
Bayesian linear inverse problems Asymptotic performance in small noise limit SPC rates via regularization techniques Conclusions

Bayesian posterior contraction rates via
classical regularization techniques

Sergios Agapiou

Department of Statistics, University of Warwick

Applied Inverse Problems Conference
May 25-29, 2015, Helsinki



Bayesian linear inverse problems Asymptotic performance in small noise limit SPC rates via regularization techniques Conclusions

http://www.sergiosagapiou.com
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Bayesian linear inverse problems

y = Ku + δξ

u ∈ X unknown, y ∈ Y observation, X ,Y separable Hilbert.

K : X → Y linear bounded forward operator.

ξ ∼ N(0, I ) noise, δ > 0 known noise level.

Likelihood y |u ∼ N(Ku, δ2I ).

Prior u ∼ N(m0,
δ2

αC0), C0 trace-class, α > 0 scaling parameter.

Posterior u|y ∼ µy ,δα = N(uδα,C δ
α).
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Bayesian linear inverse problems

Formally

µy ,δα (du) ∝ exp

(
− 1

2δ2
‖y − Ku‖2 − α

2δ2
‖C−

1
2

0 (u −m0)‖2
)

du.

(α regularization parameter)

Completing the square

(C δ
α)−1 =

α

δ2
C−10 +

1

δ2
K ∗K

(C δ
α)−1uδα =

1

δ2
K ∗y +

α

δ2
C−10 m0

Let B = KC
1
2
0 compact

(C δ
α)−1 =

1

δ2
C
−1

2
0 (αI + B∗B) C

−1
2

0

uδα = C
1
2
0 (αI + B∗B)−1 B∗ (y − Km0) + m0.
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Frequentist asymptotic performance in small noise limit

Consider sequence of data generated from fixed underlying truth u†, where δ → 0

y δ = Ku† + δξ.

Posterior µy
δ,δ
α := µy=y δ,δ

α .

As δ → 0, can we choose α = α(δ)→ 0 s.t. ”µy=y δ,δ
α → δu†”?

First studies of convergence of posterior in BIP, in Ky-Fan metric (finite-dim).
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Squared Posterior Contraction

Let Pδ = N(Ku†, δ2I ) distribution generating y δ. Define

SPC :=EPδ Eµy
δ,δ
α ‖u† − u‖2

=EPδ
(
‖u† − uδα‖2 + Tr (C δ

α)
)

= ‖u† − EPδuδα‖2︸ ︷︷ ︸
squared bias

+ EPδ‖uδα − EPδuδα‖2︸ ︷︷ ︸
est. variance

+ Tr (C δ
α).︸ ︷︷ ︸

pos. spread

:= b2
u†(α) + V δ

α + Tr (C δ
α).



Bayesian linear inverse problems Asymptotic performance in small noise limit SPC rates via regularization techniques Conclusions

Minimax framework

Assume u† ∈ X γ, γ regularity parameter.

Minimax rate: benchmark rate for given forward operator K and smoothness of truth X γ.

Minimax rates for standard forward operators and smoothness classes available in
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Optimality: can we choose α = α(δ; γ)→ 0 such that SPC→ 0 at minimax rate?

First study of SPC rates
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Example - diagonal setting

X = L2(0, 1), let A = −∆, for ∆ the Dirichlet-Laplacian.

Moderately ill-posed forward operator

K ∗K = A−`, ` > 0.

Severely ill-posed forward operator

K ∗K = exp(−A
b
2), b > 0.

Sobolev-type smoothness

X γ = Sγ := {u : u = A−
γ
2w , ‖w‖ ≤ 1}.

Analytic-type smoothness

X γ = Aγ := {u : u = exp(−γA
1
2)w , ‖w‖ ≤ 1}.

Prior covariance with C0 = A−1
2−p, p > 0.

C0,K ∗K commute.
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Moderately ill-posed operators under Sobolev-type truth regularity

K ∗K = A−`, u† ∈ Sγ, C0 = A−1
2−p, m0 = 0.

KVZ11 studied diagonal setting, ALS13 extended to non-diagonal setting.

Fix p, ` > 0. Then for optimal choice α = α(δ; γ)

SPC � δc(γ;a,`).

Saturation when truth too smooth.

γ
0

ex
po

ne
nt

 o
f c

on
ve

rg
en

ce
 ra

te

0

2

Gaussian prior
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Severely ill-posed operators under Sobolev-type truth regularity

K ∗K = exp(−Ab
2), u† ∈ Sγ, C0 = A−1

2−p, m0 = 0.

Studied in ASZ14 and
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Fix p, b > 0. Then for optimal choice α = α(δ; γ)

SPC � log−c(γ;b)(1/δ).

No saturation phenomenon.
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Contribution

Focus on commuting/diagonal setting.

Previous studies rely on explicit calculations.

We use abstract regularization theory techniques from
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Formulate abstract theory. Existing and new (diagonal) results obtained as special cases.

Propose data dependent choice of prior mean m0 resulting in delaying/removing saturation.
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Estimation variance and posterior spread

SPC = b2
u†(α) + V δ

α + Tr (C δ
α).

As shown in

Problem overview UQ example Unbiasing theory Removing specific sources of bias Performance/Optimization Conclusions

http://www.sergiosagapiou.com/

S. Agapiou, G. O. Roberts and S. J. Vollmer, Unbiased Monte Carlo: posterior estimation
for intractable/infinite dimensional models, http://arxiv.org/abs/1411.7713

C. H. Rhee, Unbiased estimation with biased samples, PhD thesis, Stanford University,
2013 (supervisor P. W. Glynn).
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V δ
α ≤ c Tr (C δ

α),

c > 0 independent of δ, α.

Suffices to estimate the posterior spread (straightforward) and the bias.

We focus on the bias, the source of saturation (since only term depending on u†).
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Regularization theory - regularization filters

Loosely speaking gα : (0,∞)→ R, α > 0, is a regularization filter if

- gα(t) bounded ∀α > 0;

- gα(t)→ 1
t as α→ 0.

Associated residual function rα(t) = 1− tgα(t).

Tikhonov filter

gα(t) =
1

α + t
, rα(t) =

α

α + t
.

Spectral cut-off

gα(t) =

{
1
t , t ≥ α
0, t < α

, rα(t) =

{
0, t ≥ α
1, t < α.
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Regularization theory - index functions and source sets

ϕ : R+ → R+ index function if continuous, nondecreasing, ϕ(0) = 0.

eg ϕ(t) = ts , s > 0 index function.

For ϕ, ψ index functions, we write ϕ ≺ ψ if ψ decays to zero faster than ϕ.

eg ϕ(t) = ts , ψ(t) = t r , ϕ ≺ ψ if s < r .

Source set: assume u† ∈ Aϕγ = {u : u = ϕγ(B∗B)w , ‖w‖ ≤ 1}, for index function ϕγ.
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Regularization theory - qualification

Index function ϕ is qualification for regularization gα if

rα(t)ϕ(t) ≤ cϕ(α), ∀α, t.

If ϕ qualification for gα and ψ ≺ ϕ, then ψ qualification for gα.

Quantifies ability of regularization to take smoothness into account.

Bias of classically regularized inversion of B

‖rα(B∗B)u†‖ = ‖rα(B∗B)ϕγ(B∗B)w‖ ≤ ‖rα(B∗B)ϕγ(B∗B)‖ ≤ cϕγ(α),

provided ϕγ ≺ ϕ.

Want qualification to decay to zero as quickly as possible.
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Regularization theory - qualification

eg Tikhonov

rα(t)t =
α

t + α
t ≤ α

hence ϕ(t) = t (maximal) qualification.

eg Spectral cut-off

rα(t)ϕ(t) =

{
0 · ϕ(t) ≤ ϕ(α), t ≥ α
1 · ϕ(t) ≤ ϕ(α), t < α

,

has arbitrary qualification.
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Main result about bias

Investigate effect on bias of choosing

m0 = mδ
α = C

1
2
0 gα(B∗B)B∗y δ.

Proposition (A., Mathé 2014)

Assume u† ∈ Aϕγ = {u : u = ϕγ(B∗B)w , ‖w‖ ≤ 1}.

i) Low smoothness ϕγ(t) ≺ t: independently of m0

bu†(α) ≤ cϕγ(α).

ii) High smoothness t ≺ ϕγ(t), no preconditioning m0 = 0:

bu†(α) � α.

iii) High smoothness t ≺ ϕγ(t), with preconditioning m0 = mδ
α: if

ϕγ(t)
t qualification for gα

bu†(α) ≤ cϕγ(α).
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Sketch of proof - fixed mean

Assume m0 = 0.

bu†(α) = ‖u† − EPδuδα‖ = α‖(αI + B∗B)−1u†‖.

Norm term on rhs, at best O(1) as α→ 0. Happens if u† ∈ D((B∗B)−1), i.e. ϕγ(t) = t.

For low smoothness u† ∈ Aϕγ with ϕγ(t) ≺ t

bu†(α) = ‖α(αI + B∗B)−1ϕγ(B∗B)w‖

≤ ‖α(αI + B∗B)−1ϕγ(B∗B)‖

≤ ϕγ(α),

since α
α+t residual of Tikhonov which has maximal qualification t.
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Sketch of proof - preconditioned mean

For m0 = mδ
α = C

1
2
0 gα(B∗B)B∗y δ,

bu†(α) = ‖u† − EPδuδα‖ = ‖α(αI + B∗B)−1rα(B∗B)u†‖

eg if gα Tikhonov filter

bu†(α) = α2‖(αI + B∗B)−2u†‖.

Norm term on rhs, at best O(1) as α→ 0. Happens if u† ∈ D((B∗B)−2), i.e. ϕγ(t) = t2.

For general gα with ϕγ(t)/t qualification,

bu†(α) = ‖α(αI + B∗B)−1(B∗B)(B∗B)−1rα(B∗B)ϕγ(B∗B)w‖

≤ ‖α(αI + B∗B)−1B∗B‖‖rα(B∗B)ϕγ(B∗B)(B∗B)−1‖

≤ α
ϕγ(α)

α
= ϕγ(α).
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Moderately ill-posed operators under Sobolev-type regularity

K ∗K = A−`, u† ∈ Sγ, C0 = A−1
2−p, m0 = 0.

Applying proposition and combining with existing estimates for posterior spread
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Once Tikhonov
Twice Tikhonov
Spectral cut-off
Minimax

Delayed/removed saturation!
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Conclusions

Proposition easily applied for eg severely ill-posed operators, analytic-type truth regularity.

Summary and benefits of preconditioning method in general setting:

- the user chooses a (centered) Gaussian prior of arbitrary smoothness;

- after observing data y , a prior center m0 = mδ
α, is chosen by some deterministic regularization;

- if preprocessing regularization has enough qualification, posterior contracts ’optimally’ regardless of solution
smoothness. If not, contraction rate at least as good as rate for centered prior;

- preprocessing step has no effect on optimal regularization parameter choice; any choice α = α(δ; y) which
yields ’optimal’ contraction without preprocessing retains this property, and eventually extends optimality to
higher solution smoothness.
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Conclusions

Proposition easily applied for eg severely ill-posed operators, analytic-type truth regularity.

Summary and benefits of preconditioning method in general setting:

- the user chooses a (centered) Gaussian prior of arbitrary smoothness;

- after observing data y , a prior center m0 = mδ
α, is chosen by some deterministic regularization;

- if preprocessing regularization has enough qualification, posterior contracts ’optimally’ regardless of solution
smoothness. If not, contraction rate at least as good as rate for centered prior;

- preprocessing step has no effect on optimal regularization parameter choice; any choice α = α(δ; y) which
yields ’optimal’ contraction without preprocessing retains this property, and eventually extends optimality to
higher solution smoothness.

Thank you for your attention!
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