gTλ (B)B
1
2 (yδ − y)

∣∣∣∣∣∣
−α
,

hence by (2.35) for ν = α
2`+α∣∣∣∣uδλ,α − uλ,α∣∣∣∣ =

∣∣∣∣∣∣B α
4`+2α gTλ (B)B

1
2 (yδ − y)

∣∣∣∣∣∣ =
∣∣∣∣∣∣B `+α

2`+α gTλ (B)(yδ − y)
∣∣∣∣∣∣ .

By (2.41) for t = `+α
2`+α

, we can deduce using the expansion in the orthonor-

mal basis {φk} , that

∣∣∣∣uδλ,α − uλ,α∣∣∣∣ ≤ cλ−
`

2`+α δ, (i)

where c > 0 is a generic constant.

Since u† ∈ Hm, by (2.36) we have that

A
α
2 u† ∈ Hm−α = R

(
B

m−α
2(2`+α)

)
,

thus there exists v ∈ H such that

A
α
2 u† = B

m−α
2(2`+α)v. (ii)
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This along with the normal equation (2.1), imply that

∣∣∣∣uλ,α − u†∣∣∣∣ =
∣∣∣∣gTλ (B)A−αK∗y − u†

∣∣∣∣ =
∣∣∣∣(gTλ (B)A−αK∗K −A−

α
2A

α
2 )u†

∣∣∣∣
=
∣∣∣∣A−α2 (gTλ (B)B − I)A

α
2 u†
∣∣∣∣ =

∣∣∣∣∣∣rTλ (B)B
m−α

2(2`+α)v
∣∣∣∣∣∣
−α
,

so that by (2.35) for ν = α
2`+α

we have

∣∣∣∣uλ,α − u†∣∣∣∣ =
∣∣∣∣∣∣B α

2(2`+α) rTλ (B)B
m−α

2(2`+α)v
∣∣∣∣∣∣ =

∣∣∣∣∣∣B m
2(2`+α) rTλ (B)v

∣∣∣∣∣∣ ,
thus by (2.40) for µ = m

2(2`+α)
≤ 1 since m ≤ 4`+ 2α,

∣∣∣∣uλ,α − u†∣∣∣∣ ≤ cλ
m

2(2`+α) ||v|| .

Again by (2.35) for ν = α−m
2`+α

, using (ii) we have

||v|| =
∣∣∣∣∣∣B α−m

2(2`+α)A
α
2 u†
∣∣∣∣∣∣ =

∣∣∣∣Aα
2 u†
∣∣∣∣
m−α =

∣∣∣∣u†∣∣∣∣
m
,

so that ∣∣∣∣uλ,α − u†∣∣∣∣ ≤ cλ
m

2(2`+α)
∣∣∣∣u†∣∣∣∣

m
. (iii)

By (2.42), (i) and (iii) we have the desired assertion.

Remark 2.3.6.

i) Observe that the restriction on the allowed values of m

m ≤ 4`+ 2α,

comes from the qualification of the Tikhonov Regularization method, i.e.

from the fact that (2.40) holds for 0 ≤ µ ≤ 1.

ii) For 0 < m ≤ α, we still have convergence, i.e. we may have convergence

even if u† /∈ Hα as mentioned earlier.

iii) For fixed α ≥ 0, the last theorem provides the best possible rate for the
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a-priori information that u† ∈ H4`+2α, in which case it gives that

∣∣∣∣uδλ,α − u†∣∣∣∣ = O(δ
4`+2α
6`+2α ).

This means that the Tikhonov Regularization in Hilbert Scales method

saturates at a faster rate than

O(δ
4`+2α
6`+2α ),

which, for α > 0, is already better than the saturation rate of the Tikhonov

regularization, O(δ
2
3 ).

For α = 0, we get that for u† ∈ H4` the convergence rate is O(δ
2
3 ). The

a-priori information u† ∈ H4` is equivalent to u† ∈ X1, so this rate agrees

with the rate provided by Corollary 2.2.11 in Section 2.2.3.

Moreover, for large enough values of α we have that for the a-priori in-

formation u† ∈ H4`+2α the convergence rate provided by the last theorem

can get arbitrarily close to O(δ), thus for large enough values of α the sat-

uration rate of the Tikhonov Regularization in Hilbert Scales method can

get arbitrarily close to O(δ). This shows that Natterer’s idea to regularize

in a stronger norm, does provide better convergence rates under sufficient

a-priori assumptions on the smoothness of the solution.

iv) For no a-priori information, i.e. for m = 0 the theorem does not directly

secure convergence for any value of α ≥ 0. However, we can see from the

proof that we have at least convergence, as long as

λ(δ)→ 0 and δλ(δ)−
`

2`+α → 0

as δ → 0. Indeed, by (i) we have that

∣∣∣∣uδλ,α − uλ,α∣∣∣∣→ 0

and by Remark 2.3.2, (2.37), (2.38) and Theorem 2.2.2

∣∣∣∣uλ,α − u†∣∣∣∣α → 0, as λ→ 0
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thus, since α ≥ 0

∣∣∣∣uλ,α − u†∣∣∣∣→ 0, as λ→ 0.

For α = 0 we have convergence provided λ → 0 and δλ(δ
1
2 ) → 0 which is

in agreement with Theorem 2.2.15.

v) Finally, by slightly modifying the proof of Theorem 2.3.5, we have that

for the parameter choice λ ∼ δ
2(2`+α)
2`+m , we obtain a rate for convergence in

other norms, namely

∣∣∣∣uδλ − u†∣∣∣∣γ = O(δ
m−γ
2`+m )

for max {−2`,m− 4`− 2α} ≤ γ ≤ min {2`+ 2α,m} .
Indeed, like the proof of Theorem 2.3.5 we have that

∣∣∣∣uδλ,α − uλ,α∣∣∣∣γ =
∣∣∣∣∣∣gTλ (B)B

1
2 (yδ − y)

∣∣∣∣∣∣
γ−α

,

hence by (2.35) for ν = α−γ
2`+α∣∣∣∣uδλ,α − uλ,α∣∣∣∣γ =

∣∣∣∣∣∣B 2`+2α−γ
2(2`+α) gTλ (B)(yδ − y)

∣∣∣∣∣∣ .
Set t = 2`+2α−γ

2(2`+α)
and note that by the assumption on γ we have that t ∈

[0, 1]. Then by (2.41) we have that

∣∣∣∣uδλ,α − uλ,α∣∣∣∣γ ≤ cλ−
γ+2`

2(2`+α) δ, c > 0. (i′)

Like before, there exists v ∈ H such that (ii) holds and

∣∣∣∣uλ,α − u†∣∣∣∣γ =
∣∣∣∣∣∣rTλ (B)B

m−α
2(2`+α)v

∣∣∣∣∣∣
γ−α

,

hence by (2.35) for ν = α−γ
2`+α∣∣∣∣uλ,α − u†∣∣∣∣γ =

∣∣∣∣∣∣B m−γ
2(2`+α

)rTλ (B)v
∣∣∣∣∣∣ .

Set µ = m−γ
2(2`+α)

and note that by the assumption on γ we have that µ ∈
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[0, 1]. Then by (2.40) we have that

∣∣∣∣uλ,α − u†∣∣∣∣γ ≤ cλ
m−γ

2(2`+α) ||v|| . (iii′)

Combining (i′) and (iii′) we get the desired result for λ ∼ δ
2(2`+α)
2`+m .

Note that for fixed m, if we allow convergence in weaker norms, i.e.

γ < 0, we get faster rates, as one would expect. Likewise, if we require

convergence in stronger norms, i.e. γ > 0, we get slower convergence rates.



Chapter 3

The Laplacian-like Inverse

Problem

In this chapter we examine the ”Laplacian-like” inverse problem, defined

in Section 1.2.2, using a generalization of the Tikhonov Regularization

in Hilbert Scales method. In Section 3.1, we first define the generalized

regularized approximation which is motivated by the Bayesian approach

to Inverse Problems and then provide sufficient conditions for the conver-

gence of it to the best-approximate solution, as the noise disappears. Note

that in the ”Laplacian-like” problem the best-approximate solution is the

true solution, as we have seen in Remark 2.1.8. In Section 3.2, we make

additional assumptions on the algebraic structure of the noise and the true

solution and provide convergence rates for the proposed method.

3.1 A Generalized Tikhonov Regularization

Let α, β, γ ∈ R and ` > 0. Consider the inverse problem

y = Ku†, (3.1)

where u†, y ∈ Hγ and K = A−` : Hγ → Hγ, with A satisfying the Assump-

tion 1.2.1.

Assume we have observations of (3.1), polluted by some additive noise

45
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η ∈ Hβ, of known magnitude

yδ = Ku† + η, ||η||β = cδ. (3.2)

Assumption 3.1.1. We concatenate the assumptions we have in this sec-

tion:

A1) The observations are polluted by additive noise, η ∈ Hβ, such that

||η||β = cδ.

A2) The operator K is a negative power of A,

K = A−`, ` > 0,

where A is ”Laplacian-like”, as defined in the Assumption 1.2.1 in

Section 1.2.2.

A3) We have the a-priori information that u† ∈ Hγ, thus we view K as

K : Hγ → Hγ.

We generalize Naterer’s idea as described in Section 2.2.3 by allowing

weighted norms in the least squares term too and approximate u† by the

minimizer, uλ,δ, of the generalized Tikhonov Functional:

Iλ,α,β(u) =
1

2

∣∣∣∣yδ −Ku∣∣∣∣2
β

+
λ

2
||u||2α , λ > 0, (3.3)

uδλ = arg min
u∈Hα

Iλ,α,β(u).

Our proposition is based on the fact that in the Bayesian approach (cf.

(4.13) in Section 4.1), the posterior mean is the minimizer of Tikhonov

functionals of this form, i.e. which involve weighted norms in both the

least squares term and the penalty term.

Remark 3.1.2. Note that in order for the Tikhonov Functional Iλ,α,β to be

finite, it is necessary that yδ ∈ Hβ. This imposes the condition β ≤ γ+ 2`.

Indeed, since by the Assumption 3.1.1(A1) we have that η ∈ Hβ, the

requirement yδ ∈ Hβ is equivalent to Ku† ∈ Hβ. We have, for qk = 〈u†, φk〉,
that ∣∣∣∣Ku†∣∣∣∣

β
<∞,
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if and only if
∞∑
k=1

µ−2`+β
k q2

k <∞,

which by the Assumption 3.1.1(A3), is equivalent to γ ≥ −2`+β. However,

in the case where β > γ + 2`, or even β ≥ γ + 2`, we have that the noise

has the same or even better regularity than Ku†, thus the polluted data yδ

stay in the range of K, which by Lemma 1.2.3 is Hγ+2`. Since by Lemma

1.2.3 K : Hγ → Hγ+2` is invertible with bounded inverse, the problem in

this case is not ill-posed and no regularization is needed.

Thus, we henceforward have the assumption:

A4) β < γ + 2`.

Lemma 3.1.3. The minimizer of the Tikhonov Functional

Iλ,α,β(u) =
1

2

∣∣∣∣yδ −Ku∣∣∣∣2
β

+
λ

2
||u||2α , λ > 0,

over the space Hα, is

uδλ =
∞∑
k=1

µ−`+βk yδk
µ−2`+β
k + λµαk

φk (3.4)

and for the additive noise model (3.2) considered here,

uδλ =
∞∑
k=1

µ−2`+β
k qk + µ−`+βk ηk

µ−2`+β
k + λµαk

φk. (3.5)

Proof. Using the diagonalization of A, we can express the Tikhonov func-

tional, Iλ,α,β, as

Iλ,α,β(u) =
1

2

∞∑
k=1

{
(yδk − µ−`k uk)

2µβk + λµαku
2
k

}

=
1

2

∞∑
k=1

{
µβk(yδk)

2 + µ−2`+β
k u2

k − 2µ−`+βk yδkuk + λµαku
2
k

}
.

We minimize Iλ,α,β(u) by minimizing each term of the series over uk. We
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differentiate with respect to uk to get

2µ−2`+β
k uλ,δk − 2µ−`+βk yδk + 2λµαku

λ,δ
k = 0,

therefore the minimum of Iλ,α,β is attained for

uλ,δk =
µ−`+βk yδk

µ−2`+β
k + λµαk

.

Since yδk = µ−`k qk + ηk, we have

uλ,δk =
µ−2`+β
k qk + µ−`+βk ηk

µ−2`+β
k + λµαk

φk.

Remark 3.1.4. Note that under the assumptions (A1)-(A4), uδλ as defined

in the last lemma, is always well defined and lives in Hα. Indeed, since

µk > 0, ∀k ∈ N and λ > 0, we have

∣∣∣∣uδλ∣∣∣∣2α =
∞∑
k=1

µ−2`+2β+α
k (yδk)

2

µ−4`+2β
k + 2λµ−2`+β+α

k + λ2µ2α
k

≤
∞∑
k=1

µ−2`+2β+α
k (yδk)

2

2λµ−2`+β+α
k

=
∞∑
k=1

µβk(yδk)
2

2λ
<∞,

since by (A4) we have that yδ ∈ Hβ.

We now provide a sufficient condition on α and γ and an a-priori pa-

rameter choice rule, λ = λ(δ), for the convergence of uδλ to u†, in Hγ, as

δ → 0.

Theorem 3.1.5. Suppose γ ≤ α. If λ = λ(δ) is such that

λ(δ)→ 0 and
δ2

λ(δ)
→ 0, as δ → 0,

then ∣∣∣∣uδλ → u†
∣∣∣∣
γ
→ 0, as δ → 0.
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Proof. By Lemma 3.1.3

∣∣∣∣uδλ − u†∣∣∣∣2γ =
∞∑
k=1

(
µ−2`+β
k qk + µ−`+βk ηk

µ−2`+β
k + λµαk

− qk

)2

µγk

=
∞∑
k=1

(
µ−`+βk ηk − λµαkqk
µ−2`+β
k + λµαk

)2

µγk ≤
∞∑
k=1

2µ−2`+2β+γ
k η2

k + 2λ2µ2α+γ
k q2

k

µ−4`+2β
k + λ2µ2α

k + 2λµ−2`+β+α
k

=
∞∑
k=1

2µ−2`+2β+γ
k η2

k

µ−4`+2β
k + λ2µ2α

k + 2λµ−2`+β+α
k

+
∞∑
k=1

2λ2µ2α+γ
k q2

k

µ−4`+2β
k + λ2µ2α

k + 2λµ−2`+β+α
k

The first term can be bounded in the following way:

∞∑
k=1

2µ−2`+2β+γ
k η2

k

µ−4`+2β
k + λ2µ2α

k + 2λµ−2`+β+α
k

≤
∞∑
k=1

2µ−2`+2β+γ
k η2

k

2λµ−2`+β+α
k

=
∞∑
k=1

µβ+γ−α
k η2

k

λ

since ∀k ∈ N, µk > 0 and λ > 0.

If β + γ − α ≤ β, i.e. γ ≤ α, by Assumption 1.2.1(iii), we have

∞∑
k=1

µβ+γ−α
k η2

k

λ
≤ C

∞∑
k=1

µβkη
2
k

λ
= C

δ2

λ
.

The second term for λ → 0 vanishes by the Dominated Convergence

Theorem, since for each k ∈ N

2λ2µ2α+γ
k q2

k

µ−4`+2β
k + λ2µ2α

k + 2λµ−2`+β+α
k

→ 0

as λ→ 0 and for each λ > 0, since µk > 0, ∀k ∈ N we have

2λ2µ2α+γ
k q2

k

µ−4`+2β
k + λ2µ2α

k + 2λµ−2`+β+α
k

≤ 2λ2µ2α+γ
k q2

k

λ2µ2α
k

= 2µγkq
2
k,

which is summable because u† ∈ Hγ.

So for γ ≤ α and λ = λ(δ) such that

λ(δ)→ 0
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and
δ2

λ(δ)
→ 0

as δ → 0, we have the desired convergence of uδλ to u† in Hγ.

Remark 3.1.6.

i) The condition γ ≤ α in the last theorem, means that we regularize in a

stronger norm than the norm in which we seek convergence, i.e. the norm

in the penalty term, λ
2
||u||2α, of the Tikhonov functional Iλ,α,β, is stronger

than the norm considered as the reference norm. This, as the theorem

states, secures that the penalty term is indeed regularizing and we have

convergence.

ii) The condition γ ≤ α is a generalization of the condition in Remark

2.3.6(iv), of Section 2.3, which concerns the case γ = β = 0. In Remark

2.3.6(iv), for no a-priori information, we require α ≥ 0, λ(δ) → 0 and

δλ(δ)−
`

2`+α → 0, as δ → 0. Since δ2λ(δ)−1 → 0 implies that δλ(δ)−
`

2`+α → 0

for every α ≥ 0, we have the agreement of the two conditions.

iii) For α = γ = β = 0, the result of the last theorem agrees with Theorem

2.2.15.

3.2 Convergence Rates

In Chapter 2, in order to deduce convergence rates for the Tikhonov Reg-

ularization, we make a-priori assumptions on the regularity of the true

solution, u† (cf. e.g. Theorem 2.3.5). Here, we model these a-priori as-

sumptions, by imposing additional assumptions on the algebraic structure

of the true solution. Furthermore, we make additional assumptions on the

algebraic structure of the noise, η:

Assumption 3.2.1. Assume that there exist constants c−2 , c
+
2 , c

−
3 , c

+
3 > 0

and r, h ∈ R such that the Fourier coefficients of the noise η and the true

solution u†, ηk and qk respectively, satisfy ∀k ∈ N
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A5)

c−2 ≤
|ηk|
δkr
≤ c+2

A6)

c−3 ≤
|qk|
kh
≤ c+3

The following theorem exhaustively answers the question whether or not

we have convergence of uδλ to u† as δ → 0 in Hγ and provides convergence

rates. Define

a = −2`+ 2β + r + γ − 2α,

b = h+ γ,

c = −4`+ 2β − 2α.

Note that under the assumptions (A1)− (A6) we necessarily have that

2b < −1

(cf. Lemma 3.2.4). This observation is of interest in order to secure that in

the following theorem we exhaust all the possible combinations of α 6= β.

Define

εγ =
∣∣∣∣uδλ − u†∣∣∣∣γ .

Theorem 3.2.2. Assume a 6= b

1) Suppose c ≥ 0:

A) If 2a− 2c ≥ −1 then εγ does not converge to 0 as δ → 0.

B) If 2a − 2c < −1 we have convergence and for the parameter

choice λ = δ ∣∣∣∣uδλ − u†∣∣∣∣γ = O(δ).

2) Suppose c < 0:

A) If 2a− 2c > −1 and 2b− 2c > −1:

i) If 2a ≥ −1 then εγ does not converge to 0 as δ → 0.

ii) If 2a < −1 we have convergence and for the parameter

choice λ = δ
c

b+c−a

∣∣∣∣uδλ − u†∣∣∣∣γ = O(δ
2b+1

2(b+c−a) ).
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B) If 2a− 2c = −1 and 2b− 2c = −1 we have convergence and for

the parameter choice λ = δ

∣∣∣∣uδλ − u†∣∣∣∣γ = O(δ
√
| log δ|).

C) If 2a− 2c < −1 and 2b− 2c < −1, we have convergence and for

the parameter choice λ = δ

∣∣∣∣uδλ − u†∣∣∣∣γ = O(δ).

D) If 2a− 2c < −1 and 2b− 2c > −1, we have convergence and for

the parameter choice λ = δ
2c

2b+1

∣∣∣∣uδλ − u†∣∣∣∣γ = O(δ).

E) If 2a− 2c < −1 and 2b− 2c = −1 we have convergence and for

the parameter choice λ = δ

∣∣∣∣uδλ − u†∣∣∣∣γ = O(δ
√
| log δ|).

F) If 2a− 2c > −1 and 2b− 2c < −1:

i) If 2a ≥ −1, then εγ does not converge to 0 as δ → 0.

ii) If 2a < −1, we have convergence and for the parameter

choice λ = δ
2c

4c−2a−1

∣∣∣∣uδλ − u†∣∣∣∣γ = O(δ
2c

4c−2a−1 ).

G) If 2a− 2c > −1 and 2b− 2c = −1:

i) If 2a ≥ −1 then εγ does not converge to 0 as δ → 0.

ii) If 2a < −1 we have convergence and for the parameter

choice λ = δ
2c

4c−2a−1

∣∣∣∣uδλ − u†∣∣∣∣γ = O(δ
2c

4c−2a−1

√
| log δ|).

H) If 2a− 2c = −1 and 2b− 2c < −1 we have convergence and for
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the parameter choice λ = δ

∣∣∣∣uδλ − u†∣∣∣∣γ = O(δ
√
| log δ|).

I) If 2a− 2c = −1 and 2b− 2c > −1, we have convergence and for

the parameter choice λ = δ
2c

2b+1

∣∣∣∣uδλ − u†∣∣∣∣γ = O(δ
√
| log δ|).

The rates of convergence are sharp and the a-priori parameter choice

rules in cases (1B), (2Aii), (2C), (2Dii) and (2Fii) are chosen in an opti-

mal way.

The different cases distinguished above regarding the values of a, b, c,

exhaust all the possibilities for a 6= b.

Before proving Theorem 3.2.2, we state and prove the following lemmas:

Lemma 3.2.3. Let λ ∈ (0, 1). Then we have the following estimates for

the integral

I :=

∫ ∞
1

xe

(xc + λ)2
dx

i) If e− 2c < −1, then I = κ, where κ is independent of λ.

ii) If e− 2c ≥ −1, and e ≥ −1 then I = +∞.

iii) If e− 2c > −1, e < −1 and c < 0, then

I ∈
[
M

4
,M

]
,

where

M :=
2cλ

e−2c+1
c

(e+ 1)(e− 2c+ 1)
− 1

e− 2c+ 1
.

iv) If e− 2c = −1, e < −1 and c < 0 then

I ∈
[
N

4
, N

]
,
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where

N :=
log λ

c
− 1

e+ 1
.

Proof. Fix λ ∈ (0, 1).

i) λ > 0, therefore

I ≤
∫ ∞

1

xe

x2c
dx =

∫ ∞
1

xe−2cdx,

where the last integral is independent of λ and finite since e−2c < −1.

ii) If c < 0, then since λ < 1 and x ∈ (1,+∞), we have that (xc+λ) ≤ 2,

therefore

I ≥
∫ ∞

1

xe

4
dx = +∞,

since e ≥ −1.

If c ≥ 0, then since λ < 1 and x > 1, we have (xc+λ) ≤ 2xc, therefore

I ≥ C

∫ ∞
1

xe−2cdx = +∞,

since e− 2c ≥ −1.

iii) By the change of variables y = λ−
1
cx, dx = λ

1
c dy, we have∫ ∞

1

xe

(xc + λ)2
dx =

∫ ∞
λ−

1
c

λ
e
c ye

(λyc + λ)2
λ

1
c dy = λ

e+1−2c
c

∫ ∞
λ−

1
c

ye

(yc + 1)2
dy

= λ
e+1−2c

c

(∫ 1

λ−
1
c

ye

(yc + 1)2
dy +

∫ ∞
1

ye

(yc + 1)2
dy

)
,

where λ−
1
c < 1, since c < 0.

We now estimate the two integrals separately:

a) For λ−
1
c ≤ y ≤ 1, c < 0, we have 1 ≤ yc ≤ λ−1

⇒ y2c ≤ (yc + 1)2 ≤ 4y2c
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⇒ 1

y2c
≥ 1

(yc + 1)2
≥ 1

4y2c
.

Hence, since e− 2c > −1∫ 1

λ−
1
c

ye

(yc + 1)2
dy ≤

∫ 1

λ−
1
c

ye−2cdy =
(1− λ− e−2c+1

c )

(e− 2c+ 1)
(Ai)

and∫ 1

λ−
1
c

ye

(yc + 1)2
dy ≥ 1

4

∫ 1

λ−
1
c

ye−2cdy =
(1− λ− e−2c+1

c )

4(e− 2c+ 1)
. (Aii)

b) For y ≥ 1, c < 0, we have 0 ≤ yc ≤ 1

⇒ 1 ≤ (yc + 1)2 ≤ 4

⇒ 1 ≥ 1

(yc + 1)2
≥ 1

4
.

Hence, since e < −1∫ ∞
1

ye

(yc + 1)2
dy ≤

∫ ∞
1

yedy = − 1

e+ 1
(Bi)

and ∫ ∞
1

ye

(yc + 1)2
dy ≥ 1

4

∫ ∞
1

yedy = − 1

4(e+ 1)
. (Bii)

Combining (Ai) and (Bi), we get

∫ ∞
1

xe

(xc + λ)2
dx ≤ λ

e−2c+1
c

(
1− λ− e−2c+1

c

e− 2c+ 1
− 1

e+ 1

)

=
2cλ

e−2c+1
c

(e+ 1)(e− 2c+ 1)
− 1

e− 2c+ 1
= M
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and combining (Aii) and (Bii) we get

∫ ∞
1

xe

(xc + λ)2
dx ≥ λ

e−2c+1
c

4

(
1− λ− e−2c+1

c

e− 2c+ 1
− 1

e+ 1

)

=
cλ

e−2c+1
c

2(e+ 1)(e− 2c+ 1)
− 1

4(e− 2c+ 1)
=
M

4
.

iv) Just like in case (iii), we have:∫ ∞
1

xe

(xc + λ)2
dx =

∫ 1

λ−
1
c

ye

(yc + 1)2
dy +

∫ ∞
1

ye

(yc + 1)2
dy,

where λ
e+1−2c

c = 1, since e−2c = −1. Again like (Ai), (Aii), (Bi), (Bii)

of (iii) we have:∫ 1

λ−
1
c

ye

(yc + 1)2
dy ≤

∫ 1

λ−
1
c

ye−2cdy =

∫ 1

λ−
1
c

y−1dy =
log λ

c
(Ai′)

and∫ 1

λ−
1
c

ye

(yc + 1)2
dy ≥ 1

4

∫ 1

λ−
1
c

ye−2cdy =
1

4

∫ 1

λ−
1
c

y−1dy =
log λ

4c
, (Aii′)

∫ ∞
1

ye

(yc + 1)2
dy ≤

∫ ∞
1

yedy = − 1

e+ 1
(Bi)

and ∫ ∞
1

ye

(yc + 1)2
dy ≥ 1

4

∫ ∞
1

yedy = − 1

4(e+ 1)
. (Bii)

Combining (Ai′) with (Bi) and (Aii′) with (Bii) we get the desired

result.



3.2. CONVERGENCE RATES 57

Lemma 3.2.4. Under the assumptions (A1)-(A6) we have the following

conditions on r and h:

r < −1

2
− β, (3.6a)

h < −1

2
− γ. (3.6b)

Proof. By Assumption 3.1.1(A1) we have that η ∈ Hβ, therefore:

i) If β ≥ 0, from (A2) we have µβk ≥ (c−1 k
2)β and from (A5) we have

η2
k ≥ (c−2 δk

r)2. Thus, there exists c−21 > 0 such that

||η||2β =
∞∑
k=1

µβkη
2
k ≥ δ2

∞∑
k=1

c−21k
2β+2r

⇒ δ2c−21

∞∑
k=1

k2β+2r ≤ ||η||2β < +∞

⇒ 2β + 2r < −1 ⇒ r < −1

2
− β.

ii) If β < 0, from (A2) we have µβk ≥ (c+1 k
2)β and from (A5) we have

η2
k ≥ (c−2 δk

r)2. Thus, there exists c+21 > 0 such that

||η||2β =
∞∑
k=1

µβkη
2
k ≥ δ2

∞∑
k=1

c+21k
2β+2r,

hence, like in case (i) we have

r < −1

2
− β.

By Assumption 3.1.1(A3) we have that u† ∈ Hγ, therefore:

i) If γ ≥ 0, from (A2) we have µγk ≥ (c−1 k
2)γ and from (A6) we have

q2
k ≥ (c−3 k

h)2. Thus, there exists c−31 such that

∣∣∣∣u†∣∣∣∣2
γ

=
∞∑
k=1

µγkq
2
k ≥

∞∑
k=1

c−31k
2γ+2h

⇒ c−31

∞∑
k=1

k2γ+2h ≤
∣∣∣∣u†∣∣∣∣2

γ
< +∞
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⇒ 2γ + 2h < −1 ⇒ h < −1

2
− γ.

ii) If γ < 0, from (A2) we have µγk ≥ (c+1 k
2)γ and from (A6) we have

q2
k ≥ (c−3 k

h)2. Thus, there exists c+31 > 0 such that

∣∣∣∣u†∣∣∣∣2
γ

=
∞∑
k=1

µγkq
2
k ≥

∞∑
k=1

c+31k
2γ+2h,

hence, like in case (i) we have

h < −1

2
− γ.

Lemma 3.2.5. We can split the solution error in three parts:

∣∣∣∣uδλ − u†∣∣∣∣2γ = I1 + I2 + I3

where

I1 =
∞∑
k=1

µ−2`+2β+γ−2α
k η2

k

(µ−2`+β−α
k + λ)2

,

I2 = λ2

∞∑
k=1

µγkq
2
k

(µ−2`+β−α
k + λ)2

and

I3 = −2λ
∞∑
k=1

µ−`+β+γ−α
k ηkqk

(µ−2`+β−α
k + λ)2

.

Proof. By Lemma 3.1.3

∣∣∣∣uδλ − u†∣∣∣∣2γ =
∞∑
k=1

(
µ−2`+β
k qk + µ−`+βk ηk

µ−2`+β
k + λµαk

− qk

)2

µγk

=
∞∑
k=1

(
µ−`+βk ηk − λµαkqk
µ−2`+β
k + λµαk

)2

µγk =
∞∑
k=1

(
µ−`+β−αk ηk − λqk
µ−2`+β−α
k + λ

)2

µγk

∞∑
k=1

(
µ
−`+β+ γ

2
−α

k ηk − λµ
γ
2
k qk

µ−2`+β−α
k + λ

)2

= I1 + I2 + I3
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Lemma 3.2.6. Let λ ∈ (0, 1). There exist M−
1 ,M

+
1 ,M

−
2 ,M

+
2 ,M

−
3 ,M

+
3 >

0, such that

M−
1 δ

2

∞∑
k=1

k2a

(kc + λ)2
≤ I1 ≤M+

1 δ
2

∞∑
k=1

k2a

(kc + λ)2
(3.7)

M−
2 λ

2

∞∑
k=1

k2b

(kc + λ)2
≤ I2 ≤M+

2 λ
2

∞∑
k=1

k2b

(kc + λ)2
(3.8)

M−
3 λδ

∞∑
k=1

ka+b

(kc + λ)2
≤ |I3| ≤M+

3 λδ

∞∑
k=1

ka+b

(kc + λ)2
(3.9)

where a, b and c are defined before the statement of Theorem 3.2.2.

Proof. By (A2) we have ∀k ∈ N:

µ−2`+2β+γ−2α
k ≤

{
(c+1 )−2`+2β+γ−2αk−4`+4β+2γ−4α, if −2`+ 2β + γ − 2α ≥ 0

(c−1 )−2`+2β+γ−2αk−4`+4β+2γ−4α, if −2`+ 2β + γ − 2α < 0

µ−2`+2β+γ−2α
k ≥

{
(c−1 )−2`+2β+γ−2αk−4`+4β+2γ−4α, if −2`+ 2β + γ − 2α ≥ 0

(c+1 )−2`+2β+γ−2αk−4`+4β+2γ−4α, if −2`+ 2β + γ − 2α < 0

µγk ≤

{
(c+1 )γk2γ, if γ ≥ 0

(c−1 )γk2γ, if γ < 0

µγk ≥

{
(c−1 )γk2γ, if γ ≥ 0

(c+1 )γk2γ, if γ < 0

µ−`+β+γ−α
k ≤

{
(c+1 )−`+β+γ−αk−2`+2β+2γ−2α, if −`+ β + γ − α ≥ 0

(c−1 )−`+β+γ−αk−2`+2β+2γ−2α, if −`+ β + γ − α < 0

µ−`+β+γ−α
k ≥

{
(c−1 )−`+β+γ−αk−2`+2β+2γ−2α, if −`+ β + γ − α ≥ 0

(c+1 )−`+β+γ−αk−2`+2β+2γ−2α, if −`+ β + γ − α < 0

and
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µ−2`+β−α
k ≤

{
(c+1 )−2`+β−αk−4`+2β−2α, if −2`+ β − α ≥ 0

(c−1 )−2`+β−αk−4`+2β−2α, if −2`+ β − α < 0

µ−2`+β−α
k ≥

{
(c−1 )−2`+β−αk−4`+2β−2α, if −2`+ β − α ≥ 0

(c+1 )−2`+β−αk−4`+2β−2α, if −2`+ β − α < 0.

Therefore there exist c+4 , c
−
4 , c

+
5 , c

−
5 , c

+
6 , c

−
6 , c

+
7 , c

−
7 > 0, such that ∀k ∈ N:

c−4 k
−4`+4β+2γ−4α ≤ µ−2`+2β+γ−2α

k ≤ c+4 k
−4`+4β+2γ−4α,

c−5 k
2γ ≤ µγk ≤ c+5 k

2γ,

c−6 k
−2`+2β+2γ−2α ≤ µ−`+β+γ−α

k ≤ c+6 k
−2`+2β+2γ−2α,

c−7 k
−4`+2β−2α ≤ µ−2`+β−α

k ≤ c+7 k
−4`+2β−2α

and since k, λ > 0 for c+8 = max
{
c+7 , 1

}
and c−8 = min

{
c−7 , 1

}
we have

c−8 (k−4`+2β−2α + λ) ≤ µ−2`+β−α
k + λ ≤ c+8 (k−4`+2β−2α + λ).

By (A5) and (A6) we have

δ2(c−2 )2k2r ≤ η2
k ≤ δ2(c+2 )2k2r,

(c−3 )2k2h ≤ q2
k ≤ (c+3 )2k2h

and

δc−2 c
−
3 k

h+r ≤ |qk||ηk| ≤ δc+2 c
+
3 k

h+r,

∀k ∈ N.
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We define

M−
1 =

c−4 (c−2 )2

(c+8 )2
, M+

1 =
c+4 (c+2 )2

(c−8 )2
,

M−
2 =

c−5 (c−3 )2

(c+8 )2
, M+

2 =
c+5 (c+3 )2

(c−8 )2
,

M−
3 =

c−6 c
−
2 c
−
3

(c+8 )2
, M+

3 =
c+6 c

+
2 c

+
3

(c−8 )2
,

to get the inequalities (3.7), (3.8) and (3.9).

We now give the proof of Theorem 3.2.2:

Proof. By Lemma 3.2.5 we can split the solution error:

∣∣∣∣uδλ − u†∣∣∣∣2γ = I1 + I2 + I3

Since a 6= b and a + b < max {2a, 2b}, by Lemma 3.2.6 it follows that

whether we have convergence or not of uλ,δ to u† in Hγ, depends only on I1

and I2. The inequalities (3.7), (3.8) and (3.9), imply that in the cases where

we do have convergence, the rate of convergence is the slowest rate of the

rates of convergence of I1 and I2 to 0, since the rate of convergence of I3 is

always the fastest. Furthermore, they imply that the rates of convergence

are sharp.

The following inequality holds:∫ ∞
1

xe

(xc + λ)2
≤

∞∑
k=1

ke

(kc + λ)2
dx ≤ 1

(1 + λ)2
+

∫ ∞
1

xe

(xc + λ)2
dx. (∗)

Define

J1 = δ2

∫ ∞
1

x2a

(xc + λ)2
, J2 = λ2

∫ ∞
1

x2b

(xc + λ)2
.

Then, by (3.7) and (3.8)

J1 ≤ I1 ≤
δ2

(1 + λ)2
+ J1
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and

J2 ≤ I2 ≤
λ2

(1 + λ)2
+ J2.

Since, in order to have convergence of both I1 and I2, as δ → 0, we need

a parameter choice λ = λ(δ) → 0, we have that Ii converges to 0 if and

only if Ji converges to 0. By Lemma 3.2.3, the integrals in J1 and J2 are

in general λ-dependent and do not converge to 0 as λ → 0. Thus, the

convergence rate of J1 is slower than O(δ2) and the convergence rate of J2

is slower than O(λ2). Hence, the term 1
1+λ2 on the right hand side of in-

equality (∗), doesn’t affect the convergence rates, since it always converges

faster than J1 and J2. Consequently, the rates of convergence of Ii and Ji

are identical, i = 1, 2, therefore we can examine the rates of convergence

of Ji.

Suppose c ≥ 0.

Since c ≥ 0, we have that 2b− 2c < −1.

A) If 2a − 2c ≥ −1, then 2a ≥ 2a − 2c ≥ −1 and so by Lemma 3.2.3

J1 =∞, therefore we do not have convergence.

B) If 2a − 2c < −1, then since 2b − 2c < −1, by Lemma 3.2.3 we have

that J1 = δ2C and J2 = λ2C, so we do have convergence and for the

parameter choice λ = δ, we have

∣∣∣∣uδλ − u†∣∣∣∣γ = O(δ).

Suppose c < 0:

A) If 2a− 2c > −1 and 2b− 2c > −1:

i) If 2a ≥ −1 then by Lemma 3.2.3 we have J1 =∞, therefore we

do not have convergence.

ii) If 2a < −1, then since 2b < −1, by Lemma 3.2.3 we have

J1 ∈
[
δ2Ma

4
, δ2Ma

]
, J2 ∈

[
λ2Mb

4
, λ2Mb

]
where

Ma =
2cλ

2a−2c+1
c

(2a+ 1)(2a− 2c+ 1)
− 1

2a− 2c+ 1
,
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so

δ2Ma =
2cδ2λ

2a−2c+1
c

(2a+ 1)(2a− 2c+ 1)
− δ2

2a− 2c+ 1

and

Mb =
2cλ

2b−2c+1
c

(2b+ 1)(2b− 2c+ 1)
− 1

2b− 2c+ 1
,

so

λ2Mb =
2cλ

2b+1
c

(2b+ 1)(2b− 2c+ 1)
− λ2

2b− 2c+ 1
.

Since 2a− 2c > −1 and c < 0, we have 2a−2c+1
c

< 0, therefore

J1 = O(δ2λ
2a−2c+1

c ).

Since 2b− 2c > −1 and c < 0, we have 2b+1
c

< 2, therefore

J2 = O(λ
2b+1
c ).

Define

φ(λ) = δ2λ
2a−2c+1

c + λ
2b+1
c .

We want to choose λ = λ(δ), in order to minimize φ and get the

optimal convergence rate:

φ′(λ) = c1δ
2λ

2a−3c+1
c + c2λ

2b+1−c
c ,

therefore the optimal choice is λ = δ
c

b+c−a , which gives that

J1, J2 = O(δ
2b+1
b+c−a ). Consequently for λ = δ

c
b+c−a we have

∣∣∣∣uδλ − u†∣∣∣∣γ = O(δ
2b+1

2(b+c−a) ).

Note that since 2a− 2c > −1 and 2b < −1⇒ −2b > 1, we have

that 2a − 2c − 2b > 0 therefore b + c − a < 0. Consequently
2b+1

2(b+c−a) > 0 so we do have convergence, as δ → 0.

In addition, note that 2a− 2c > −1⇒ 2c− 2a < 1⇒ 2b+ 2c−
2a < 1 + 2b, thus since 2b+ 2c− 2a < 0 we have 2b+1

2c+2b−2a
< 1.

B) If 2a − 2c = −1 and 2b − 2c = −1, then since c < 0 we have



64 CHAPTER 3. THE LAPLACIAN-LIKE INVERSE PROBLEM

that 2a < −1 and as always 2b < −1. By Lemma 3.2.3 we have

J1 ∈
[
δ2Na

4
, δ2Na

]
, J2 ∈

[
λ2Nb

4
, λ2Nb

]
where

Na =
log λ

c
− 1

2a+ 1
,

so

δ2Na =
δ2 log λ

c
− δ2

2a+ 1

and

Nb =
log λ

c
− 1

2b+ 1
,

so

λ2Nb =
λ2 log λ

c
− λ2

e+ 1
.

We thus have that J1 = O(δ2 log δ) and J2 = O(λ2 log λ), there-

fore for the parameter choice λ = δ, we have

∣∣∣∣uδλ − u†∣∣∣∣γ = O(δ
√
| log δ|).

Hence, we do have convergence since δ2 log δ → 0, as δ → 0.

C) If 2a − 2c < −1 and 2b − 2c < −1, by Lemma 3.2.3 we have

that J1 = δ2κ, J2 = λ2κ, so we have convergence and for the

parameter choice λ = δ, we have

∣∣∣∣uδλ − u†∣∣∣∣γ = O(δ).

D) If 2a − 2c < −1 and 2b − 2c > −1, then since 2b < −1, by

Lemma 3.2.3 we have J1 = O(δ2) and J2 ∈
[
λ2M

4
, λ2M

]
, where

M =
2cλ

2b−2c+1
c

(2b+ 1)(2b− 2c+ 1)
− 1

2b− 2c+ 1

so

λ2M =
2cλ

2b+1
c

(2b+ 1)(2b− 2c+ 1)
− λ2

2b− 2c+ 1
.

Since 2b− 2c > −1 and c < 0 we have 2b+1
c

< 2, therefore

J2 = O(λ
2b+1
c ).
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Note that since 2b < −1 it follows that 2b+1
c

> 0, hence we do

have convergence.

For the parameter choice λ = δ
2c

2b+1 , we have J1, J2 = O(δ2)

therefore ∣∣∣∣uδλ − u†∣∣∣∣γ = O(δ).

E) If 2a − 2c < −1 and 2b − 2c = −1, then since 2b < −1, by

Lemma 3.2.3 we have J1 = O(δ2) and J2 ∈
[
λ2N

4
, λ2N

]
, where

N =
log λ

c
− 1

2b+ 1
,

so

λ2N =
λ2 log λ

c
− λ2

2b+ 1
.

Thus

J2 = O(λ2 log λ).

For the parameter choice λ = δ we have J1 = O(δ2), J2 =

O(δ2 log δ), therefore

∣∣∣∣uδλ − u†∣∣∣∣γ = O(δ
√
| log δ|),

hence we do have convergence since δ2 log δ → 0, as δ → 0.

F) If 2a− 2c > −1 and 2b− 2c < −1:

i) If 2a ≥ −1, then by Lemma 3.2.3 we have J1 =∞, therefore

we do not have convergence.

ii) If 2a < −1, by Lemma 3.2.3 we have J2 = O(λ2) and J1 ∈[
δ2M

4
, δ2M

]
, where

M =
2cλ

2a−2c+1
c

(2a+ 1)(2a− 2c+ 1)
− 1

2a− 2c+ 1
,

so

δ2M =
2cδ2λ

2a−2c+1
c

(2a+ 1)(2a− 2c+ 1)
− δ2

2a− 2c+ 1
.
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Since 2a−2c > −1 and c < 0 we have 2a−2c+1
c

< 0, therefore

J1 = O(δ2λ
2a−2c+1

c ).

Define

φ(λ) = δ2λ
2a−2c+1

c + λ2.

We want to minimize φ in order to get the optimal choice

for the regularization parameter λ:

φ′(λ) = c1δ
2λ

2a−3c+1
c + c2λ,

therefore the optimal choice is λ = δ
2c

4c−2a−1 which gives that

J1, J2 = O(δ
4c

4c−2a−1 ). Consequently, for λ = δ
2c

4c−2a−1 we have

∣∣∣∣uδλ − u†∣∣∣∣γ = O(δ
2c

4c−2a−1 ).

Note that since 2a − 2c > −1 and c < 0, we have that

2c− 2a− 1 < 0 and 4c− 2a− 1 < 0, therefore 2c
4c−2a−1

> 0,

so we do have convergence as δ → 0.

In addition note that 4c− 2a− 1 < 2c, so since 4c− 2a− 1,
2c

4c−2a−1
< 1, hence the convergence is slower than O(δ).

G) If 2a− 2c > −1 and 2b− 2c = −1:

i) If 2a ≥ −1, then by Lemma 3.2.3 we have J1 = ∞,

therefore we do not have convergence.

ii) If 2a < −1, then since 2b < −1, by Lemma 3.2.3 we

have that J1 ∈
[
δ2M

4
, δ2M

]
and J2 ∈

[
λ2N

4
, λ2N

]
, where

M =
2cλ

2a−2c+1
c

(2a+ 1)(2a− 2c+ 1)
− 1

2a− 2c+ 1
,

so

δ2M =
2cδ2λ

2a−2c+1
c

(2a+ 1)(2a− 2c+ 1)
− δ2

2a− 2c+ 1
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and

N =
log λ

c
− 1

2b+ 1
,

so

λ2N =
λ2 log λ

c
− λ2

2b+ 1
.

Since 2a−2c > −1 and c < 0 we have that 2a−2c+1
c

< 0,

thus J1 = O(δ2λ
2a−2c+1

c ) and J2 = O(λ2 log λ).

For the parameter choice λ = δ
2c

4c−2a−1 , we have that

J1 = O(δ
4c

4c−2a−1 ) and J2 = O(δ
4c

4c−2a−1 log δ), hence

∣∣∣∣uδλ − u†∣∣∣∣γ = O(δ
2c

4c−2a−1

√
| log δ|).

Note that since 2a − 2c > −1 and c < 0, we have that

2c−2a−1 < 0 and 4c−2a−1 < 0, therefore 2c
4c−2a−1

> 0.

Since δp log δ → 0, as δ → 0, we do have convergence.

In addition note that 4c−2a−1 < 2c, so since 4c−2a−1,
2c

4c−2a−1
< 1.

H) If 2a−2c = −1 and 2b−2c < −1, then since c < 0, we have

2a < −1, thus by Lemma 3.2.3 we have J1 ∈
[
δ2N

4
, δ2N

]
and J2 = O(λ2), where

N =
log λ

c
− 1

2a+ 1
,

so

δ2N =
δ2 log λ

c
− δ2

2a+ 1
.

Thus

J1 = O(δ2 log λ).

For the parameter choice λ = δ, we have J1 = O(δ2 log δ), J2 =

O(δ2), therefore

∣∣∣∣uδλ − u†∣∣∣∣γ = O(δ
√
| log δ|),

hence we do have convergence since δ2 log δ → 0, as δ → 0.
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I) If 2a−2c = −1 and 2b−2c > −1, then since c < 0, we have

2a < −1 and as always 2b < −1. By Lemma 3.2.3 we have

J1 ∈
[
δ2N

4
, δ2N

]
and J2 ∈

[
λ2M

4
, λ2M

]
, where

M =
2cλ

2b−2c+1
c

(2b+ 1)(2b− 2c+ 1)
− 1

2b− 2c+ 1

so

λ2M =
2cλ

2b+1
c

(2b+ 1)(2b− 2c+ 1)
− λ2

2b− 2c+ 1
,

and

N =
log λ

c
− 1

2a+ 1
,

so

δ2N =
δ2 log λ

c
− δ2

2a+ 1
.

Since 2b+1
c

< 2 we have that J1 = O(δ2 log λ) and J2 =

O(λ
2b+1
c ). For the parameter choice λ = δ

2c
2b+1 , we have that

J1 = O(δ2 log δ) and J2 = O(δ2). Thus,

∣∣∣∣uδλ − u†∣∣∣∣γ = O(δ
√
| log δ|)

and we do have convergence since δ2 log δ → 0, as δ → 0.

Remark 3.2.7. We replace α, β, γ, `, r, h in a, b, c to get:

2a = −4`+ 4β + 2r + 2γ − 4α,

2a− 2c = 4`+ 2γ + 2r,

2b = 2h+ 2γ < −1

and

2b− 2c = 8`− 4β + 4α + 2h+ 2γ.

i) Fix α, β, γ, `, h, where by (A4) β < γ+ 2`. If the noise is smooth enough,

i.e. r is small enough, so that 2a− 2c < −1 or equivalently

4`+ 2γ + 2r < −1
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⇐⇒ r < −1

2
− γ − 2`,

then we are in one of the cases (1B), (2C), (2D) or (2E), thus we always

have convergence and depending on the values of c and 2b− 2c, we have a

convergence rate O(δ) or O(δ
√
| log δ|). This was expected, since the con-

dition r < −1
2
−γ−2` secures that η ∈ Hγ+2`, therefore since Ku† ∈ Hγ+2`

we have that yδ ∈ Hγ+2`. As we have already observed in Remark 3.1.2,

in this case, by Lemma 1.2.3 we have that K : Hγ → Hγ+2` is invertible

with bounded inverse K−1, thus the problem is not ill-posed and no reg-

ularization is needed. Since a linear bounded function is also Lipschitz

continuous, we expected the convergence rate of O(δ).

ii) Fix α, β, γ, `, r, where by (A4) β < γ + 2`. If the true solution u† is

smooth enough to have 2b− 2c < −1 or equivalently

8`− 4β + 4α + 2h+ 2γ < −1,

then we are in one of the cases (1A), (1B), (2C), (2F ) or (2H). We do not

always have convergence which was expected, since even if the true solution

is very smooth, we need to regularize in a strong enough norm for this to

help. Indeed, for α large enough, we have that c < 0, thus the cases (1A)

and (1B) are eliminated and 2a < −1 thus (2Fi) is eliminated and in all

the other cases we do have convergence.

iii) Fix β, γ, `, r, h, where by (A4) β < γ + 2`. If we regularize in a strong

enough norm, i.e. if α is large enough to have c < 0 and 2a < −1, then we

are in one of the cases (2Aii), (2B), (2C), (2D), (2E), (2Fii), (2Gii), (2H)

or (2I), thus we always have convergence regardless of the regularity of the

noise.

iv) Fix α, β, γ, h, r, where by (A4) β < γ + 2`. If the operator K is too

smoothing, i.e. if ` is very large, we have that 2a < −1, 2a− 2c > −1, 2b−
2c > −1 and c < 0. Therefore we are in the case (2Aii) and we have

convergence with convergence rate O(δ
2b+1

2(b+c−a) ). Since b+ c− a = h− r− `
and 2b + 1 < −1, we have that for large enough values of `, the exponent
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2b+1
2(b+c−a) becomes very small and in fact

lim
`→∞

2b+ 1

2(b+ c− a)
= 0.

This means that as the forward operator becomes more smoothing, the

convergence rate becomes slower, which was expected since the smoother

the forward operator the more difficult it is to invert. As it is highlighted

in [5], ”whenever a forward problem has smoothing properties one has to

expect the appearance of oscillations coming from small data perturbations

in the solution of the inverse problem”.

v) We now check that our rates are consistent with the rates of Theorem

2.3.5 in Section 2.3. In Theorem 2.3.5 we have β = γ = 0 and fixed α ≥ 0.

As stated in Remark 2.3.6(iii), Theorem 2.3.5 provides the best possible

rate, O(δ
4`+2α
6`+2α ), for the a-priori information u† ∈ H4`+2α. In the setup

that we have here, we model the a-priori assumption u† ∈ H4`+2α by the

assumption

h < −1

2
− 4`− 2α,

where h is assumed to be arbitrarily close to −1
2
− 4`− 2α. Observe that

this assumption actually implies that u† ∈ H4`+2α+ε for a small ε > 0.

Since we do not have any a-priori assumptions on the regularity of the

noise, we set r < −1
2

with r arbitrarily close to −1
2
. Then

2a− 2c = 4`+ 2r > −1

and

2a = −4`+ 2r − 4α < −1,

since we assume that r is arbitrarily close to −1
2

and ` < 0, α ≥ 0 are fixed.

Furthermore,

2b− 2c = 8`+ 4α + 2h < −1

and

c = −4`− 2α < 0,

thus we are in the case (2Fii) and we have convergence with convergence
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rate

O(δ
2c

4c−2a−1 ).

Observe that
2c

4c− 2a− 1
=

4`+ 2α

6`+ 2α + r + 1
2

,

where r + 1
2

is negative but arbitrarily close to 0. Consequently, we get a

convergence rate, which is very close, but slightly faster than the conver-

gence rate provided by Theorem 2.3.5. The fact that our rate is slightly

faster, is attributed to the fact that by assuming that r < −1
2

with r ar-

bitrarily close to −1
2
, we are in fact assuming that η ∈ Hε for some small

ε > 0, thus we have a-priori information on the regularity of the noise.

Note that even if we allow h to get smaller, thus assuming even more reg-

ularity on u†, we do not get a faster convergence rate, since we stay in

the same case and h does not appear in 2c
4c−2a−1

which suggests that the

Tikhonov Regularization in Hilbert Scales method for α ≥ 0, β = γ = 0,

saturates for u† ∈ H4`+2α, again in agreement with Theorem 2.3.5.

vi) Fix α = γ = 0, ` = 1, h = −10 < −1
2

and let

β = 0 < 2`

and

−1

2
− 2` = −5

2
< r = −2 < −1

2
.

Then 2a − 2c = 0 > −1, 2b − 2c = −12 < −1 and 2a = −8 < −1, while

c = −4 < 0, thus we are in case (2Fii) and we have convergence with

convergence rate O(δ
2c

2(b+c−a) ) = O(δ
2
5 ).

If we change β to β = 1, then r = −2 is still admissible since −2 < −1
2
− 1

and we have 2a − 2c = 0 > −1, 2b − 2c = −16 < −1, 2a = −4 < −1

and c = −2 < 0. Hence, we are again in case (2Fii) and we have conver-

gence with convergence rate O(δ
2c

2(b+c−a) ) = O(δ
1
5 ), i.e. with a slower rate.

Thus in this case if the norm where we measure the data error, becomes

stronger, i.e. if the least squares norm becomes stronger, we have a slower

convergence rate.

To understand why this makes sense, note that for larger β, the contri-
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bution of the least squares part to the Tikhonov Functional becomes more

important related to the regularization term, thus the effect of regulariza-

tion becomes smaller and continuity with respect to data is less enforced,

hence we have slower convergence rates.

Furthermore, if we are in case (2Aii), thus we have convergence with

convergence rate

O(δ
2b+1

2(b+c−a) )

and we change β in a way that does not take as to another case, there is

no change to the convergence rate, since β does not appear in 2b+1
2(b+c−a) .

This can be interpreted by the fact that in order to move from (2Fii) to

(2Aii), i.e. from 2b− 2c < −1 to 2b− 2c > −1, it means that either β got

smaller, or α got larger if everything else is fixed. Thus this observation

suggests, that for strong enough regularization norm, i.e. for large enough

α, the regularizing effect of the penalty term is not affected from small

changes in β.

vii) Suppose that we are in case (2Aii), thus we have convergence with

convergence rate

O(δ
2b+1

2(b+c−a) ).

Then, as noted in the proof we have 2b+1 = h+γ+1 < −1 and b+c−a =

h−2`− r < 2b+ 1, thus if we allow γ to decrease by a small amount which

does not take us to another case, we have that 2b+1 < −1 becomes smaller

while b+ c− a < 2b+ 1 < −1 remains unchanged, hence we have a faster

convergence rate. This agrees with the intuition that convergence in weaker

norms should give faster rates, even though sometimes this is not strictly

true: suppose that we are in case (2Fii), thus we have convergence with

convergence rate

O(δ
2c

2(b+c−a) ).

Then, if we allow γ to change by a small amount which does not take us to

another case, there is no change to the convergence rate since γ does not

appear in 2c
2(b+c−a) .
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viii) Finally, note that in cases (2Aii), (2Fii) and (2Gii), if we set a = −1
2

the rate of convergence does not degenerate. This happens because the

problem with a being equal to −1
2
, is independent from λ (hence from δ),

since it originates on the constant multiplying λ2a−2c+1 in the expression

of Mα.
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Chapter 4

The Bayesian Approach

In the previous chapters we have presented deterministic regularization

methods which approximate the solution u of the inverse problem

y = Ku, u ∈ X, y ∈ Y, (4.1)

where K is a linear, compact and self-adjoint operator and X, Y are Hilbert

spaces. More precisely we have considered the case where our observation

y is polluted by the presence of some additive noise η

yδ = Ku+ η (4.2)

and we have the knowledge that the norm of the noise is less than δ. We

have shown convergence rate results for the convergence of the Tikhonov

regularized approximate solution uλδ to the true solution u†, as the noise

disappears, ∣∣∣∣u† − uδλ∣∣∣∣ = O(f(δ)),

which is an accepted quality criterion for a deterministic regularization

method.

The deterministic theory of inverse problems can be criticized for the

fact that the aforementioned convergence results depend on a norm bound

of the noise which is a worst-case scenario [13]. It is often the case that

we have more available information than a norm bound on the size of the

noise, or the space where the solution lives in. In particular, we may have

information on the statistical structure of the noise and of the solution.
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Furthermore, the choice of the norms ||.||s , s = α, β, γ, used in the pre-

vious chapter is somewhat arbitrary and not clearly linked to modelling

assumptions [20].

In the first section of this chapter we give a brief presentation of the

Bayesian approach to inverse problems, which addresses the issues men-

tioned above in a promising way. A more extensive introduction to the

area is available in [20] and [15]. In Section 4.2 we prove posterior con-

sistency results. As in the previous chapters, we adopt a Hilbert space

setting. A short presentation of the tools from Probability and Measure

Theory used in this chapter, is provided in the Appendix in Section 4.3.

4.1 A Change of Perspective

The main innovation in the Bayesian approach to inverse problems is that

we express all the quantities in the model as random variables. We express

our prior beliefs about the solution of the problem in the form of the prior

distribution, µ0, which is the distribution of u. Our knowledge of the sta-

tistical structure of the noise is expressed in terms of the noise distribution,

P , which by equation (4.2) provides the distribution for the observations

y given the solution u, P u, called data likelihood. Note here that we will

always assume that η and u are statistically mutually independent.

Together, the prior distribution on u and the distribution of y|u (equiv-

alently the distribution on η) specify a joint distribution for the pair (u, y).

In the Bayesian approach the notion of solution is not a single approxima-

tion as it is in the deterministic theory. The solution is now a probability

distribution on X, the posterior distribution µy, which is the distribution

of u|y containing information about the relative probability of the possible

states of the solution u, given the data y.

To give some intuition lets consider the finite-dimensional case, [20].

Suppose we have the inverse problem

y = Ku (4.3)
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and consider the additive noise model

y = Ku+ η, (4.4)

where u ∈ Rn, y, η ∈ Rq and K is a q × n matrix.

Assume π0 is the probability distribution function (p.d.f.) of the prior

distribution µ0 on u and that πy is the p.d.f. of the posterior distribution

µy. Let the noise η be a random variable with density ρ. Then the data

likelihood has density

ρ(y|u) = ρ(y −Ku). (4.5)

By Bayes formula (Theorem 4.3.11, Appendix), we have that

πy(u) ∝ ρ(y −Ku)π0(u), (4.6)

which means that the posterior distribution, µy, has a Radon-Nikodym

derivative with respect to the prior distribution which is proportional to

the data likelihood’s density

dµy

dµ0

(u) ∝ ρ(y −Ku). (4.7)

The right hand side is non-negative, since it is a probability density,

thus we may express it as the exponential of the negative of a function

Φ(u; y), to get
dµy

dµ0

(u) ∝ exp (−Φ(u; y)). (4.8)

In general the calculation of the posterior distribution is complicated.

We can simplify things by the use of a class of conjugate priors with respect

to the data likelihood, [1]:

Definition 4.1.1. Let F denote a family of data likelihood distributions

indexed by u. A class P of prior distributions is said to be a conjugate

family for F , if the posterior distribution µy is in the class P for all P u ∈ F
and µ0 ∈ P.

For instance, since K is linear, the Gaussian family is a class of conju-
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gate priors with respect to a Gaussian observational noise. Indeed, in this

thesis we study only the case where both the prior and the observational

noise are Gaussian. Since we are considering linear inverse problems in

Hilbert spaces, this implies that the posterior distribution is also Gaussian

and we can easily calculate its mean and covariance operator by Theorem

4.3.9 (Appendix).

In finite dimensions things are even simpler: suppose that η ∼ N (0, B)

and µ0 = N (m0,Σ0), where B and Σ0 are q × q and n × n symmetric

positive definite matrices, respectively. Then (4.6) becomes

πy(u) ∝ exp

(
−1

2

∣∣∣B− 1
2 (y −Ku)

∣∣∣2 − 1

2

∣∣∣Σ− 1
2

0 (u−m0)
∣∣∣2) (4.9)

and likewise (4.7) becomes

dµy

dµ0

(u) ∝ exp

(
−1

2

∣∣∣B− 1
2 (y −Ku)

∣∣∣2). (4.10)

Note that since the logarithm of πy is quadratic in u, the posterior

distribution µy is also Gaussian N (m,Σ), where m and Σ can be calculated

by completing the square:

m = m0 + Σ0K
∗(B +KΣ0K

∗)−1(y −Km0), (4.11)

Σ = Σ0 − Σ0K
∗(B +KΣ0K

∗)−1KΣ0. (4.12)

Observe that the mean of the posterior, m, is a random variable, since it

depends on y which is a random variable. Hence the posterior measure,

µy, is itself a random variable.

As mentioned earlier, in the Bayesian approach we no longer have a

single solution u of (4.3), but instead we have a probability measure, the

posterior measure, thus we need a way of extracting information from it.

One way of obtaining information from the posterior distribution is to find

the Maximum a-posteriori estimator (MAP estimator), which is a point u

that maximizes the posterior p.d.f. πy, [20], [15]. In the above case, the
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MAP estimator is

argmin
u∈Rn

(
1

2

∣∣∣B− 1
2 (y −Ku)

∣∣∣2 +
1

2

∣∣∣Σ− 1
2

0 (u−m0)
∣∣∣2) (4.13)

which is the solution of a regularized minimization problem, similar to the

ones we have examined in the previous chapters and which is recognized

as the posterior mean given by (4.11).

From (4.9) and (4.13), it is already apparent that there is a close relation

of the Bayesian approach in the Gaussian case, with Tikhonov Regulariza-

tion in Hilbert Scales. The posterior mean, is the minimizer of a Tikhonov

Functional with weighted norms and the p.d.f. of the posterior measure,

πy is the exponential of minus a Tikhonov Functional. In [6], this relation

of Tikhonov Regularization with Bayesian analysis is explored in infinite

dimensions.

In [20], it is shown that (4.8) generalizes naturally to infinite-dimensional

cases. It is demonstrated, [20, Chapter 3], that many inverse problems can

be formulated in the Bayesian approach with the posterior distribution tak-

ing this form.

Furthermore, it is proved that in many problems Φ(u; y) satisfies certain

continuity and bound conditions [20, Assumption 2.7]. These conditions,

as it is shown in [20, Chapter 4], secure the existence of the posterior dis-

tribution given by (4.8) together with its stability in the Hellinger distance

with respect to small changes in the data. Similarly it is shown that the

posterior distribution can be approximated by finite-dimensional approxi-

mations of Φ or K, again in the Hellinger distance.

Note that the conditions that we require Φ(u; y) to satisfy, are prop-

erties of the forward problem and they have nothing to do with inverse

problems or probability. As it is demonstrated in [20, Chapter 3], proba-

bility comes into the picture through the choice of prior measure µ0: the

conditions on Φ(u; y) are satisfied on a Hilbert space X. For formula (4.8)

or its generalization to hold, we need the prior measure µ0 to charge the

space X with full measure, µ0(X)=1.
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This choice of the prior, which is not arbitrary since it depends on

the forward problem, along with the statistical properties of the noise,

determine the norms that appear in the relations (4.9), (4.10) and the MAP

estimator (4.13) and also their generalization in infinite dimensions. Thus,

the Bayesian approach provides a logical way of choosing the norms in the

Tikhonov regularized approximation of the solution of the inverse problem

(4.2), which can replace the somewhat arbitrary choice that we have in the

deterministic setup.

4.2 Posterior Consistency - Small Noise Limit

Suppose we have the inverse problem

y = Ku, u ∈ X, y ∈ Y, (4.14)

which is polluted by noise and consider the data likelihood model

y = Ku+ η, (4.15)

where η ∼ N (0, C1), C1 = δ2C ′1 and C ′1 is a self-adjoint, positive defi-

nite, trace-class operator. In addition, assume that u ∼ N (m0, C0) where

C0 = τ 2C ′0 is a self-adjoint, positive definite and trace-class operator. As

we have already mentioned, using Theorem 4.3.9(Appendix), we can show

that the posterior distribution is also Gaussian and we can calculate its

mean and covariance operator m and C respectively, which depend on

m0, C0, C1, K and y.

In this section we examine the behaviour of the posterior measure as

the size of the noise, which is modelled by its covariance operator, tends

to 0. This small noise limit provides another link between the Bayesian

and classical approaches and is a test of the consistency of the posterior

distribution.

According to Diaconis and Freedman [4], Bayesian statisticians can be

divided in two categories: the ”classical Bayesians” like Laplace and Bayes
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and the ”subjectivists” like de Finetti and Savage. Classical Bayesians’

point of view is that there exists a true solution which we want to estimate

from the noisy data and prior beliefs about the solution are modelled by

the prior distribution. On the other hand, subjectivists do not accept the

existence of a true solution and for them probabilities represent only de-

grees of belief.

Posterior consistency is clearly of interest to the classical Bayesians: as

the observations get more and more accurate the posterior should converge

to a Dirac on the true solution. We now provide a test which formalizes

this notion of posterior consistency for the Gaussian case considered in this

thesis.

Assume that we have measurements of problem (4.14) of the form

yδ = Ku† + δξ, (4.16)

where ξ ∼ N (0, C ′1); that is, suppose our measurements come from the

particular data likelihood model (4.15) for η = δξ. Note that the posterior

distribution depends on δ in two different ways: through its dependence

on yδ, since it is the conditional distribution of u given yδ and through

the appearance of δ in the covariance operator of the data likelihood, C1.

Classical posterior consistency tests examine the behaviour of the posterior

distribution µy
δ,δ as both the observations and the data likelihood model

become more and more accurate:

Definition 4.2.1. For a given u† ∈ X, the pair (u†, µy
δ,δ) is consistent

in the frequentist bayesian sense, if as δ → 0, µy
δ,δ converges weakly to a

Dirac measure on u†, ξ-almost surely.

We define another classical posterior consistency test, which as the ob-

servations and the data likelihood model become more and more accurate,

allows the prior to concentrate on the prior mean. This test originates

from (4.9) and the observation that in finite dimensions, for the Gaussian

case, the posterior distribution is proportional to the exponential of a func-

tional which resembles the Tikhonov Regularization functional and where

the penalty term of the Tikhonov functional only relates to the prior distri-

bution. Thus, in accordance with the classical regularization theory, where
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in order to get convergence as the noise fades away we allow the regulariza-

tion to disappear in a carefully chosen way (cf. Theorem 2.2.15, Theorem

3.1.5), here too we allow the covariance operator of the prior to go to 0. We

implement this by allowing the parameter τ to be δ-dependent, thus the

posterior distribution now depends on δ in an additional third way: through

its dependence on the covariance operator of the prior C0 = τ(δ)2C ′0.

Definition 4.2.2. For a given u† ∈ X, the pair (u†, µy
δ,δ,τ(δ)) is consistent

in the regularized frequentist bayesian sense, if as δ → 0, µy
δ,δ,τ(δ) converges

weakly to a Dirac measure on u†, ξ-almost surely.

Posterior consistency is also of interest for the subjectivists, but in a dif-

ferent sense: after specifying a prior distribution, generate imaginary data,

compute the posterior and consider whether the posterior distribution is

an adequate representation of the updated prior [4]. In [4], Diaconis and

Friedman call this the ”what if” method: what if the data came out that

way? We express this notion of posterior consistency through the following

test, [20]:

Fix y ∈ Y and consider it as an observation of the inverse problem

(4.14). This y does not depend on δ, it is just an element of Y . We do not

assume that the observations come from our data likelihood model. Note

that in this case, the posterior distribution depends on δ only through its

appearance in the covariance operator of the data likelihood. Subjectivistic

posterior consistency tests examine the behaviour of the posterior distri-

bution, µy,δ, as the noise in the data likelihood model disappears, that is

as the model becomes more and more accurate.

Various possibilities can be examined. Does the posterior distribution

converge weakly anywhere? If it does converge, does it converge to a Dirac

so that uncertainty disappears? If it does converge to a Dirac, is the Dirac

centered on a generalized inverse of y? Does the prior play any role in the

limit, or does the information from the data swamp the prior and make it

irrelevant in the limit?

In the particular problem considered in this thesis, since K is invertible

for the suitable choice of space Y , we would like to have that as δ → 0, the
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posterior distribution converges to a Dirac distribution centered on K−1y.

In [20, Chapter 2], posterior consistency for the finite dimensional case

is examined from a subjectivist’s point of view. As in Section 4.1, assume

that we have the finite-dimensional inverse problem

y = Ku

and consider the data likelihood model

y = Ku+ η,

where u ∈ Rn, y, η ∈ Rq, K is an q × n matrix and η ∼ N (0, B) where

B = δ2B0 is a symmetric, positive definite matrix . Furthermore, suppose

we have the prior µ0 = N (m0,Σ0), where Σ0 is symmetric and positive

definite. Then the posterior distribution is also Gaussian, µy = N (m,Σ)

where m and Σ are given by formulae (4.11) and (4.12) respectively.

Suppose y ∈ Rq is a fixed observation. We emphasize here that y is

just an element of Rq, we are not assuming that it comes from our data

likelihood model. The following two theorems are proved:

Theorem 4.2.3. [20, Theorem 2.4] Assume that q ≥ n and that N (K) =

{0} . Then in the limit δ2 → 0

µy ⇒ δu†

where u† is the solution of the least squares problem

u† = argmin
u∈Rn

∣∣∣B− 1
2

0 (y −Ku)
∣∣∣2

Note that since K is injective, u† is unique and is the best-approximate

solution as defined in Section 2.1, the only difference being the fact that

a weighted norm is used for the least squares approximation. For more

details on weighted best-approximate solutions refer to [5, Chapter 8, Sec-

tion 1].

As the above theorem states, in the overdetermined case, i.e. in the case
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where the observations are of higher dimension than the unknown param-

eter and there is no loss of information because of K, since K is injective,

as the noise disappears the posterior converges weakly to a Dirac measure

determined by K and the relative weights of the observational noise. As it

is highlighted in [20], ”uncertainty disappears and the prior plays no role

in this limit”.

Assume now that q < n and that rank(K) = q so that we may write

K = (K0 0)Q∗

where Q ∈ Rn×n is orthogonal, Q∗Q = I, K0 ∈ Rq×q is invertible and

0 ∈ Rq×(n−q) is the zero matrix. Let L0 = Σ−1
0 and write

Q∗L0Q =

[
L11 L12

L∗12 L22

]

where L11 ∈ Rq×q, L12 ∈ Rq×(n−q) and L22 ∈ R(n−q)×(n−q). Both L11 and

L22 are positive definite symmetric, because Σ0 is.

If we write

Q = (Q1 Q2)

with Q1 ∈ Rq×q and Q2 ∈ Rn×(n−q), then Q∗1 projects onto a q-dimensional

subspace O and Q∗2 projects onto an (n− q)-dimensional subspace O⊥, the

orthogonal complement of O.

Define z ∈ Rq to be the unique solution of K0z = y. Note that z is not

some kind of true solution. We are just inverting y in the directions that

we have the information to do so.

Define w ∈ Rq and w′ ∈ Rn−q via the equation

Σ−1
0 m0 = Q

[
w

w′

]

and set

z′ = −L−1
22 L

∗
12z + L−1

22 w
′ ∈ Rn−q.
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Theorem 4.2.4. [20, Theorem 2.5] In the small noise limit, δ2 → 0,

µy ⇒ δz ⊗N (z′, L−1
22 ),

where δz ⊗N (z′, L−1
22 ) is viewed as a measure on O ⊕O⊥.

Thus, in the underdetermined case where the observations are of lower

dimension than the unknown parameter but K has full rank, as the noise

disappears, the posterior converges weakly to a Dirac measure in the space

O where we have information and to a proper Gaussian measure in the

space O⊥ where we have no information. The Dirac is centered on the in-

verse of y in the directions where we have sufficient information to invert.

As it is stressed in [20], ”the prior plays a role in the posterior measure

in the limit of zero observational noise” since the formulae for L−1
22 and z′

contain Σ0 and m0.

We are now going to examine posterior consistency for the Bayesian

version of the infinite dimensional problem that we have considered in the

previous chapters.

Suppose we have the inverse problem

y = A−`u, (4.17)

where A is ”Laplacian-like” as defined in Section 1.2, ` > 0. Consider the

data likelihood model

y = A−`u+ η, (4.18a)

where η ∼ N (0, C1) and C1 = δ2A−β, β > 1
2
. This implies that y|u ∼

N (A−`u,C1).

In addition, assume we have the prior

µ0 = N (0, C0), where C0 = τ 2A−α, α > 1

2
. (4.18b)

By Lemma 4.3.10(Appendix), we have that η ∈ Hs, s < β − 1
2

P -
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almost surely and that u ∈ Hs, s < α − 1
2

µ0-almost surely, thus by

Lemma 1.2.2 A−`u ∈ Hs, s < α + 2`− 1
2
, µ0-almost surely.

These imply that y ∈ Hs, s < ι for µ0-almost all u and P u−almost all

η, where ι := min
{
α + 2`− 1

2
, β − 1

2

}
. By the assumptions on α, β and `

we have that ι > 0, thus y ∈ H almost surely. Therefore, the pair (u, y) is

jointly Gaussian in H × H, with Eu = 0 and Ey = 0 and has covariance

operator with components

C11 := Euu∗ = C0,

C22 := Eyy∗ = τ 2A−2`−α + δ2A−β,

C12 := Euy∗ = τ 2A−`−α = Eyu∗ =: C21,

where the notation used is defined in Definition 4.3.1 in the Appendix and

the calculation is a direct application of the definition of the covariance op-

erator (Definition 4.3.2, Appendix) since u and η are mutually independent.

Using Theorem 4.3.9(Appendix), we have that u|y ∼ µy = N (m,C)

where:

m = C12C
−1
22 y = τ 2A−`−α

(
τ 2A−2`−α + δ2A−β

)−1
y

= A−`+β
(
A−2`+β +

δ2

τ 2
Aα
)−1

y (4.19)

and

C = C11 − C12C
−1
22 C21

= τ 2A−α − τ 2A−`−α
(
τ 2A−2`−α + δ2A−β

)−1
τ 2A−`−α

= τ 2A−α − τ 2A−α
(
I +

δ2

τ 2
A2`+α−β

)−1

. (4.20)

Remark 4.2.5. Using the diagonalization of A, we can rewrite the posterior

mean as

m =
∞∑
k=1

µ−`+βk

µ−2`+β
k + δ2

τ2µαk
ykφk,

which looks identical to the Tikhonov regularized approximation in Section
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3.1 (cf. Lemma 3.1.3)

uδλ = arg min
u∈Hα

Iλ,α,β(u).

However, since now we do not have that y ∈ Hβ, unlike the deterministic

theory (cf. Remark 3.1.4), there is no guarantee that m ∈ Hα, P -almost

surely without additional assumptions (cf. Remark 4.2.7(ii)). Neverthe-

less, we do have that m ∈ H, P -almost surely:

||m||2 =
∞∑
k=1

µ−2`+2β
k

µ−4`+2β
k + 2 δ

2

τ2µ
−2`+β+α
k + δ4

τ4µ2α
k

y2
k

i) If α− 2` ≥ β, then y ∈ Hs, s < β − 1
2
, P -almost surely and

||m||2 ≤ c
∞∑
k=1

µβ−αk y2
k <∞,

since β − α < β − 1
2
.

ii) If α− 2` < β, then y ∈ Hs, s < α + 2`− 1
2
, P -almost surely and

||m||2 ≤ c
∞∑
k=1

µ2`
k y

2
k <∞,

since α > 1
2
, hence 2` < α + 2`− 1

2
.

We first give a necessary and sufficient condition on α and β which,

using Feldman-Hayek Theorem (Theorem 4.3.7, Appendix), secures that

the posterior is a well defined Gaussian measure on H which is equivalent

to the prior.

Theorem 4.2.6. Suppose y ∈ H2β−α−2`. Then the posterior and the prior

distributions, N (m,C) and N (0, C0) respectively, are equivalent Gaussian

measures on H if and only if α > β − 2`+ 1
4
.

Proof. Suppose α > β−2`+ 1
4
, or equivalently β−α−2` < −1

4
. We verify

that the three conditions of Feldman-Hayek hold:

i) We first need to show that the Cameron-Martin spaces R(C
1
2
0 ) and

R(C
1
2 ) of the prior and the posterior respectively coincide. By Lemma
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4.3.8(Appendix), it suffices to show that there exist K1, K2 > 0 such

that

K1 〈x,C0x〉 ≤ 〈x,Cx〉 ≤ K2 〈x,C0x〉 , ∀x ∈ H.

Fix x ∈ H. Then, using the diagonalization of A,

〈x,Cx〉 =

〈
∞∑
j=1

xjφj, τ
2

∞∑
k=1

µ−αk

(
1− 1

1 + δ2

τ2µ
2`+α−β
k

)
xkφk

〉

= τ 2

∞∑
k=1

δ2

τ2µ
2`+α−β
k

1 + δ2

τ2µ
2`+α−β
k

µ−αk x2
k = τ 2

∞∑
k=1

δ2

τ2

µβ−α−2`
k + δ2

τ2

µ−αk x2
k

and

〈x,C0x〉 =

〈
∞∑
j=1

xjφj, τ
2

∞∑
k=1

µ−αk xkφk

〉
= τ 2

∞∑
k=1

µ−αk x2
k.

Since β − α − 2` < −1
4
< 0, by Assumption 1.2.1(iii), we have that

for some K2 > 0

δ2

τ2

µβ−α−2`
k + δ2

τ2

≥
δ2

τ2

(c+1 )β−α−2` + δ2

τ2

≥ K2,∀k ∈ N,

thus 〈x,Cx〉 ≥ K2 〈x,C0x〉 . Furthermore, since µk ≥ 0 we have that

δ2

τ2

µβ−α−2`
k + δ2

τ2

≤ 1,

thus for K1 = 1, 〈x,Cx〉 ≤ K1 〈x,C0x〉 .
Note that since R(C

1
2
0 ) = Hα, we have that the Cameron-Martin

space of both the prior and the posterior measure is E = Hα.

ii) We need to show that m ∈ Hα. Indeed,

||m||2α =
∞∑
k=1

µαk
µ−2`+2β
k(

µ−2`+β
k + δ2

τ2µαk

)2y
2
k ≤

∞∑
k=1

µα−2`+2β
k
δ4

τ4µ2α
k

y2
k = c

∞∑
k=1

µ2β−α−2`
k y2

k

which is finite if and only if y ∈ H2β−α−2`.

iii) Finally, we need to verify that the operator T = (C
− 1

2
0 C

1
2 )(C

− 1
2

0 C
1
2 )∗−
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I is Hilbert-Schmidt. Since in our case C0 and C commute and are

both self-adjoint, we have that

T = C−1
0 C − I =

1

τ 2
Aα
(
τ 2A−α − τ 2A−α

(
I +

δ2

τ 2
A2`+α−β

)−1
)
− I

= I −
(
I +

δ2

τ 2
A2`+α−β

)−1

− I = −
(
I +

δ2

τ 2
A2`+α−β

)−1

.

By the assumption we have β−α−2` < −1
4
, therefore 4β−4α−8` <

−1, hence T is Hilbert-Schmidt since, by Assumption 1.2.1(iii), its

eigenvalues are square summable

∞∑
k=1

1

(1 + δ2

τ2µ
2`+α−β
k )2

≤ c
∞∑
k=1

µ2β−2α−4`
k ≤ c

∞∑
k=1

k4β−4α−8` <∞.

Conversely, suppose β − α − 2` ≥ −1
4

or equivalently 2` + α − β ≤ 1
4
.

It suffices to show that one of the three conditions of the Feldman-Hayek

Theorem fails. We show that the third condition fails, that is we show that

T is not Hilbert-Schmidt. Indeed, the sum of the squares of its eigenvalues

is
∞∑
k=1

1

(1 + δ2

τ2µ
2`+α−β
k )2

:= S.

i) If 2` + α − β ≤ 0 then by Assumption 1.2.1(iii), there exists c > 0

such that µ2`+α−β
k ≤ c, ∀k ∈ N, thus

S ≥
∞∑
k=1

1

(1 + δ2

τ2 c)2
=∞.

ii) If 0 ≤ 2`+α−β ≤ 1
4

then by Assumption 1.2.1(iii), there exists c > 0

such that 1 + δ2

τ2µ
2`+α−β
k ≤ cµ2`+α−β

k , ∀k ∈ N, thus

S ≥ c
∞∑
k=1

µ2β−2α−4`
k ≥ c

∞∑
k=1

k4β−4α−8` =∞

since by the assumption 4β − 4α− 8` ≥ −1.
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Remark 4.2.7. In the last theorem we prove that if 2`+ α− β < −1
4
, then

the posterior and the prior are not equivalent. We now try to interpret this.

In the following, we say that the posterior is smoother than the prior

(or vice-versa), if s1 > s2 where Hs1 is the best space in which we can

secure that draws from the posterior live in with probability 1 and Hs2 is

the best space in which we can secure that draws from the prior live in

with probability 1.

i) Suppose λC0
k are the eigenvalues of C0 and λCk the eigenvalues of C. Then

the third condition of the Feldman-Hayek Theorem requires that

∞∑
k=1

(
λCk
λC0
k

− 1

)2

<∞. (4.21)

In our case

λCk = τ 2µ−αk

(
1− 1

1 + δ2

τ2µ
2`+α−β
k

)
and

λC0
k = τ 2µ−αk .

Note that

0 < 1− 1

1 + δ2

τ2µ
2`+α−β
k

≤ 1,

therefore

0 <
λCk
λC0
k

≤ 1.

This means that the prior is never smoother than the posterior and that

condition (4.21) can only fail if one of the following is true:

a)
λCk

λ
C0
k

k→∞−→ 0, in which case the posterior is smoother,

b) O(λC) = O(λC0) but with different constants, so even though the

posterior and the prior are equally smooth, they are not equivalent.

If α < β − 2`, then

λCk
λC0
k

= 1− 1

1 + δ2

τ2µ
2`+α−β
k

=
δ2

τ2µ
2`+α−β
k

1 + δ2

τ2µ
2`+α−β
k

≤ δ2

τ 2
µ2`+α−β
k

k→∞−→ 0,
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thus the posterior is smoother than the prior.

If α = β − 2`, then

λCk
λC0
k

=
δ2

τ2

1 + δ2

τ2

,

thus the posterior and the prior are equally smooth, but not equivalent.

If β − 2` < α ≤ β − 2`+ 1
4
, then

λCk
λC0
k

= 1− 1

1 + δ2

τ2µ
2`+α−β
k

k→∞−→ 1.

In this case, even though the terms of the sum in (4.21) do converge to 0,

they do not converge fast enough to secure that the sum is finite, thus the

posterior and the prior are again equally smooth, but not equivalent.

ii) In Theorem 4.2.6 we assume that y ∈ H2β−α−2` which secures that

the posterior mean lives in the Cameron-Martin space E = R(C
1
2
0 ), i.e.

m ∈ Hα. It is interesting to check what happens to the posterior mean, m,

if we allow random y from the model (4.18a).

By Remark 4.2.5, we already now that m ∈ H, always. If β −α− 2` <

−1
2
, i.e. if α > β − 2`+ 1

2
, then m ∈ Hα almost surely. Indeed,

||m||2α =
∞∑
k=1

µ−2`+2β+α
k

(µ−2`+β
k + δ2

τ2µαk )2
y2
k ≤ c

∞∑
k=1

µ−2`+2β−α
k y2

k.

Since y ∈ Hs, almost surely for s < ι = min
{
α + 2`− 1

2
, β − 1

2

}
, in order

to show that m ∈ Hα we need ι > −2`+ 2β − α, i.e.

α + 2`− 1

2
> −2`+ 2β − α

and

β − 1

2
> −2`+ 2β − α

which are equivalent to

β − α− 2` < −1

4
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and

β − α− 2` < −1

2

respectively. If α > β−2`+ 1
2

then both of the requirements are met and we

have that m ∈ Hα almost surely. So, in order to secure for random data

from the model (4.18a), that the prior and the posterior are equivalent

almost surely, we in fact need a stronger condition on α than the one

provided by the last theorem, i.e. we need

α > β − 2`+
1

2
,

instead of α > β − 2`+ 1
4
.

It is also interesting, that we can only secure that m /∈ Hα almost

surely, in only one special case, i.e. when α = β − 2`. Indeed, since

η ∼ N (0, δ2A−β) we have that almost surely η /∈ Hβ, since draws from

a Gaussian measure in infinite dimensions do not lie in the corresponding

Cameron-Marin space. Therefore, almost surely y /∈ Hβ and we have that:

a) if α ≤ β − 2`, then

||m||2α ≥
∞∑
k=1

µ−2`+2β+α
k

cµ−4`+2β
k

y2
k = c

∞∑
k=1

µ2`+α
k y2

k

which we can secure that is infinite for 2`+ α ≥ β.

b) if α ≥ β − 2`, then

||m||2α ≥
∞∑
k=1

µ−2`+2β+α
k

cµ2α
k

y2
k = c

∞∑
k=1

µ−2`+2β−α
k y2

k

which we can secure that is infinite for −2`+2β−α ≥ β since almost

surely y /∈ Hβ.

Thus we can only show that the posterior mean almost surely does not lie

in the Cameron-Martin space for α = β − 2`. One might have expected

that for small values of α the posterior mean explodes, since for small val-

ues of α, as we have seen in (i) of this remark, the prior covariance does
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not dominate in the expression for the posterior covariance, which means

that the regularization is not helping. However, since by allowing α to get

smaller, we are also weakening the requirement that m ∈ Hα, this does not

happen except for one critical value α = β − 2`.

The fact that for large values of α we have that the posterior and the

prior are equivalent, even for random data from the model (4.18a), can

be explained by the fact that, as we have seen in (i) of this remark, for

large values of α the prior covariance dominates in the expression for the

posterior covariance.

Remark 4.2.8. When studying classical posterior consistency it is of interest

to know when the condition on y required for Theorem 4.2.6 holds. A

simple calculation shows that if β−α−2` < −1
2

and 2β−α−4` < 0, then

the assumed measurements of the form

yδ = A−`u† + δξ,

where u† ∈ H is fixed and ξ ∼ N (0,A−β), belong to the space H2β−α−2`

ξ-almost surely.

Indeed, by Lemma 4.3.10(Appendix), since β − α − 2` < −1
2

we have

that 2β − α− 2` < β − 1
2
, thus ξ ∈ H2β−α−2` ξ-almost surely.

Furthermore, A−`u† ∈ H2` by Lemma 1.2.2 and since 2β−α−4` < 0 we

have that 2` > 2β − α− 2`, thus A−`u† ∈ H2β−α−2`. Hence, y ∈ H2β−α−2`

ξ-almost surely.

Note that the above two conditions are not mutually exclusive.

We now examine classical posterior consistency for the inverse problem

(4.17) and the data likelihood model (4.18).

Theorem 4.2.9. Suppose we have the inverse problem (4.17) with the data

likelihood model (4.18a) and prior (4.18b) and assume β − 2` > 1
2
. Then,

the posterior measure µy = N (m,C), where m and C are given by (4.19)

and (4.20) respectively, is consistent in the classical sense.
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Proof. Assume we have measurements of the problem (4.17) of the form

yδ = A−`u† + δξ,

where ξ ∼ N (0,A−β) and u† ∈ H is fixed. By Definition 4.2.1, we

need to show that ξ-almost surely µy
δ,δ ⇒ δu† , as δ → 0. By Lemma

4.3.4(Appendix), it suffices to show that ξ-almost surely 〈m,x〉 → 〈u†, x〉
and 〈Cx, x〉 → 0, ∀x ∈ H as δ → 0.

Indeed, fix x ∈ H.

Using the diagonalization of A, by (4.19) we have that

〈m,x〉 =

〈
A−`+β

(
A−2`+β +

δ2

τ 2
Aα
)−1

yδ, x

〉

=
∞∑
k=1

µ−`+βk

µ−2`+β
k + δ2

τ2µαk
yδkxk.

Define qk = 〈u†, φk〉. Then yδk = µ−`k qk + δξk and

〈m,x〉 =
∞∑
k=1

µ−2`+β
k qkxk

µ−2`+β
k + δ2

τ2µαk
+
∞∑
k=1

δµ−`+βk ξkxk

µ−2`+β
k + δ2

τ2µαk
. (i)

Observe that ∀k ∈ N

µ−2`+β
k qkxk

µ−2`+β
k + δ2

τ2µαk
≤ qkxk and lim

δ→0

µ−2`+β
k qkxk

µ−2`+β
k + δ2

τ2µαk
= qkxk,

since τ is fixed, thus δ2

τ2 → 0, as δ → 0, where

∞∑
k=1

qkxk = 〈u†, x〉 <∞

since u†, x ∈ H. Hence, the first term in (i) converges to 〈u†, x〉, as δ → 0.

By Lemma 4.3.10(Appendix), we have that ξ ∈ Hs ξ-almost surely,

∀s < β − 1
2
, hence ξ ∈ H2` ξ-almost surely, since β − 1

2
> 2`. The second
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term can be estimated as follows:

∞∑
k=1

δµ−`+βk ξkxk

µ−2`+β
k + δ2

τ2µαk
≤ δ

∞∑
k=1

µ`kξkxk

where the sum is finite by Cauchy-Schwartz inequality, since ξ ∈ H2` ξ-

almost surely and x ∈ H. Thus, as δ → 0 the second term vanishes

ξ-almost surely.

For the convergence of the covariance operator, using (4.20) and the

diagonalization of A, we have

〈Cx, x〉 =

〈(
τ 2A−α − τ 2A−α

(
I +

δ2

τ 2
A2`+α−β

)−1
)
x, x

〉

=
∞∑
k=1

(
τ 2µ−αk − τ

2µ−αk

(
1 +

δ2

τ 2
µ2`+α−β
k

)−1
)
x2
k

= τ 2

∞∑
k=1

µ−αk

(
1− 1

1 + δ2

τ2µ
2`+α−β
k

)
x2
k.

By the Dominated Convergence Theorem the last sum vanishes as δ → 0,

since the parenthesis on the one hand is uniformly bounded by 1 and on

the other hand ∀k ∈ N tends to 0 and since x ∈ H, where α > 1
2
> 0, thus

x ∈ H−α.

Remark 4.2.10. As it is mentioned in the proof, the condition β − 2` > 1
2
,

implies that ξ ∈ H2`, ξ−almost surely. Since by the assumption u† ∈ H
thus A−`u† ∈ H2`, we have that yδ ∈ H2`. By Lemma 1.2.3 we know

that K−1 = A` is well defined and bounded in H2`, which means that the

problem is well posed and no regularization was necessary (cf. Remark

3.1.2).

Theorem 4.2.11. Suppose we have the inverse problem (4.17) with the

data likelihood model (4.18a) and the prior (4.18b) and assume that β−2` ≤
1
2
, i.e. the inverse problem (4.17) is ill-posed. Then, the posterior measure

µy = N (m,C), where m and C are given by (4.19) and (4.20) respectively,
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is consistent in the regularized classical sense, provided

δ

τ(δ)
→ 0 and τ(δ)→ 0, as δ → 0. (4.22)

Proof. Assume we have measurements of the problem (4.17) of the form

yδ = A−`u† + δξ,

where ξ ∼ N (0,A−β) and u† ∈ H is fixed. By Definition 4.2.2, we

need to show that ξ-almost surely µy
δ,δ,τ(δ) ⇒ δu† , as δ → 0. By Lemma

4.3.4(Appendix), it suffices to show that ξ-almost surely 〈m,x〉 → 〈u†, x〉
and 〈Cx, x〉 → 0, ∀x ∈ H as δ → 0.

Indeed, fix x ∈ H.

For the proof that ξ-almost surely 〈m,x〉 → 〈u†, x〉, as δ → 0 it suffices

to show that ξ-almost surely
∣∣∣∣m− u†∣∣∣∣→ 0, as δ → 0.

Define qk = 〈u†, φk〉. Then yδk = µ−`k qk + δξk and like in the proof of

Theorem 3.1.5 (for γ = 0), by Remark 4.2.5 we have

∣∣∣∣m− u†∣∣∣∣2 =
∞∑
k=1

(
µ−2`+β
k qk + δµ−`+βk ξk

µ−2`+β
k + δ2

τ2µαk
− qk

)2

≤

∞∑
k=1

2δ2µ−2`+2β
k ξ2

k

µ−4`+2β
k + δ4

τ4µ2α
k + 2 δ

2

τ2µ
−2`+β+α
k

+
∞∑
k=1

2 δ
4

τ4µ
2α
k q

2
k

µ−4`+2β
k + δ4

τ4µ2α
k + 2 δ

2

τ2µ
−2`+β+α
k

.

The first term can be bounded by

∞∑
k=1

2δ2µ−2`+2β
k ξ2

k

2 δ
2

τ2µ
−2`+β+α
k

= τ 2

∞∑
k=1

µβ−αk ξ2
k.

The sum is finite ξ-almost surely, since by Lemma 4.3.10(Appendix) we

have that ξ ∈ Hs, s < β − 1
2
ξ-almost surely, where β − α < β − 1

2
, since

α > 1
2
. Hence, as δ → 0, the first term vanishes since by the assumption

we have that τ → 0 as δ → 0.
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The second term, for δ
τ
→ 0, vanishes by the Dominated Convergence

Theorem, since for each k ∈ N

2 δ
4

τ4µ
2α
k q

2
k

µ−4`+2β
k + δ4

τ4µ2α
k + 2 δ

2

τ2µ
−2`+β+α
k

→ 0

as δ
τ
→ 0 and for fixed δ

τ
, since µk > 0, ∀k ∈ N we have

2 δ
4

τ4µ
2α
k q

2
k

µ−4`+2β
k + δ4

τ4µ2α
k + 2 δ

2

τ2µ
−2`+β+α
k

≤
2 δ

4

τ4µ
2α
k q

2
k

δ4

τ4µ2α
k

= 2q2
k

which is summable because u† ∈ H. Thus, since by the assumption δ
τ
→ 0,

as δ → 0, we have that the second term vanishes as δ → 0.

Hence, we have shown that ξ-almost surely
∣∣∣∣m− u†∣∣∣∣

γ
→ 0, as δ → 0.

For the convergence of the covariance operator, like in the proof of

Theorem 4.2.9 we have

〈Cx, x〉 = τ 2

∞∑
k=1

µ−αk

(
1− 1

1 + δ2

τ2µ
2`+α−β
k

)
x2
k.

By the assumption we have that τ → 0 as δ → 0. Furthermore by the

Dominated Convergence Theorem the last sum vanishes as δ2

τ2 → 0, since

the parenthesis on the one hand is uniformly bounded by 1 and on the

other hand ∀k ∈ N tends to 0 and since x ∈ H, where α > 1
2
> 0, thus

x ∈ H−α. Hence, since by the assumption δ2

τ2 → 0, as δ → 0, we have that

〈Cx, x〉 → 0 as δ → 0.

Remark 4.2.12.

i) The condition β − 2` ≤ 1
2

does not secure that ξ ∈ H2`, thus yδ does not

necessarily live in H2` where K−1 is well defined and continuous, hence we

do need regularization. By the assumption β > 1
2
, we do have that ξ ∈ H,

thus at least y ∈ H.

In the proof, we substantially use the assumption that α > 1
2
, which
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secures that the prior has full measure on Hs, for s < α − 1
2

and which

we can interpret as the requirement that the prior is indeed regularizing,

i.e. with probability 1, samples from it live in a space which is at least as

smooth as H. In the classical Tikhonov regularization theory, we had the

condition α ≥ 0, (cf. Theorem 3.1.5), which again was interpreted as the

requirement that the penalty term in the Tikhonov functional is indeed

regularizing, so the connection is apparent.

ii) Note that condition (4.22) of the last theorem says that τ → 0 in order

to obtain the convergence of the posterior to δu† . This condition on τ seems

to be in conflict with the common understanding of the Bayesian approach,

where zero covariance in the prior means that the mean of the prior should

be taken as the true solution. To resolve this, note that compared to the

variance of the noise, the variance of the prior distribution does tend to

infinity, τ
δ
→ ∞, since δ

τ
→ 0, therefore τ >> O(δ), i.e. the prior distri-

bution becomes non-informative since its uncertainty becomes larger than

the uncertainty in the noise [13].

iii) The link between the Bayesian approach and the Classical approach is

apparent in the last proof: the proof of the convergence of the posterior

mean, m, to the true solution, u†, is almost identical with the proof of the

convergence of the Tikhonov regularized approximation, uδλ, to u† in Theo-

rem 3.1.5, for λ = δ2

τ2 and ηk = δξk. The only difference is the justification

of the steps, since we no longer have that ξ ∈ Hβ like in the Classical case.

Remark 4.2.13. In both Theorem 4.2.9 and Theorem 4.2.11, it would make

sense to ask when the posterior, µy
δ
, and the prior, µ0, are equivalent. By

Theorem 4.2.6 and Remark 4.2.8, the conditions β − α − 2` < −1
2

and

2β − α− 4` < 0 secure that µy
δ

and µ0 are equivalent ξ-almost surely.

We now examine subjectivistic posterior consistency.

Theorem 4.2.14. Fix y ∈ H2`. Then

µy ⇒ δA`y
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as δ → 0.

Proof. By Lemma 4.3.4(Appendix), it suffices to show that 〈m,x〉 → 〈A`y, x〉
and 〈Cx, x〉 → 0, ∀x ∈ H as δ → 0.

Indeed, fix x ∈ H.

Using the diagonalization of A, by (4.19) we have that

〈m,x〉 =

〈
A−`+β

(
A−2`+β +

δ2

τ 2
Aα
)−1

y, x

〉

=
∞∑
k=1

µ−`+βk

µ−2`+β
k + δ2

τ2µαk
ykxk, ∀x ∈ H.

Since ∀k ∈ N

µ−`+βk ykxk

µ−2`+β
k + δ2

τ2µαk
≤ µ`kykxk, lim

δ→0

µ−`+βk ykxk

µ−2`+β
k + δ2

τ2µαk
= µ`kykxk

and since
∞∑
k=1

µ`kykxk = 〈A`y, x〉 <∞

by Cauchy-Schwartz since y ∈ H2` and x ∈ H, we have that 〈m,x〉 →
〈A`y, x〉 as δ → 0, by the Dominated Convergence Theorem.

For the convergence of the covariance operator, using (4.20) we have

〈Cx, x〉 =

〈(
τ 2A−α − τ 2A−α

(
I +

δ2

τ 2
A2`+α−β

)−1
)
x, x

〉

=
∞∑
k=1

(
τ 2µ−αk − τ

2µ−αk

(
1 +

δ2

τ 2
µ2`+α−β
k

)−1
)
x2
k

= τ 2

∞∑
k=1

µ−αk

(
1− 1

1 + δ2

τ2µ
2`+α−β
k

)
x2
k

which vanishes as δ → 0, since the parenthesis goes to 0 and by the Domi-

nated Convergence Theorem since x ∈ H and α > 1
2
> 0.
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In conclusion, we have shown that for a fixed y ∈ H2`, the posterior

does converge to a Dirac as the noise fades away, centered on the inverse

image of y. Uncertainty disappears and the prior does not play any role in

the small noise limit.

Remark 4.2.15. In the subjectivistic posterior consistency, we assume that

the data do not come from our data likelihood model. Nevertheless, it

also makes sense to assume that y comes from a space which secures the

equivalence of the posterior and the prior. In that case, in the last theorem,

by Theorem 4.2.6, we would need β−α−2` < −1
4

and a modified condition

on y, in particular y ∈ Hc where c = max {2`, 2β − α− 2`} .

4.3 Appendix

A concise, yet self-sustained, presentation of the tools from Probability and

Measure Theory used for the development of the theory of the Bayesian

Approach to Inverse Problems can be found in [20, Chapter 6]. We hereby

provide the particular tools used in this project, as can be found in [20,

Chapter 6].

In the following Z is a Hilbert space.

Definition 4.3.1. For any z1, z2 ∈ Z we define the operator z1⊗ z2 by the

identity

(z1 ⊗ z2)z = 〈z2, z〉z1, ∀z ∈ Z.

We use ∗ to denote the adjoint of a linear operator between two Hilbert

spaces. In particular we may view z1, z2 ∈ Z as linear operators from R to

Z and then

z1 ⊗ z2 = z1z
∗
2 .

Definition 4.3.2. A measure µ on the Hilbert space Z has a mean, m ∈ Z,

and covariance operator, C : Z → Z, given by

m =

∫
Z
zµ(dz)
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and

〈z1, Cz2〉 =

∫
Z
〈z1, z −m〉〈z −m, z2〉µ(dz),

respectively. For a random variable x ∼ µ,

m = E(x)

and

C = E(x−m)⊗ (x−m).

Theorem 4.3.3. [20, Theorem 6.4] A Gaussian measure on (Z,B(Z)) has

a mean m and covariance operator C. Further, the characteristic function

of the measure is

ϕ(z) = exp

(
i〈z,m〉 − 1

2
〈z, Cz〉

)
, ∀z ∈ Z.

Lemma 4.3.4. [20, Lemma 6.5] Consider a family of probability measures

µ(n). Assume that, ∀z ∈ Z

ϕµ(n)(z)→ exp

(
i〈z,m+〉 − 1

2
〈z, C+z〉

)
.

Then µ(n) ⇒ N (m+, C+).

Definition 4.3.5. We define the Cameron-Martin space E associated with

a Gaussian measure µ = N (0, C) on Z to be the intersection of all linear

spaces of full measure under µ.

Lemma 4.3.6. [20, Lemma 6.10] The Cameron-Martin space associated

to a Gaussian measure N (0, C) on the Hilbert space (Z, 〈., .〉), is the Hilbert

space E := R(C
1
2 ) with the inner product

〈., .〉C = 〈C−
1
2 ., C−

1
2 .〉.

Theorem 4.3.7. [20, Theorem 6.13]-Feldman Hayek Theorem Two Gaus-

sian measures µi = N (mi, Ci), i = 1, 2 on a Hilbert space Z are either sin-

gular or equivalent. They are equivalent if and only if the following three

conditions hold:

(i) R(C
1
2
1 ) = R(C

1
2
2 ) := E,
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(ii) m1 −m2 ∈ E,

(iii) the operator T := (C
− 1

2
1 C

1
2
2 )(C

− 1
2

1 C
1
2
2 )∗ − I is Hilbert-Schmidt in E.

Lemma 4.3.8. [20, Lemma 6.15] For any two positive definite, self-

adjoint, bounded linear operators Ci on a Hilbert space Z, i = 1, 2, the

condition R(C
1
2
1 ) ⊂ R(C

1
2
2 ) holds if and only if there exists a constant

κ > 0 such that

〈z, C1z〉 ≤ κ〈z, C2z〉, ∀z ∈ Z.

Theorem 4.3.9. [20, Theorem 6.20] Let Z = Z1 ⊕ Z2 be a separable

Hilbert space with projectors Πi : Z → Zi, i = 1, 2. Let (z1, z2) ∈ Z1 ⊕ Z2

be a Z-valued Gaussian random variable with mean m = (m1,m2) and

positive definite covariance operator C. Define

Cij = E(zi −mi)⊗ (zj −mj).

Then the conditional distribution of z1 given z2 is Gaussian with mean

m′ = m1 + C12C
−1
22 (z2 −m2)

and covariance operator

C ′ = C11 − C12C
−1
22 C21.

Lemma 4.3.10. [20, Lemma 6.27] Consider a Gaussian measure µ =

N (0,A−α), where A satisfies the Assumptions 1.2.1 (i)− (iii) and α > 1
2
.

Then u ∼ µ is in Hs almost surely for any s < α− 1
2
.

Theorem 4.3.11 (Bayes Formula). Let (u, y) ∈ Rn × Rq be a jointly dis-

tributed pair of random variables with Lebesgue density ρ(u, y). Then the

infinitesimal version of Bayes Formula is

ρ(u|y) ∝ ρ(y|u)ρ(u).
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Conclusion

The purpose of this thesis has been to explore the Classical and the Bayesian

approach to Inverse Problems and to give some intuition on the connec-

tion of the Tikhonov Regularization method to the Bayesian approach to

inverse problems. We have tried to achieve the above task, using as our

guide the ”Laplacian-like” inverse problem, which enabled the simplifica-

tion of the calculations. We have proved convergence results in the classical

approach, provided convergence rates and then went on to prove posterior

consistency results in the Bayesian approach. The link has been apparent

in many instances, for example note the similarity of the proof of Theorem

3.1.5 with the proof of Theorem 4.2.11, or the fact that the posterior mean

m in the Bayesian approach to the ”Laplacian-like” problem (cf. Remark

4.2.5), is identical to the Tikhonov regularized approximation uδλ for γ = 0

(cf. Lemma 3.1.3) .

We hope that this work can serve as a foundation for our future explo-

ration of the field and that we will be able to get results in more general

cases by gradually erasing the assumptions which simplified the calcula-

tions here. The calculations in Chapter 3, which we believe are sharp, will

also provide useful guidance in these more general situations.

In this work, things were greatly simplified by the assumption that the

forward operator, K, is diagonalizable in the same eigenbasis as the oper-

ator A which induces the Hilbert Scale used and furthermore the fact that

K is a power of A. Moreover, the use of the same Hilbert Scale in both

103
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the least squares term and the penalty term, also simplified things. Note

that in the Bayesian approach this originated from the fact that we used

Gaussian prior, N (0, C0) and Gaussian observational noise N (0, C1), with

covariance operators which can be related by scaling, since C0 = τ 2A−α

and C1 = δ2A−β.

A first attempt to erase the above assumptions has been made by An-

drew Stuart and Stig Larson (unpublished notes), who assume a weaker

connection between all the norms and the forward operator. In particu-

lar, instead of the scaling connection between the different norms as well

as between the operator inducing the norms with the forward operator,

a norm-equivalence relation between different weighted norms is assumed,

which also suggests a weaker relation between the forward operator and

the operators inducing the different weighted norms.

In Theorem 4.2.11 we have proved regularized frequentist bayesian pos-

terior consistency, i.e. we have proved that under sufficient conditions, if

we have data of the form

yδ = Ku† + δξ,

where ξ ∼ N (0,A−β) and u† ∈ H is the true solution, then as δ → 0 the

posterior distribution N (m,C) weakly converges to a Dirac centered on the

true solution u†, ξ-almost surely. As it is well known, the weak convergence

of measures is metrized by the Prokhorov metric, [2]. We have devoted

a great effort for producing the convergence rates, in the classical case,

provided in Section 3.2 of this thesis, thus we hope that in the future we

will be able to use these rates to obtain convergence rates in the Prokhorov

metric, for the convergence proved in Theorem 4.2.11.

The Ky-Fan metric, [12], is a metric which measures distances be-

tween random variables from a probability space (Ω,F , P ) to a metric

space (X, dX), which quantifies the convergence in probability. In [14],

[19] and [13], the authors consider as (X, dX) the metric space of all the

random measures with the Prokhorov metric and calculate convergence

rates in the Ky-Fan metric for the convergence of the random variable µy
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to the constant random variable δu† .

In Theorem 4.2.6, in order to secure the well definiteness of the poste-

rior, we had to restrict the space were y lives. In [8], Florens and Simoni use

similar techniques as those we employ here, to prove frequentist posterior

consistency results for bounded linear forward operators. In [7], Florens

and Simoni argue against the restriction of the space where the data are

assumed to live, since the actual data may not satisfy this assumption and

they proceed to suggest a method of regularizing the posterior covariance

operator, in order to secure the well definiteness of the posterior.

Finally, in the results presented in this thesis, we make a substantial

use of Gaussianity. Particularly, in Theorem 4.2.6 where we give necessary

and sufficient conditions for the equivalence of the prior and the posterior

measure, the use of Theorem 4.3.7 relies on the Gaussianity of both the

prior and the noise. If we try to use the abstract theory, presented in [20],

to obtain the same result, formally we would get that

dµy

dµ0

(u) ∝ exp

(
− 1

2δ2
||Ku||2β +

1

2δ2
〈Ku, y〉β

)
:= exp(−Φ(u, y)).

Then, by [20, Theorem 4.1], in order to have that the posterior is well

defined, we would need to show that Φ is Lipschitz-continuous with respect

to u, on some space X and then choose a prior µ0, such that µ0(X) = 1.

Since Φ(u, y) is finite if and only if u ∈ Hβ−2`, we would need the prior

µ0 = N (0, τ 2A−α) to charge Hβ−2` with full measure. By Lemma 4.3.10,

this is secured for β − 2` < α− 1
2

thus we have the condition

α > β − 2`+
1

2
,

which is stronger than the condition

α > β − 2`+
1

4

obtained in Theorem 4.2.6.
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Note that in Remark 4.2.7(ii), we show that if we assume y to come

from the data likelihood model (4.18a), then we need a stronger condition

α > β − 2` + 1
2

which seems to agree with the abstract theory. However,

since in the abstract theory y is assumed to live in some fixed Hilbert space

Y , we still have a difference in the requirements of the two theories.

This observation, might suggest that the approach taken in the non-

Gaussian case, [20, Chapter 4], based on the continuity of Φ, is too strong.
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