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Inverse Problem

y = G(u) + ξ

observation
finite or
∞-dim

forward
operator

unknown
∞-dim

noise
N(0,Σ)
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Example - Image Deblurring

Original images copyright of Damian Peach, www.damianpeach.com
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Example - Darcy Flow, Contamination Scenario

−∇.(u∇p) = h, x ∈ D
p = 0, x ∈ ∂D

dz = v(u)dt + 2εdW
z(0) = zinit
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Classical Tikhonov-type Regularization

û = min I (u; y)

I (u; y) = Φ(u; y) + W (u)

fidelity
term

penalty
term
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Bayesian IP’s for Functions, finite-dim observation

Posterior
u|y ∼ µy

Prior
u ∼ µ0

Likelihood
y |u ∼ N(G(u),Σ)

dµy

dµ0
(u) ∝ exp

(
− Φ(u; y)

)

Φ(u; y) =
1

2

∣∣∣Σ−1
2(y − G(u))

∣∣∣
2

M. Dashti and A. M. Stuart, The Bayesian approach to inverse problems, Handbook of UQ, 2015.
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Edge-preserving and Sparsity-promoting Priors

Blocky structure and sparsity in an appropriate expansion

Total Variation prior

”µ0(du) ∝ exp

(
−
∫
|Du|

)
du”

- For u = 1A,
∫
|Du| = length(∂A)

- Not discretization invariant

M. Lassas and S. Siltanen, Can one use total variation prior for edge-preserving Bayesian
inversion, 2004
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Edge-preserving and Sparsity-promoting Priors

1-Besov priors, Laplace-type, mimic TV.

M. Lassas, E. Saksman and S. Siltanen, Discretization-invariant Bayesian inversion and
Besov space priors, 2009

M. Dashti, S. Harris and A. Stuart, Besov priors for Bayesian inverse problems, 2013

Infinitely divisible and heavy tailed priors, e.g. Cauchy priors

T. Sullivan, Well-posed Bayesian inverse problems and heavy-tailed stable Banach space
priors, 2016

B. Hosseini, Well-posed Bayesian inverse problems with infinitely-divisible and heavy-tailed
prior measures, 2017
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Priors for Blocky Structure and Sparsity

3.3 Prior Models 65

Figure 3.3. Random draws from ℓ1 prior (top row), Cauchy prior (middle row)
and white noise prior (bottom row). All priors include a positivity constraint.

The entropy density is qualitatively similar to the lognormal density, in
which the logarithm of the unknown is normally distributed. For a single
component, the lognormal density is given by

π(x) =
1√

2πσx
exp

(
− 1

2σ2
(log x− log x0)

2

)
, x > 0.

For vector-valued variables with mutually independent components, the den-
sity is naturally a product of the component densities.

3.3.3 Discontinuities

Often in inverse problems, one seeks an unknown that may contain disconti-
nuities. The prior information may concern, for example, the size of the jumps

3.3 Prior Models 69

Figure 3.5. Three 7×7 pixel images with equal energy but different total variation,
from left to right 18, 28 and 40, respectively

To compare the total variation prior with the previously discussed ones, we
draw randomly three noise images from the total variation prior equipped with
the positivity constraint. These draws are displayed in Figure 3.6. Although
not dramatically different from the white noise images in Figure 3.3, we can
see here clear correlation between nearby pixels.

Figure 3.6. Three total variation noise images with positivity constraints.

The MRF priors serve as useful tools in designing structural priors. As
an example, consider a medical imaging problem in which we know a priori
the location of the organ boundaries. Such prior information may be based
on anatomical data or on other imaging modalities such as X-ray or magnetic
resonance data. In medical applications, this type of information is expressed
by saying that we have a segmented image at our disposal. Assume that we
have k different tissue types and a mapping T : {1, . . . , n} → {1, . . . , k} that
classifies each pixel into one of the types. Now we can design a neighborhood
system N in such a way that

T (i) ̸= T (j)⇒ j /∈ Ni,

that is, pixels of different type are never neighbors. Actually, the pixels are
divided into cliques according to their type, each clique being independent of
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Figure 3.3. Random draws from ℓ1 prior (top row), Cauchy prior (middle row)
and white noise prior (bottom row). All priors include a positivity constraint.

The entropy density is qualitatively similar to the lognormal density, in
which the logarithm of the unknown is normally distributed. For a single
component, the lognormal density is given by

π(x) =
1√

2πσx
exp

(
− 1

2σ2
(log x− log x0)

2

)
, x > 0.

For vector-valued variables with mutually independent components, the den-
sity is naturally a product of the component densities.

3.3.3 Discontinuities

Often in inverse problems, one seeks an unknown that may contain disconti-
nuities. The prior information may concern, for example, the size of the jumps

Gaussian, Total Variation, `1 and Cauchy draws

J. Kaipio and E. Somersalo, Statistical and Computational Inverse Problems, 2005
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y = u + ξ in 2d
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Periodic Besov Spaces

{ψ`}∞`=1 orthonormal wavelet basis for L2(T)

f (x) =
∞∑

`=1

c`ψ`(x).

‖f ‖B s
p(T) =

( ∞∑

`=1

`p(s+1
2)−1|c`|p

)1
p

p integrability, s smoothness parameter.

p = 2, Sobolev spaces of functions with s square integrable derivatives

‖f ‖B s
2(T) =

( ∞∑

`=1

`2s|c`|2
)1

2

.

p = 1

‖f ‖B s
1(T) =

∞∑

`=1

`s−
1
2|c`|.
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1-Besov Priors

Definition (Lassas et al ’09)

X`
iid∼ 1

2 exp(−|x |) and α` = `s−
1
2. The random function

U(x) =
∞∑

`=1

α−1
` X`ψ`(x), x ∈ T,

is said to be distributed according to a B s
1-Besov prior, λ.

λ(B t
1) =

{
1, if t < s − 1
0, otherwise.

”πU(u) ∝ exp(−‖u‖B s
1
)” since α−1

` X` ∼ α`
2 exp(−α`|x |).
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Study MAP Estimators

Use 1-Besov priors in BIP context

Study maximum a posteriori (MAP) estimators understood as modes of
posterior µy
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http://www.sergiosagapiou.com/

S. Agapiou, M. Burger, M. Dashti and T. Helin, Sparsity-promoting and edge-preserving
maximum a posteriori estimators in non-parametric Bayesian inverse problems,
arXiv:1705.03286

Build on

M. Dashti, K. Law, A. Stuart and J. Voss, MAP estimators and their consistency in
Bayesian nonparametric inverse problems, Inverse Problems, 2013

MAP for Gaussian priors

T. Helin and M. Burger, Maximum a posteriori probability estimates in
infinite-dimensional Bayesian inverse problems, Inverse Problems, 2015

wMAP theory using differential calculus of measures, does not cover 1-Besov priors, basis for Cauchy
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Finite-dimensional Intuition

Assume X = RN and prior has Lebesgue density

π(u) ∝ exp(−W (u))

Posterior Lebesgue density

πy(u) ∝ exp(−I (u; y)),

where

I (u; y) = Φ(u; y) + W (u).

MAP estimators maximize posterior density, i.e. minimize Tikhonov functional I
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Modes in Infinite-dimensions

In ∞-dim no uniform measure. Modes of measure µ on function space X ?

- compute µ(Bε(u)) for all u ∈ X

- send ε→ 0

- û mode of µ if maximizes limiting small ball probabilities in specific sense

strong mode: max probability among all centres in X , Dashti et al ’13

weak mode: max probability among shifts by elements in a dense subspace
E ⊂ X , Helin and Burger ’15

A MAP (resp. wMAP) estimate is a mode (resp. weak mode) of µy .
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Remarks

Weak mode allows flexibility of choosing E .

Any strong mode is a weak mode for E = X .

Weak mode interesting when small ball probabilities available only in some
subspace of translations h, E . Typically E has measure zero.

AIM: associate abstract definitions to appropriate optimization problem.

B s
1-Besov prior: show in ∞-dim that MAP/wMAP coincide with minimizers of

I (u; y) = Φ(u; y) + ‖u‖B s
1
.
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Strategy: Onsager-Machlup Functional

Suppose can find J : F → [0,∞) s.t.

lim
ε→0

µ(Bε(z2))

µ(Bε(z1))
= exp(J(z1)− J(z2)).

F dense subspace of X .

Fix z1 ∈ F . A z2 ∈ F minimizing J is a potential mode of µ.

J (generalized) Onsager-Machlup functional of µ.



Problem setup 1-Besov priors MAP and wMAP estimators Conclusion

Strategy: crucial first step

For µ measure, define µh(·) = µ(· − h).

For h such that µh � µ, denote

Rµ
h (u) =

dµh
dµ

(u).

Lemma (Helin and Burger ’15)

lim
ε→0

µ(Bε(u − h))

µ(Bε(u))
= Rµ

h (u),

for all h such that Rµ
h is continuous for u ∈ X .

Proof.

inf
v∈Bε(u)

Rµ
h (v) ≤ µh(Bε(u))

µ(Bε(u))
=

∫
Bε(u) R

µ
h (z)µ(dz)

µ(Bε(u))
≤ sup

v∈Bε(u)

Rµ
h (v),

for all ε > 0 and u ∈ X . Take ε→ 0 and use ctty.
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1-Besov priors, Onsager-Machlup Functional of µy

Proposition (A., Burger, Dashti and Helin ’17)

I (u; y) = Φ(u; y) + ‖u‖B s
1

is the Onsager-Machlup functional for µy , when µ0 = λ.

Use Kakutani-Hellinger theory to get Rλ
h

Check ctty of Rλ
h by brute force

Density of Besov spaces arguments and dµy ∝ e−Φdλ give OM functional
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Kakutani-Hellinger Theory

For µ, ν measures both absolutely continuous wrt ζ, define Hellinger integral

H(µ, ν) =

∫ √
dµ

dζ

dν

dζ
dζ, H(µ, ν) ∈ [0, 1].

If H(µ, ν) = 0 then µ, ν singular.

If H(µ, ν) > 0 then µ, ν not necessarily equivalent.
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Kakutani-Hellinger Theory

If µ = ⊗∞`=1µ`, ν = ⊗∞`=1ν`, then

H(µ, ν) =
∞∏

`=1

H(µ`, ν`).

Theorem (Kakutani)

Let µ, ν product measures, where µ`, ν` equivalent for all ` ∈ N. Then µ and ν
equivalent iff H(µ, ν) > 0, and if equivalent

dµ

dν
(u) = lim

N→∞

N∏

`=1

dµ`
dν`

(u`), in L1(R∞, µ).

G. Da Prato, An Introduction to Infinite-Dimensional Analysis, Springer, 2006.
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1-Besov Priors, Rλ
h

Lemma (A., Burger, Dashti and Helin ’17)

- We have λh ∼ λ if and only if h ∈ B
s−1

2
2 .

- For h ∈ B
s−1

2
2

Rλ
h (u) =

dλh
dλ

(u) = lim
N→∞

exp
N∑

`=1

(−α`|h` − u`| + α`|u`|).

- For h ∈ B r
1, r > s, the limit on rhs is continuous in u ∈ X = B t

1, t < s − 1.
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1-Besov Priors, Rλ
h

Proof.

- By Kakutani theorem suffices to compute H(λh, λ) and find necessary and
sufficient conditions on h ensuring its positivity.

- Kakutani theorem also gives that

dλh
dλ

(u) = lim
N→∞

N∏

`=1

dλh,`
dλ`

(u) = lim
N→∞

N∏

`=1

e−α`|h`−u`|

e−α`|u`|
.

- For ctty, technical explicit proof showing that |Rµ
h (u)− Rµ

h (v)| → 0 as
‖u − v‖B t

1
→ 0 by examining all combinations of signs.
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1-Besov priors, Small Ball Probabilities

Corollary (A., Burger, Dashti and Helin ’17)

lim
ε→0

λ(Bε(u − h))

λ(Bε(u))
= exp

∞∑

`=1

(−α`|h` − u`| + α`|u`|),

for h ∈ B r
1, r > s.

With a little bit more work, can show that

- OM functional of λ is ‖u‖B s
1

- OM functional of µy is Φ(u; y) + ‖u‖B s
1
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1-Besov priors, Characterization of MAP and wMAP

Theorem (A., Burger, Dashti and Helin ’17)

Both wMAP and MAP estimates of the posterior µy identified with minimizers of
I (u; y) = Φ(u; y) + ‖u‖B s

1
.

wMAP straightforward once we have OM functional, due to flexibility of
choosing E

MAP considerably harder, λ(B s
1) = 0
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1-Besov Priors, Consistency of MAP estimates

Consider frequentist setup
yj = G(u†) + ξj ,

for fixed underlying u† ∈ X and ξj
i .i .d .∼ N(0,Σ).

Sequence of posteriors

dµy1,...,yn

dλ
(u) ∝ exp

(
− 1

2

n∑

j=1

|Σ−1
2(yj − G(u))|2

)

Previous result shows that MAP (and wMAP) estimates coincide with
minimizers of

In(u) =
1

2

n∑

j=1

|Σ−1
2(yj − G(u))|2 + ‖u‖B s

1
.
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1-Besov Priors, Consistency of MAP estimates

Let {un} be a sequence of MAP estimates corresponding to µy1,...,yn.

We investigate whether as n→∞, {un} recovers u† in some sense.

Cannot expect to recover u† fully, unless e.g. G is injective.

Theorem (A., Burger, Dashti and Helin ’17)

Assume u† ∈ B s
1. Then there exists u? ∈ B s

1 and a subsequence of {un} such that
un → u? in B s̃

1 a.s., for any s̃ < s. For any such u? we have G(u?) = G(u†).
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Conclusion and Future Work

Wealth of new function-space priors, many interesting questions arise.

MAP in BIP context, complete picture for Gaussian and 1-Besov priors,
developing the picture for other (Cauchy work in progress with Dashti, Helin)

Other interesting questions:

- When do MAP and wMAP coincide?

- Local MAP and their theory

- Posterior contraction rates for the new priors (work in progress with Dashti
and Helin for Besov priors)
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http://www.sergiosagapiou.com/

S. Agapiou, M. Burger, M. Dashti and T. Helin, Sparsity-promoting and edge-preserving
maximum a posteriori estimators in non-parametric Bayesian inverse problems,
arXiv:1705.03286

M. Dashti, K. Law, A. Stuart and J. Voss, MAP estimators and their consistency in
Bayesian nonparametric inverse problems, Inverse Problems, 2013

T. Helin and M. Burger, Maximum a posteriori probability estimates in
infinite-dimensional Bayesian inverse problems, Inverse Problems, 2015

M. Dunlop and A. M. Stuart, MAP estimators for piecewise continuous inversion, Inverse
Problems, 2016.

M. Dashti and A. M. Stuart, The Bayesian approach to inverse problems, Handbook of
Uncertainty Quantification, 2015.
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