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Problem overview

Want to estimate expectations of functions f wrt an intractable measure µ,
Eµ[f ] := Eµ[f (·)].

e.g. µ is limit of:

approximations corresponding to time-discretizations of SDE’s

basis expansion (Karhunen-Loeve)

finite-time distributions of Markov chains (MCMC)
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Problem overview

Would like to use Monte Carlo estimator: for X (m) iid∼ µ let

RM :=
1

M

M∑
m=1

f (X (m)).

For all M
E[RM] = Eµ[f ] (RM unbiased)

and
RM

M−→ Eµ[f ], almost surely (Rm consistent)
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Problem overview

Intractability of µ forces the use of approximations µi introducing bias.

time-discretization bias in SDEs (GR13)

discretization bias for measures in function space (ARV14)

burn-in time for MCMC (GR13, ARV14)

burn-in time and discretization bias for MCMC in function space (ARV14)

Bias typically leads to sub-optimal convergence rates of MC estimator (ergodic average)
in infinite computational budget limit.

(even MLMCMC loses at least a log, see KST13)



Problem overview UQ example Unbiasing theory Removing specific sources of bias Performance/Optimization Conclusions

Outline

1 Problem overview

2 UQ example

3 Unbiasing theory

4 Removing specific sources of bias

5 Performance/Optimization

6 Conclusions



Problem overview UQ example Unbiasing theory Removing specific sources of bias Performance/Optimization Conclusions

Example - Contamination scenario

- u permeability field

- p pressure

- v Darcy velocity

- p = G (u)

∇.v = h, x ∈ D
p = 0,    x ∈ ∂D
  v = −u∇p, x ∈ D

dz = v(x)dt + 2εdW
z(0) = zinit

Quantity of interest: f (u) = E[ inf
t≥0
{|z(t)| > R}]
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Example - UQ in contamination scenario

Permeability field u unknown, have prior information u ∼ µ0.

Vanilla-UQ: probe µ0 ◦ f −1, e.g. estimate Eµ0
[f (u)].

Have noisy indirect measurements of pressure at J locations: data model in RJ

y = G(u) + η, η ∼ N(0, I).

Formulate Bayesian inverse problem (see DS13), µy posterior on u|y
dµy

dµ0
(u; y) ∝ exp

(
−1

2
‖y − G(u)‖2

)
.

BIP-UQ: probe µy ◦ f −1, e.g. estimate Eµy [f (u)].
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Example - UQ sources of bias

Vanilla-UQ:

- µ0 is∞-dim, needs to be approximated by µ0,i in Ri introducing discretization bias.

BIP-UQ:

- cannot sample µy directly, construct Markov chain targeting µy , use finite-time
distributions µy ,k burn-in time issues.

- to implement in computer construct Markov chain targeting approximation µyi in

Ri , use finite-time distributions µy ,ki introducing discretization bias and burn-in
time issues.
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Debiasing idea - John von Neumann, Stanislaw Ulam

We study unbiased estimation of Eµ[f ] using biased samples, Xi ∼ µi .

Assume Eµi [f ]
i→ Eµ[f ].

Define ∆i := f (Xi)− f (Xi−1).

If Fubini applies

Eµ[f ] =
∞∑
i=1

(Eµi [f ]− Eµi−1
[f ]) =

∞∑
i=1

E∆i
?
= E

∞∑
i=1

∆i .

∑∞
i=1 ∆i is unbiased but requires infinite computing time.
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Debiasing idea - John von Neumann, Stanislaw Ulam

Z :=
N∑
i=0

∆i

P(N ≥ i)
,

N integer-valued r.v. independent of ∆i , s.t. P(N ≥ i) > 0,∀i .

If Fubini applies

E[Z ] = E

[ ∞∑
i=0

1{N≥i}∆i

P(N ≥ i)

]
?
=
∞∑
i=0

E[1{N≥i}∆i ]

P(N ≥ i)
=
∞∑
i=0

E∆i = Eµ[f ].

Z unbiased and requires finite computing time (almost).
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Debiasing idea - John von Neumann, Stanislaw Ulam

To be practical, Z needs to have finite variance and finite expected computing time.

Z (m) independent copies of Z , ZM := 1
M

∑M
m=1 Z (m).

ZM(c) MC estimator with computational budget c .

GW92, as c →∞

√
c
(

ZM(c) − Eµ[f ]
)
⇒
√

E(τ ).Var(Z ) N(0, 1).

Optimal rate of convergence c−
1
2.

Optimize by minimizing E(τ ).Var(Z ) (refer to this as MSE-work product).
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Unbiasing theory of Glynn and Rhee

Proposition (GR13)

Assume ∑
i≤`

‖∆i‖2‖∆`‖2

P (N ≥ i)
<∞.

Then Z :=
∑N

i=0
∆i

P(N≥i) is an unbiased estimator for Eµ[f ] with finite variance.

Can use ∆̃i copies of ∆i s.t. {∆̃i} mutually independent.

ti expected cost of generating ∆i . Expected computing time of Z

E(τ ) = E
N∑
i=0

ti = E
∞∑
i=1

ti1{N≥i} =
∞∑
i=0

tiP(N ≥ i).

To be possible to choose P(N ≥ i) s.t. Z practical, suffices to generate ∆i ’s with
correct expectation s.t. ‖∆i‖2

2 decays sufficiently faster than ti blows-up.
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Removing discretization bias

X = L2[0, 1], {ϕ`} complete orthonormal basis.

µ Gaussian measure in X given via the Karhunen-Loeve expansion:

µ = L

( ∞∑
`=1

`−aξ`ϕ`

)
, ξ`

iid∼ N(0, 1), a >
1

2
.

To estimate Eµ[f ], need to truncate introducing discretization bias in MC estimators.
(Vanilla-UQ example)

Aim: unbiasedly estimate Eµ[f ] in finite time for f : X → R Lipshitz.
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Removing discretization bias

Approximations

µi = L

 ji∑
`=1

`−aξ`ϕ`

 , ji increasing.

∆i = f (ui)− f (ui−1), ui ∼ µi using same random seeds.

Bound

‖∆i‖2
2 = E(|f (ui)− f (ui−1)|2) ≤ ‖f ′‖2

∞E(‖ui − ui−1‖2) = O(j1−2a
i−1 − j1−2a

i ).

Cost of ∆i , ti = O(ji) (# N(0, 1) draws).
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Removing discretization bias

Theorem 1 (ARV14)

Assume a > 1. Then ∃ choices ji and P(N ≥ i), s.t. Z =
∑N

i=1
∆i

P(N≥i) is unbiased

estimator of Eµ[f ] with finite variance and finite expected computing time.

Proof.

- Consider ji = 2i . Use Proposition from GR13.

- ti = O(2i), ‖∆i‖2
2 = O(2i(1−2a)).

- For a > 1, ‖∆i‖2
2 decays sufficiently faster than ti blows-up.

- Can choose P(N ≥ i) s.t. E(τ ),Var(Z ) <∞.
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Removing burn-in time issues

X general state space, d distance in X .

Measure µ intractable, cannot be sampled directly but can construct Markov chain
X = (Xn)n∈N with transition kernel P and stationary distribution µ.

ai increasing positive integers.

To estimate Eµ[f ], use finite-time distributions µi = L(Xai) introducing burn-in issues.

Aim: unbiasedly estimate Eµ[f ] in finite time for f : X → R d -Lipschitz.
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Removing burn-in time issues

Finite-time distributions converge weakly. This is not enough for f (Xi) to come close
in L2, i.e. for convergence of ∆i .

GR13: use tricks which turn weak convergence to a.s. convergence/coalescence
(coupling from the past Propp & Wilson). Require uniform ergodicity.

ARV14: suffices to have simulatable coupling K between chains started at different
states which contracts wrt d .

Assumption

- K n(d 2(x , y)) ≤ crnd 2(x , y) for some r < 1;

- ∃x0 ∈ X s.t. supn Pnd(x0, ·) <∞.
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Removing burn-in time issues

To generate ∆i , use top level chain T i
· running for ai steps and bottom level chain Bi·

running for ai−1 steps, coupled as follows:

Coupled contraction for unbiased estimation

- set T i
−ai = x0 and run chain until T i

−ai−1
;

- set Bi−ai−1
= x0;

- evolve Bik and T i
k jointly according to K upto time 0;

- set ∆i = f (T i
0 )− f (Bi0).

x0 = Bi−ai−1
. . . Bi−a0

. . . Bi0
| | | | | }∆i = f (T i

0 )− f (Bi0)
x0 = T i

−ai . . . T i
−ai−1

. . . . . . T i
0
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Removing burn-in time issues

Estimate

‖∆i‖2
2 ≤‖f ′‖

2
∞Ed 2

(
T i

0 ,Bi0
)

≤c EE
(

d 2
(
T i

0 ,Bi0
)
|F−ai−1

)
≤c E

(
K ai−1d 2(T i

−ai−1
, x0)

)
≤c r ai−1Ed 2(T i

−ai−1
, x0)

≤c r ai−1.

Cost of ∆i , ti = O(ai) (number of steps).
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Removing burn-in time issues

Theorem 2 (ARV14)

∃ choices ai and P(N ≥ i), s.t. Z =
∑N

i=1
∆i

P(N≥i) is unbiased estimator of Eµ[f ] with

finite variance and finite expected computing time.

Proof.

- Use Proposition from GR13.

- ti = O(ai), ‖∆i‖2
2 = O(r ai).

- ‖∆i‖2
2 decays sufficiently faster than ti blows-up.

- Can choose P(N ≥ i) s.t. E(τ ),Var(Z ) <∞.
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Removing burn-in time issues - remarks

Genuine generalization of GR13.

Algebraic contraction rate of the coupling is sufficient for UE to work

K nd 2 ≤ Cn−2rd 2, r >
1

2
.

Many couplings available from e.g. stochastic control and coupling from the past.
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Removing both burn-in and discretization bias

Combining can perform UE of Eµ[f ] for µ both∞-dim and only accessible in the limit
of a Markov chain (BIP-UQ example).

X ∞-dim state space, d distance in X .

Approximation using finite-time distributions and discretizing space.

Aim: unbiasedly estimate Eµ[f ] in finite time for f : X → R d -Lipschitz.



Problem overview UQ example Unbiasing theory Removing specific sources of bias Performance/Optimization Conclusions

Removing both burn-in and discretization bias

ai , ji increasing sequences of integers.

Top chain T i
· more steps and higher discretization level than bottom chain Bi·

ji−1 : x0 = Bi−ai−1
. . . Bi−a0

. . . Bi0
| | | | | }∆i = f (T i

0 )− f (Bi0)
ji : x0 = T i

−ai . . . T i
−ai−1

. . . . . . T i
0
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Removing both burn-in and discretization bias - strategy

‖∆i‖2
2 ≤ ‖f ′‖2

∞Ed 2(T i
0 ,Bi0)

Need good couplings between chains started at different initial states and at
neighbouring discretization levels.

d bdd distance. Suppose MCMC has fixed-state space contracting coupling s.t.

Ed
(
T i
n (x1), T i

n (x2)
)
≤ rnd(x1, x2). (artificial)
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Removing both burn-in and discretization bias - strategy

I ik intermediate steps evolving Bik−1 according to top level kernel Pji .

Ed(T i
0 ,Bi0) ≤ Ed(T i

0 , I i0) + Ed(I i0,Bi0)

≤ rd(T i
−1,Bi−1) + Cji−1,ji

. . .

≤ r ai−1 + Cji−1,ji

1− r ai−1

1− r
.

Cji−1,ji = O(i−p)
i→ 0 provided acceptance behaviour of Pji−1

and Pji similar for large i .

Optimize by choosing ji = ji(ai) to balance terms.

Get convergence ‖∆i‖2
2 . r ai as i →∞, sufficient for unbiased estimation if e.g.

ti . ai j
θ
i .
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Removing both burn-in and discretization bias

In ARV14, show this works:

1. in non-linear Bayesian inverse problem setting with uniform priors, using independence
sampler under assumptions securing uniform ergodicity;

2. for targets µ which have Lipschitz log-density wrt Gaussian, using pCN algorithm
(MH with proposal Xk+1 = λXk +

√
1− λ2ξ).

Use fixed-state space, dimension independent coupling contraction results from
HSV11, DM14.
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Toy model - Gaussian autoregression

1d Gaussian autoregression

Xn+1 = ρXn +
√

1− ρ2 ξn+1,

ρ ∈ (0, 1), ξn i.i.d. N(0, 1).

Ergodic with invariant distribution µ = N(0, 1). Estimate Eµ[Id] = 0.

UE constructed by coupling chains started at different points using same randomness.

Coupling contracts geometrically with rate r = ρ for d(x , y) = |x − y |.
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Comparison of unbiased estimator (UE) vs ergodic average (EA)

Compare MSE-work product of MC estimator based on UE vs EA.

For EA

lim
n→∞

MSE-work =
1 + ρ

1− ρ
Tstep.

For UE

MSE-work =

( ∞∑
i=1

ρ2ai−1
(

1− ρ2(ai−ai−1)
)

P(N ≥ i)
+ 1− ρ2a0

) ∞∑
i=0

ai P(N ≥ i).

Can optimize performance of UE by minimizing wrt ai and P(N ≥ i). Hard!

In GR13 consider only ai = i , optimize over P(N ≥ i).
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Optimized P(N ≥ i), fixed ai = 4(i + 1)
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Optimized P(N ≥ i) and ai over subclass ai = m(i + 1)
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10-core parallel setting, ρ = 0.8
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Conclusions - further work

UE is often feasible.

Optimization wrt parameters is crucial especially in function space setting
(although performance not overly sensitive on knowledge of the coupling).

UE easily parallelizable: a) use independent copies of Z , b) ∆i ’s independent.

UE seems competitive. Looking forward to comparisons in problems of higher
complexity.
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