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a b s t r a c t

We extend our recent work on the creeping flow of a Bingham fluid in a lid-driven cavity, to the study of
inertial effects, using a finite volume method and the Papanastasiou regularisation of the Bingham con-
stitutive model (Papanastasiou, 1987) [7]. The finite volume method used belongs to a very popular class
of methods for solving Newtonian flow problems, which use the SIMPLE algorithm to solve the discre-
tised set of equations, and have matured over the years. By regularising the Bingham constitutive equa-
tion it is easy to extend such a solver to Bingham flows since all that this requires is to modify the
viscosity function. This is a tempting approach, since it requires minimum programming effort and makes
available all the existing features of the mature finite volume solver. On the other hand, regularisation
introduces a parameter which controls the error in addition to the grid spacing, and makes it difficult
to locate the yield surfaces. Furthermore, the equations become stiffer and more difficult to solve, while
the discontinuity at the yield surfaces causes large truncation errors. The present work attempts to inves-
tigate the strengths and weaknesses of such a method by applying it to the lid-driven cavity problem for a
range of Bingham and Reynolds numbers (up to 100 and 5000 respectively). By employing techniques
such as multigrid, local grid refinement, and an extrapolation procedure to reduce the effect of the reg-
ularisation parameter on the calculation of the yield surfaces (Liu et al., 2002) [55], satisfactory results are
obtained, although the weaknesses of the method become more noticeable as the Bingham number is
increased.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

Finite volume methods (see [1] for a detailed description)
are popular for the solution of fluid flow problems. They divide
the computational domain into a number of small volumes, and
integrate the governing differential equations over each volume.
The resulting integrals, which consist of the fluxes and source
terms of the relevant physical quantities on each volume, are
approximated by algebraic expressions involving the values of
the dependent variables at selected points of the domain, such as
the volume centres. This results in a system of non-linear algebraic
equations, the solution of which gives approximate values of the
dependent variables at the selected points. In the literature one
can find that many different algebraic solvers have been used to
solve this system, but the most popular appear to be SIMPLE [2]
and its variants. These are iterative methods which consecutively
solve a series of linear systems in each iteration: one linear system
for each momentum equation, and a linear system for pressure
which tries to enforce satisfaction of the continuity equation by
relating velocity corrections to pressure corrections. Although SIM-
PLE is an old algorithm, it is still very popular and it has been used
successfully in numerous studies to solve complex flow phenom-
ena, [3] being a recent example involving non-Newtonian flow.
SIMPLE is a slowly converging algorithm, but its performance can
be greatly enhanced by using it in a multigrid context [4,5]. The
popularity of SIMPLE and its variants is due in part to the fact that
they allow easy extension of the solver to account for additional
physical phenomena: for each additional differential equation to
be solved, the solution of a corresponding linear system is added
to each SIMPLE iteration. Over the years, codes which implement
this method have been developed and expanded to include many
features, such as meshing capabilities, discretisation schemes,
boundary condition choices, graphical user interfaces, turbulence
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models, and choices of models for different physical phenomena
(heat transfer, combustion, chemical reactions, phase change, flow
with a free surface, etc.). In the present work we investigate the
ability of such a solver to solve viscoplastic flows. This would be
desirable, as it would greatly reduce the programming effort and
it would allow one to also use other features of the solver, contrary
to developing a specialised solver from scratch.

Viscoplastic materials behave as solids at low stress levels, but
flow when the stress exceeds a critical value, the yield stress, sy.
Suspensions of particles or macromolecules, such as pastes, gels,
foams, drilling fluids, food products, and nanocomposites, are
typical viscoplastic fluids. The simplest model for a viscoplastic
material is the Bingham model, which exhibits a linear stress to
rate-of-strain relationship during flow. The constant of proportion-
ality of this linear relationship is called the plastic viscosity, l. Thus,
the Bingham constitutive equation is written as follows:

_c ¼ 0; s 6 sy

s ¼ sy
_c þ l

� �
_c; s > sy

(
ð1Þ

where s is the stress tensor and _c is the rate-of-strain tensor,
_c � ruþ ðruÞT;u being the velocity vector. The magnitudes of
these two tensors are s � ð12 s : sÞ1=2 and _c � ð12 _c : _cÞ1=2.

Thus the Bingham constitutive equation has two branches, with
different physical laws applying to yielded and unyielded areas.
The solution of Bingham flows is difficult because the location of
the interface between the yielded and unyielded regions is a priori
unknown. The most popular approaches to tackle this problem fall
into two categories. One category includes methods which approx-
imate Eq. (1) by a regularised constitutive equation, which treats
the whole material as a fluid of variable viscosity and is applicable
throughout. The unyielded regions are approximated by locally
assigning a very high value to the viscosity. This category includes
methods such as that proposed by Bercovier and Engelman [6], and
that by Papanastasiou [7]. A related method (although not strictly a
regularisation method since it does not remove the discontinuity)
is the bi-viscosity method of O’Donovan and Tanner [8], which
treats the unyielded material as a separate, very viscous fluid. Reg-
ularisation methods make use of a parameter which, depending on
the method should be given a very large or a very small value, in
order for the results to be a good approximation to the actual Bing-
ham flow solution. It can be shown (e.g. [9,10]) that in the limit
when this parameter approaches asymptotically to infinity or zero,
the velocity field obtained with the regularisation method con-
verges to that of the actual Bingham flow. However, in practice,
the range of usable values for the regularisation parameter is lim-
ited by the fact that using extreme values causes numerical prob-
lems. A disadvantage of the regularisation approach is that since
the whole material is a fluid, yield surfaces are not clearly defined.
Usually the yield surfaces are approximated by the surfaces where
the magnitude of the stress equals the yield stress. On the other
hand, to implement such a method in an existing solver one only
has to define appropriately the function which calculates the vis-
cosity. This makes regularisation methods very suitable for the
use examined in this work, that is for enabling existing solvers to
tackle viscoplastic flows. In fact many commercial solvers have
built-in or allow user-defined viscosity functions, and there exist
a number of published works where commercial finite volume
(e.g. in [11–14]) or finite element packages (e.g. in [14–17]) were
used in this way, applying either a regularisation method or the
bi-viscosity method to solve viscoplastic flows.

The other category includes methods which start by deriving a
variational inequality whose solution is equivalent to the solution
of the original problem (variational inequality formulation of the
problem). Their solution relies on the use of multiplier functions
(projection methods and augmented Lagrangian methods) [10,
18–20]. These methods avoid the use of regularisation and thus
solve the actual problem directly. They are mathematically more
involved and the concepts may be difficult to follow for
people who do not have the relevant mathematical background.
Unfortunately, contrary to regularisation methods, it is not straight-
forward to incorporate them into existing general purpose solvers,
and thus are not suitable for the present investigation. They are
implemented usually in combination with a finite element
discretisation scheme, but a finite volume scheme can also be used
[21]. The availability of these techniques has led some researchers
to support that regularisation methods should be avoided. However,
apart from the aforementioned practical advantages of regularisa-
tion methods, one should also keep in mind that the Bingham and
other viscoplastic models only approximate the behaviour of real
materials. There is some ambiguity concerning the manifestation
of yield stress by actual materials (see [22] or [23] for discussions
and further references) and some researchers have suggested
that regularised constitutive equations may in fact be better
representations of the physical reality [24]. In any case, there is a
large literature with successful application of regularisation
methods to a wide range of problems – see [20] for some references.
The results produced by regularisation methods should be
interpreted with some caution though as pointed out in [9], because
it is not easy to know when the regularisation parameter is large
enough. A direct comparison between Papanastasiou regularisation
and the augmented Lagrangian method is made in a recent publica-
tion [25].

The present work aims to explore the potential and the limita-
tions of a finite volume method that uses the SIMPLE algebraic sol-
ver, together with a regularised constitutive equation, for solving
viscoplastic flows. This was partly explored also in our previous
publication [26], but the present work differs in the following:
(a) non-zero Reynolds number flows are also treated; (b) the detri-
mental effect of the discontinuity exhibited at the yield surfaces on
the accuracy of the finite volume solution is studied in more depth,
by calculating the truncation error generated, and local grid refine-
ment is proposed as a treatment; and (c) more attention is given to
the accurate determination of the yield surfaces, and ways to
increase this accuracy are investigated.

Adaptive mesh refinement for viscoplastic flows was applied
successfully in a Finite Element context already by Roquet and
Saramito [27] and Zhang [28], with an augmented Lagrangian
method in both cases, with the aim of improving the accuracy of
the calculated yield surfaces. The present work employs a Finite
Volume variant of adaptive mesh refinement, proposed in
[29,30]. The focus is not restricted to the yield surfaces, but the
advantages of local grid refinement are assessed with respect to
the overall flow field accuracy as well.

We employ the Papanastasiou [7] regularisation of Eq. (1). It
introduces an exponential term to replace the discontinuous con-
stitutive Eq. (1) by a single equation, applicable throughout the
material:
s ¼ sy

_c
f1� expð�m _cÞg þ l

� �
_c ð2Þ
where m is a stress growth parameter, which is required to be ‘‘suf-
ficiently’’ large so that the ideal Bingham behaviour is approxi-
mated with satisfactory accuracy.

The method is tested on the square lid-driven cavity problem,
which is probably the most popular problem for testing numerical
methods in computational fluid dynamics. Consider a square cavity
of side L, filled with a fluid which is set to motion by the lid of the
cavity which moves with a tangential velocity U. In the case of
Bingham flow, the flow field is characterised by two dimensionless



90 A. Syrakos et al. / Journal of Non-Newtonian Fluid Mechanics 208–209 (2014) 88–107
numbers: the Reynolds number, which is defined in terms of the
plastic viscosity l,

Re � qUL
l

ð3Þ

and the Bingham number Bn, defined as

Bn � syL
lU

ð4Þ

The two-dimensional Newtonian lid-driven cavity problem has
been studied numerically in great detail – see e.g. the review papers
[31,32]. Accurate numerical results can be found in the literature for
Reynolds numbers up to 10,000 [30,33,34]. The few available
experimental studies [35–37] have shown that, even at moderate
Reynolds numbers, the flow field is in fact three-dimensional.
Three-dimensional computational studies have confirmed this and
provided a value of Re � 785 as a critical value beyond which 3-
dimensional features appear [38,39]. Nevertheless, the two-dimen-
sional lid-driven cavity problem, although unrealistic beyond a
critical Reynolds number, is very attractive for testing numerical
methods, as it is easy to set up due to the simple geometry and
boundary conditions, and the flow field is complex enough to pro-
vide a good test for the numerical method.

Flow of viscoplastic fluids in a lid-driven cavity has also been
studied numerically, although in the majority of cases the problem
was only used as a validation test case and limited results were
obtained. Most studies only considered creeping flow or flow at
very low Reynolds numbers, such as the works of Bercovier and
Engelman [6] and of Mitsoulis and Zisis [40], who used regularisa-
tion methods, and the works of Sanchez [41], Yu and Wachs [42],
Muravleva and Olshanskii [43], Zhang [28] and Glowinski and
Wachs [20], who used the augmented Lagrangian method. The
results of all these studies agree qualitatively, in that two unyiel-
ded zones appear in general: one at the bottom of the cavity which
is motionless, and one near the vortex centre which moves with
solid body rotation. However, it is rather surprising that there is
not an agreement on the precise shape of these zones, even among
the augmented Lagrangian studies. A possible explanation is that,
as noted by Glowinski and Wachs [20], the solution of the
augmented Lagrangian method only becomes equivalent to the ori-
ginal Bingham problem when iterations have fully converged, but
in any numerical procedure convergence is assumed when a cer-
tain non-zero tolerance has been reached. So, the accuracy depends
on the choice of this tolerance, in a similar fashion that the accu-
racy of regularisation methods depends on the choice of regularisa-
tion parameter. To this one has to add the errors generated by the
discretisation procedure. Our previous results [26] are closer to
those of Mitsoulis and Zisis [40], and Glowinski and Wachs [20].

There are also some studies containing results for moderate or
high Reynolds numbers. We note the works of Neophytou [44],
Elias et al. [45], Frey et al. [46], Prashant and Derksen [47] and
dos Santos et al. [48] who used regularisation methods or the
bi-viscosity method, and the work of Vola et al. [49] who used an
augmented Lagrangian method. It is noteworthy that whereas in
the creeping flow case the multipliers methods are dominant, in
the inertia case the situation is reversed.

Concerning the discretisation methods, it appears that the finite
element method is the usual choice. The finite volume method has
been used in only two of the aforementioned studies, those of
Neophytou [44] and Glowinski and Wachs [20]. The method of
Neophytou [44] is a finite volume method which employs the SIM-
PLE algebraic solver and uses the Papanastasiou regularisation, and
thus is of the category of methods examined here. It does not use
more advanced techniques such as multigrid and local grid
refinement, and unfortunately the results are limited to very low
Bingham numbers, Bn 6 1. The finite volume method of Glowinski
and Wachs [20] on the other hand is adapted to the needs of the
augmented Lagrangian method, and deals only with creeping flow.

The aim of the present work is to investigate the capabilities
and limitations of the popular finite volume/SIMPLE method cou-
pled with the Papanastasiou regularisation, by applying it to the
simulation of Bingham flow in a lid driven cavity. Where limita-
tions are detected, an effort is made to overcome them using tech-
niques that are relatively easy to apply in the framework of such a
method. We provide results for a wide range of Bingham and
Reynolds numbers, up to 100 and 5000 respectively, and study sys-
tematically the effects of these dimensionless numbers on the flow.
The rest of the paper is organised as follows: The associated gov-
erning equations are presented in Section 2. The numerical method
for solving these equations is briefly described in Section 3, while
the results of the numerical experiments are given and discussed
in Section 4. Finally, Section 5 summarises the conclusions of this
research.

2. Governing equations

The flow is assumed to be steady-state, two-dimensional,
incompressible, and isothermal. By scaling the fluid velocity by
the lid velocity U, and the pressure and stress by lU=L, the conti-
nuity and momentum equations can be written in the following
dimensionless forms:

r � u ¼ 0 ð5Þ
Re u � ru ¼ �rpþr � s ð6Þ

where u denotes here the dimensionless velocity of the fluid, p is
the dimensionless pressure, and s is the dimensionless stress tensor
(for the sake of simplicity, we kept the same symbols for the dedi-
mensionalised variables). The dimensionless form of the Papanasta-
siou constitutive equation becomes

s ¼ Bn
_c
f1� expð�M _cÞg þ 1

� �
_c ð7Þ

where M is the dimensionless stress growth parameter, defined as:

M � mU
L

ð8Þ

and _c is now the dimensionless rate of strain tensor. The Papanas-
tasiou regularisation (7) corresponds to a dimensionless apparent
viscosity of

g ¼ Bn
_c
f1� expð�M _cÞg þ 1 ð9Þ

The higher the value of M, the better Eq. (7) approximates the actual
Bingham constitutive equation, s ¼ ½Bn= _cþ 1� _c, in the yielded
regions of the flow field (s > Bn), and the higher the apparent vis-
cosity is in the unyielded regions, making them behave approxi-
mately as solid bodies. For practical reasons though, M must not
be so high as to cause convergence problems to the numerical
methods used to solve the above equations.

Eqs. (5)–(7) together with the no-slip wall boundary conditions
fully determine the flow problem which is solved numerically. In
the present study, the direction of motion of the lid is towards
the right.

3. Numerical method

3.1. Solution without local grid refinement

Most of the results presented in the following section were
computed on Cartesian grids without local grid refinement,
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consisting of 512� 512 square control volumes. Coarser grids are
constructed by removing every second grid line from the immedi-
ately finer grid. The finite volume method used to solve the govern-
ing equations on these grids is described in detail in Syrakos et al.
[26]. According to the finite volume methodology, the continuity
and momentum equations are integrated over each control volume
and the integrals are approximated by algebraic expressions
involving the values of the flow variables at discrete points. In
the present work, all variables (velocity components, pressure,
and viscosity) are stored at control volume centres. Both the con-
vective and viscous fluxes are discretised using 2nd-order accurate
central differences. The mass fluxes are discretised using momen-
tum interpolation as described in [50], to suppress spurious pres-
sure oscillations between control volume centres.

The resulting algebraic system is solved using the SIMPLE algo-
rithm, with the only modification being that at the start of every
SIMPLE iteration the viscosity is updated according to Eq. (9), using
the current estimate of the velocity field. To accelerate conver-
gence, SIMPLE is used in a geometric multigrid framework. Due
to the high degree of non-linearity of the problem, the standard
multigrid algorithm fails to converge except at small Bingham
numbers, Bn < 0:5, as the results in [26] show. To overcome this
problem, the modification suggested by Ferziger and Peric [1] has
been applied; on coarse grids the viscosity is not updated accord-
ing to Eq. (9), but it is interpolated (restricted) from the immedi-
ately finer grid and held constant within the multigrid cycle.
Therefore the viscosity is updated only on the finest grid, which
means that the procedure is not purely multigrid, but it has sin-
gle-grid features. This technique was observed to slow down the
multigrid convergence, but it makes the algorithm more robust
and capable of achieving convergence up to high Bingham num-
bers (depending also on the value of M). Other measures that were
found necessary in order to achieve convergence are the following:
a large number of pre- and post-smoothing steps should be used
(four or more, depending on the value of Bn); a number of addi-
tional SIMPLE iterations (e.g. 5–20) may have to be performed on
the finest grid between multigrid cycles; very small values of the
underrelaxation factor for pressure, denoted here by ap, should
be used in the SIMPLE smoother (e.g. 0.01), and in the case of high
Reynolds numbers (Re P 2000) also relatively small values of the
underrelaxation factor for velocity, au, (e.g. 0.3–0.4) should be
used; and the coarse grid corrections may have to be underrelaxed
by a constant aMG < 1 prior to prolongation to the fine grid (usually
aMG � 0:9 suffices). We use W cycles, denoted by W(m1; m2)-m3,
where m1 SIMPLE iterations are performed prior to restriction, m2

SIMPLE iterations are performed after prolongation, and m3 extra
SIMPLE iterations are applied only on the finest grid at the end of
each cycle. More details can be found in [26]. For more information
on multigrid in general, the reader is referred to [51] or [52].

As noted in [26], the SIMPLE/multigrid procedure becomes less
efficient as either Bn or M increase, although the multigrid effi-
ciency is always much higher than that of SIMPLE as a single grid
solver. It has been observed that it is useful, or sometimes neces-
sary, to use a good initial guess. This could be, for example, a solu-
tion on a coarser grid, or a solution obtained with a smaller value of
M, both of which are more easily computable. In the present work
we used mostly the former choice, but the latter choice was also
useful in some ‘‘difficult’’ cases, and also led to the following idea:
Instead of using a fully-converged lower M solution as the initial
guess, start with a very low value of M, say M ¼ 1, and progres-
sively increase the value of M every nM , say, multigrid cycles, nM

being a small constant of the order 1–4, until M obtains its maxi-
mum value, beyond which point its value is held fixed until the
multigrid cycles converge. This technique can increase the effi-
ciency in some cases, as will be shown in the results section.
3.2. Calculation of the truncation error

The truncation error is the natural measure of the discrepancy
between the integrals of the differential equations to be solved
and their finite volume approximations. It consists of all the terms
of the Taylor series expansions that were truncated in order to
obtain the discrete finite volume approximations of the differential
equations, and which have the form of products of powers of the
grid spacing times higher order derivatives of the flow variables.
Grid refinement reduces the truncation error, and therefore an effi-
cient grid refinement strategy is to refine the grid locally where the
truncation error is large, instead of applying uniform grid refine-
ment throughout the domain. The truncation error is unknown,
but can be approximated using various techniques. In the present
study the method described in [30,50] is utilised, which originates
from multigrid theory [51].

Suppose P is a finite volume of a grid with characteristic spacing
h;/ is the unknown function (there could be more than one, for
example in our case we have the two velocity components and
pressure), and NPð/Þ ¼ 0 is the equation obtained by integrating
the differential equation over P and dividing by its volume, while
Nh;P is the finite volume discrete approximation to NP . The trunca-
tion error, fP , is defined by

fP ¼ NPð/Þ � Nh;Pð/hÞ ð10Þ

where /h is the vector of the values of / at the centres of the finite
volumes of grid h. The equation to be solved, NPð/Þ ¼ 0, is equiva-
lent to Nh;Pð/hÞ þ fP ¼ 0 but since fP is unknown the finite volume
procedure solves Nh;Pð~/hÞ ¼ 0 instead, assuming that fP is small
enough to be neglected. The set of all such equations for all finite
volumes forms an algebraic system which is solved using SIMPLE/
multigrid in the present work. The solution ~/h thus obtained differs
from the exact solution by the discretisation error �h ¼ /h � ~/h.

If the exact solution / were known, then the truncation error
could be calculated from (10). The exact solution is not known,
but by using a solution on a finer grid, which is more accurate than
~/h, an estimate of the truncation error can be obtained. This rea-
soning results in the following formula for estimating the trunca-
tion error, as is shown, for example, in [30] or [53]:

fh � �
1

2p � 1
Ih

2h N2hðI2h
h

~/hÞ ð11Þ

where now fh is the vector of truncation errors in all finite volumes
of grid h;N2h is the algebraic operator obtained with the same finite
volume discretisation on a grid 2h which is twice as coarse as grid h,
and Ib

a are interpolation operators which transfer a grid function
from grid a to grid b. Also, p is the order of the finite volume approx-
imation, that is, it is the smallest power of the grid spacing that
appears among the terms that comprise the truncation error. This
term reduces more slowly than the rest with grid refinement, and
so at some point it becomes the dominant term of the truncation
error; therefore fh ¼ OðhpÞ. The present finite volume method is sec-
ond-order accurate, so p ¼ 2. In [50] it is demonstrated that, in the
case of Newtonian flows, the present finite volume method works
well with the estimate (11), which converges to the exact trunca-
tion error with grid refinement, provided that the restriction oper-
ator I2h

h is at least third-order accurate if p ¼ 2. If the truncation
error estimate is used only as a local grid refinement criterion
though, then its estimate need not be very accurate.

As the grid is refined, the truncation error converges to zero at a
rate which is proportional to hp, once the leading term has become
much larger than the rest. However, the magnitude of the terms of
the truncation error depends not only on the powers of h, but also
on the higher-order derivatives of /. If the high-order derivatives
are large, a very fine grid may be required for the leading term to



Fig. 2. On multilevel grids, volumes which lie at level interfaces may have more
than four neighbours.
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become dominant and the truncation error to exhibit its asymp-
totic rate of convergence. In Bingham flows, these derivatives are
discontinuous across the yield surfaces, since they are zero inside
the unyielded zones and non-zero outside. If a regularised consti-
tutive equation is used, then the derivatives are continuous, but
they attain huge values near the yield surfaces, especially as the
Bingham number and the parameter M are increased. Therefore
it is expected that the truncation error will be large there. In such
cases, the truncation error can be reduced more efficiently by refin-
ing the grid locally at the high truncation error regions to counter-
balance the high values of the derivatives, rather than using
uniform grids. In [30] it was shown that local grid refinement is
very efficient in high-Reynolds number flows, which exhibit shear
layers with large flow derivatives of high order. In the present
Bingham flow case, the flow discontinuities are expected to make
the gains from local refinement even more significant.
3.3. Solution with local grid refinement

The local grid refinement scheme adopted here is that described
in [29,30]. After solving the problem on a given grid, those volumes
which fulfil some criterion are marked for refinement. Refinement
is performed by subdividing a volume (the parent) into four smaller
volumes (the children) by joining the centre of the parent with the
midpoints of its four faces. The volumes are organised into levels,
corresponding to the number of refinements performed to produce
that particular volume. Therefore, if a parent volume is of level k
then its four children are of level kþ 1. Fig. 1 shows an example
of the organisation of a locally refined grid into levels. When a vol-
ume is subdivided, its children are created and added to the data
structure, but the parent is also retained in the data structure
and not destroyed. Volumes that have children are characterised
as local; they have no effect on the final solution of the problem,
but they are used by the multigrid, or more correctly multilevel,
procedure to accelerate algebraic convergence. Volumes that do
not have children are characterised as global and comprise the
actual grid where the problem is solved.

The composite grid consists of all global volumes of all levels,
and it is the grid onto which the differential equations are actually
discretised (shown on the left in Fig. 1). Each volume is regarded as
separated from its neighbouring volumes by its faces, and the
momentum and mass fluxes through each face are discretised
using central differences. Most volumes have four faces, but some
volumes that are located at the interfaces between different grid
levels may have more – for example volume P of Fig. 2 has six
neighbours, and is separated from them by six corresponding faces.
Despite the fact that, in the current study, all volumes have square
shape, the central difference approximations of the fluxes through
the faces which coincide with grid level interfaces would only be
first-order accurate. This is because the line segment joining the
centres of the volumes on either side of the face is not perpendic-
ular to the face, is not bisected by the face, and does not pass
through the face centre. To regain second-order accuracy, addi-
tional correction terms are incorporated into the central differenc-
ing scheme to account for these geometric irregularities. Full
details of the discretisation scheme can be found in [29] or [30].
Fig. 1. An example of an organisation of a grid into le
This discretisation procedure results in a non-linear algebraic
system, which is formed using only the global volumes of each
level. To solve this system, the local volumes of each level are also
used, in order to accelerate algebraic convergence. The equations
solved for these volumes are auxiliary equations which approxi-
mate the equations of the immediately finer grid, according to
the multigrid philosophy. On the contrary, the equations solved
for the global volumes of each level are the actual equations of
the finite volume discretisation on the composite grid. The algo-
rithm proceeds level-by-level; for example, if V-cycles were used,
then the algorithm would proceed from the finest level down to
the coarsest one, and then it would move up until the finest level.
The fact that some levels do not extend throughout the domain is
not a problem, as long as the mass and momentum fluxes through
faces that separate global from local volumes are defined appropri-
ately so that when the solution has been attained on the composite
grid, and the residuals are zero, the multilevel algorithm does not
produce any corrections. The full details of the algorithm can be
found in [29].

Using the experience gained in [30], we use the volume integral
of the truncation error over each finite volume as the refinement
criterion (it is calculated by multiplying the local truncation error
estimate by the volume). In particular, after solving the equations
on a given grid, this quantity is calculated at each volume of that
grid. Then, the volumes are ordered according to the magnitude
of this quantity, from highest to lowest. The 20% of the volumes
at the top of this list are selected for refinement. This selection pro-
cedure is performed for the x- and y-momentum equations, but not
for the continuity equation. The union of the two sets of volumes
selected through the two momentum equations is the set of vol-
umes which are refined. This results in a new composite grid,
where the equations are again solved to obtain a more accurate
solution than on the previous grid. The procedure can be repeated
to obtain even more refined grids as many times as one wishes.

4. Numerical results

Using the method described in the previous section, the lid-
driven cavity problem has been solved for Reynolds numbers up
vels. The local part of each level is shown in grey.
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to 5000, and for Bingham numbers up to 100. Unless otherwise
stated, the results presented were obtained on the 512� 512
uniform grid, using M ¼ 400. For Bn = 100 and Reynolds numbers
other than 1000, a lower value of M = 200 was used to shorten
the computational time, as the SIMPLE/multigrid method
converges very slowly at such a high Bingham number when the
Fig. 3. Streamlines in Newtonian flow (Bn = 0), pl
value of M is also high. The results of the simulations are pre-
sented in Section 4.1. Then, in Sections 4.2 and 4.3, the accuracy
of the results is examined concerning the calculation of the yield
surfaces and the velocity field respectively. Finally, in Section 4.4
the performance of the SIMPLE/multigrid algebraic solver is
discussed.
otted at intervals of 0.004 starting from zero.
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4.1. Description of the flow field

Figs. 3–6 describe the flow field as the Reynolds number
increases, for Bn = 0 (Newtonian flow), 1, 10, and 100, respectively.
In the Newtonian case (Fig. 3), the flow field is initially symmetric
(Fig. 3(a)–(c)) but as the Reynolds number increases the main vor-
tex shifts to the right (Fig. 3(d)), and then towards the centre of the
Fig. 4. Streamlines in Bingham flow for Bn = 1, plotted at intervals of 0.0
cavity (Fig. 3(e) and (f)). The same phenomena are observed also in
Bingham flow, but they are postponed to larger Reynolds numbers
as the Bingham number is increased. This will be discussed in more
detail later on.

In the Bingham flow cases, unyielded zones form at the bottom
of the cavity because the stresses are low there, due to the distance
from the source of motion (the lid). These zones expand as the
04 starting from zero. Unyielded areas (s < Bn) are shown shaded.



Fig. 5. Streamlines in Bingham flow for Bn = 10, plotted at intervals of 0.004 starting from zero. Unyielded areas (s < Bn) are shown shaded.
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Bingham number is increased, and leave less space for flow to take
place, thus pushing the vortex upwards towards the lid. They are in
contact with the side and bottom walls which are motionless, and
thus the material in contact is also motionless due to the no-slip
boundary condition. This implies, due to the zero rate-of-strain
condition within an uyielded zone, that the material is motionless
throughout these unyielded zones. Actually, the regularisation
method employed allows for weak non-zero deformation rates
within unyielded zones, and thus for example one can observe
extremely weak vortices at the lower corners, within the unyielded



Fig. 6. Streamlines in Bingham flow for Bn = 100, plotted at intervals of 0.004 starting from zero. Unyielded areas (s < Bn) are shown shaded.
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zones. Such features must be regarded as artefacts of regularisa-
tion, and discarded in order to get a more accurate picture of the
actual Bingham flow.

Figs. 4–6 show also the existence of one more unyielded zone
(in a few cases more than one) which is usually located just below
the vortex, or to the left of the vortex when the latter is shifted
towards the right. These zones do not touch the cavity walls and
are not motionless, as implied from the spacing of the streamlines
inside these regions, but move as solid bodies. Since the flow is
steady-state, their locations and shapes are fixed, which means
that they lose mass on their downstream boundary at a rate equal
to that at which they gain mass on their upstream boundary.



Fig. 7. The position of the vortex centre, for various Re and Bn numbers. The results
of the present study are shown as empty squares (�), with the Reynolds number
written next to each square. Results of other researchers are also included for
comparison: Results of Vola et al. [49] (Re = 1000: Bn = 1, 10, 100) are indicated by
filled triangles (N); results of Elias et al. [45] (Re = 1000: Bn = 1, 10, 100), are
indicated by filled diamonds (r); results of Frey et al. [46] (Re = 500: Bn = 1, 100; Re
= 1000: Bn = 1, 10, 100) are indicated by filled circles (�); and results of Prashant &
Derksen [47] (Re = 0.5, 10, 50, 200, 600, 1000: Bn = 10, 100), are indicated by empty
circles (	).

Fig. 8. The strength of the vortex, dedimensionalised by U � L, as a function of Re for
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As noted, Figs. 3–6 reveal that the effect on the flow of increas-
ing the Reynolds number is similar for all Bingham numbers. This
can be explored in greater detail with the aid of the plots of the
vortex position and strength, Figs. 7 and 8, respectively. Three flow
regimes are discernible:

1. Up to a certain Reynolds number the vortex is approximately
fixed in space, and its strength is constant (Re � 10 for
Bn ¼ 0; Re � 50 for Bn ¼ 10; Re � 500 for Bn ¼ 100).

2. Beyond that Reynolds number, the vortex moves towards the
right (in the same direction as the lid), until a second critical
Reynolds number is reached (Re � 75 for Bn ¼ 0; Re � 500 for
Bn ¼ 10; Re � 5000 for Bn ¼ 100).1 If the Bingham number is
large enough ðBn P 2Þ so that the lower unyielded region has
pushed the vortex close to the lid, then this motion of the vortex
towards the right is accompanied by a weakening of the vortex,
due to geometric restrictions.

3. Beyond the second critical Reynolds number, the vortex moves
towards the centre of the cavity. This is accompanied by a
strengthening of the vortex.

The main conclusion from these results is that the flow field at a
certain combination of Bn and Re numbers resembles to some
extent that of any lower Bn number if the Re number is also suffi-
ciently lowered. To investigate this, we calculated the ‘‘local Rey-
nolds number’’, Rel, which is defined based on the apparent
viscosity gðx; yÞ (9) at each point, instead of the plastic viscosity l:

Relðx; yÞ �
qUL

gðx; yÞ ð12Þ

Fig. 9 shows the contours of Rel for Re ¼ 1000 and Bn = 1, 10,
and 100 (for Bn ¼ 0 it is clear that Rel ¼ Re ¼ 1000). Since q;U
and L are fixed, Rel is simply proportional to the reciprocal of the
effective viscosity. However, the plots allow a comparison between
these flows and Newtonian flows of a similar Reynolds number.
Indeed, one notices that for Bn ¼ 1 (Fig. 9(a)) the local Reynolds
number is in the range 200–1000 in most of the cavity, and there
is not much difference between this flow field and Newtonian flow
at Re ¼ 1000 (Fig. 3(f)). For Bn ¼ 10 (Fig. 9(b)), Rel is less than 100
almost everywhere, except near the top and the upper right of the
cavity, and the flow resembles a Newtonian flow at Re ¼ 100
(Fig. 3(d)), where the vortex has moved towards the right. Finally,
at Bn ¼ 100 (Fig. 9(c)) it can be seen that Rel is well below 1 in most
of the cavity, and below 10 in most of the yielded area – the flow
resembles a Newtonian flow at Re = 1 or 10 (Fig. 3(b) and (c)), being
nearly symmetric with respect to the vertical centreline.

Finally, we note that Fig. 8 shows that increasing the Bingham
number causes significant weakening of the flow.
various Bingham numbers. The results of the present study are shown as empty
squares (�). The results of Vola et al. [49] (N) and Prashant and Derksen [47] (	) for
Re = 1000 are also shown.
4.2. Accuracy of the yield surfaces

Regularisation methods produce results which do not contain
truly unyielded regions. The question is then, how to deduce the
unyielded regions from these results. The most common approach
is to identify the yield surfaces with the contours of s = sy (s ¼ Bn
in the non-dimensional case). This is the method used in Figs. 4–6.
It is reasonable to assume that the yield surfaces calculated in this
manner will converge to the true yield surfaces as M !1, but a
theoretical proof of this does not exist, unlike for the velocity field
which is known to converge to the exact solution [9]. There do
exist a few studies where comparisons against analytical solutions
1 For Bn = 100, to find this second critical Reynolds number it was necessary to
perform a simulation also for Re ¼ 10;000. We note that these Re = 10,000 results
were obtained on the 256 � 256 grid due to convergence problems on the 512 � 512
grid.
or results obtained with augmented Lagrangian methods have
shown that, for the particular test cases studied, yield surfaces cal-
culated with regularisation methods do converge to the true sur-
faces as the regularisation parameter is increased (e.g. Burgos
et al. [54], Dimakopoulos et al. [25]). Unfortunately, the minimum
value of the regularisation parameter M which is necessary to
accurately predict the yield surfaces is problem-dependent. In
cases where the stress is close to the yield stress over a relatively
large region, very large values of the regularisation parameter
may be needed [9]. In our case, using the SIMPLE/multigrid alge-
braic solver we were unable to obtain solutions with M larger than
about 400, but because the flow domain is confined, the stress var-
iation is rather rapid and therefore good approximations of the
yield surfaces can be obtained with low values of M.



Fig. 9. Colour contours of the local Reynolds number Rel (Eq. (12)), when Re = 1000, for various Bingham numbers. Streamlines are also shown (black lines). (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 10 shows how the contours s ¼ Bn vary as M is increased,
for some sample cases. In general, the variation is small, so that
one can be confident that the general shape has been captured
well. There are some inaccuracies in the fine details though, such
as the fact that there is a concavity inversion of the s ¼ Bn contours
where they meet the cavity walls, especially for high Bn, giving the
impression that the unyielded zones exhibit ‘‘tips’’ near the walls.
Creeping flow results obtained with augmented Lagrangian meth-
ods [20,28,42,43], and the limited results for Re = 1000 of Vola et al.
[49], suggest that this is not a physically correct result. Increasing
M improves the results, but the problem has not completely disa-
peared at the maximum value of M = 400 used. For engineering
applications such small inaccuracies would probably be unimpor-
tant – the errors introduced by the deviation of the chosen
mathematical model (e.g. Bingham model) from the behaviour of
a real material would be much greater. However, we discuss below
a couple of techniques which can be applied at the postprocessing
stage to improve the results.

It was suggested by Burgos et al. [54] that the shape of the yield
surfaces is described better by contours of s ¼ ð1þ �ÞBn, where
�
 1 is a small positive number, than by the contours s ¼ Bn. This
is because regularised constitutive equations converge very rapidly
to the Bingham equation as s increases beyond Bn, but they diverge
from the Bingham constitutive equation when s drops below Bn
because the regularised s– _c graph must pass through the origin.
Therefore, the contour s ¼ ð1þ �ÞBn of the Bingham flow field is
better approximated by the corresponding regularised contour,
than is the contour s ¼ Bn. And if � is small enough, then the
s ¼ ð1þ �ÞBn contour will not be much different than the s ¼ Bn
contour. Fig. 11 shows that for Bn = 10 the s ¼ 1:01Bn contour in
the proximity of the lower unyielded region continues straight
up to meet the side walls, in contrast to the s ¼ Bn contour which
inverts its concavity near the walls, exhibiting a pair of tips. In fact,
near the walls it can be seen that the stress is nearly equal to the
yield stress ð0:99Bn 6 s 6 1:01BnÞ over relatively large regions,
which is precisely the problematic condition described by Frigaard
and Nouar [9] under which the yield surface is difficult to compute,
and very large M parameters are required. A similar situation
appears also at the lower corners of the upper unyielded region
of the case {Bn = 10, Re = 0}.

Liu et al. [55] have proposed an interesting extrapolation
procedure to approximate the yield surfaces using a number of
solutions corresponding to different values of the regularisation
parameter. Their method uses not the stress, but the strain rate.
In a real Bingham fluid, when the magnitude of the stress tensor
becomes equal to the yield stress then the material is at the onset
of yielding, and the strain rate is zero. However, regularisation
results in a non-zero critical strain rate _cy at the s ¼ Bn surface.
By writing Eq. (7) in terms of the tensor magnitudes, and setting
s ¼ Bn, one obtains:



Fig. 10. Contours of s ¼ Bn calculated with M = 100 (blue dashed lines), M = 200 (red chained lines), and M = 400 (black solid lines). Also shown, with black dashed lines (long
dashes) are estimates of the true yield surfaces according to the extrapolation technique of Liu et al. [55]. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

Fig. 11. Shown shaded are the unyielded regions (s 6 Bn), for Bn = 10, and Re = 0 and 1000. The contours (black lines) correspond to s ¼ 0:99Bn (dashed lines) and s ¼ 1:01Bn
(solid lines).
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Fig. 13. Contours of s ¼ Bn on various grids, for the {Bn = 10, Re = 1000} case, at a
subregion of the domain. The lines correspond to grids 256 � 256 (long dashes),
512 � 512 (chained), the locally refined grid of Fig. 16(b) (short dashes), and
2048 � 2048 (solid).
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_cy � Bn � expð�M _cyÞ ¼ 0 ð13Þ

This equation can be solved numerically for any given Bn to obtain
the corresponding _cy. Identifying the yield surfaces with the con-
tours of _c ¼ _cy is exactly equivalent to the previous criterion,
s ¼ Bn. Instead, Liu et al. [55] considered the ratio ~c � _c= _cy. At a cer-
tain point in the flow field, as M is increased and the exact Bingham
flow field is approached, _cy tends to zero, while _c tends either also
to zero, if the point is unyielded, or to a specific non-zero value, if
the point is yielded. So, the ratio ~c ¼ _c= _cy tends to infinity in yielded
regions, whereas it does not tend to infinity in unyielded regions
(where in fact one would expect that _c= _cy < 1). Liu et al. [55]
noticed in their investigation of the creeping flow of a Bingham
material about a sphere that there existed surfaces within the
domain where the value of the ratio ~cðMÞ ¼ _cðMÞ= _cyðMÞ is constant,
independent of M. Across such a surface, on one side of the surface
the function ~cðMÞ increases with increasing M, and thus the mate-
rial there appears more and more fluid-like, while on the other side
of the surface the function ~cðMÞ decreases with increasing M
(although it may increase again further inside the solid region),
and thus the material there appears more and more solid-like. So,
Liu et al. [55] suggested that these surfaces coincide with the yield
surfaces.

These surfaces can be sought by solving the problem for two
values of M and then plotting the difference ~cðM1Þ � ~cðM2Þ. The
contour cðM1;M2Þ ¼ ~cðM1Þ � ~cðM2Þ ¼ 0 is potentially such a sur-
face, because there ~cðM1Þ ¼ ~cðM2Þ. To check that this is the sought
surface, one can repeat the calculations with one or more different
values of M. If for a different value M3 the contour cðM2;M3Þ ¼ 0
coincides with the contour cðM1;M2Þ ¼ 0 then this increases the
confidence that these contours are the sought surfaces, because
there ~cðM1Þ ¼ ~cðM2Þ ¼ ~cðM3Þ. For the present work we used three
values of M: 100, 200 and 400. Fig. 12 shows the computed sur-
faces for sample cases. It can be seen that despite the relatively
low values of M, the surfaces cð400;200Þ = 0 and cð200;100Þ = 0
coincide for the most part, in agreement with the observations of
Liu et al. The contours have not converged at the sides of the upper
unyielded region of the {Re = 0, Bn = 10} case, but in the rest of the
domain there is perfect coincidence of the contours, while the tips
of the lower unyielded regions have disapeared. In Fig. 12, the
regions where cð400;200Þ � cð200;100Þ < 0 are shown shaded, as
an additional means of investigation, because in yielded regions
as ~c!1; cðM1;M2Þ should be larger than cðM2;M3Þ if
Fig. 12. Contours of cð400;200Þ ¼ 0 (solid lines) and cð200;100Þ ¼ 0 (dashed lines), wh
cðM1;M2Þ. Shown shaded are the regions, where cð400;200Þ � cð200;100Þ < 0, which re
M1 > M2 > M3 and the parameters are increased in a consistent
manner. So, where the shaded regions cross the c = 0 contours into
the yielded zone, there is uncertainty as to where the yield surface
actually lies. This happens for example at the side walls of the
upper unyielded region of the {Bn = 10, Re = 0} case, where the
cð400;200Þ ¼ 0 and cð200;100Þ ¼ 0 contours have not yet con-
verged. We note also that there appear c ¼ 0 contours inside the
upper unyielded regions, near their centres, but they diminish as
M increases, and they clearly do not represent yield surfaces. The
c ¼ 0 contours are plotted also in Fig. 10, for direct comparison
with the s ¼ Bn criterion. To give a better estimate of the yield sur-
face, in the {Bn = 10, Re = 0} case the sides of the upper unyielded
region have been corrected by joining the lower corners with the
points where the contours cð400;200Þ ¼ 0 and cð200;100Þ ¼ 0
intersect.

Thus, the technique of Liu et al. [55] appears to yield more accu-
rate yield surfaces. However, for convenience, in the rest of this
paper the yield surfaces are taken to be the s ¼ Bn (or _c ¼ _cy)
contours.
ich approximate the yield surfaces. See paragraph 4.2 for definition of the function
veal some uncertainty, where they cross the c ¼ 0 contours into the yielded region.



Fig. 14. Contours of the magnitude of the rate of strain _c inside the unyielded zones
(yielded regions are shown in white). The Reynolds number is zero, so the flow field
is symmetric and only half the domain is drawn. The boundary of the unyielded
zones, calculated as j _cj ¼ _cy from Eq. (13), is marked with a black line.
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Finally, we investigate the effect of grid density on the yield sur-
faces, calculated as s ¼ Bn. Fig. 13 shows the contours s ¼ Bn for
the {Bn = 10, Re = 1000} case, on various grids. Interestingly, there
is observable improvement of the yield surface as the grid density
is increased, even up to the 2048 � 2048 grid: the tips of the
boundary of the lower unyielded region move closer to the walls
and upwards. The benefit from local refinement is visible, since
that particular locally refined grid has approximately the same
number of volumes as the 512 � 512 grid (see the next section
for details). Overall though, for the yield surfaces, the effect of M
is more significant than the grid density.
4.3. Accuracy of the flow field

Figs. 7 and 8 include results by other researchers for validation
purposes. In general, there is a good agreement with the present
results. There is some discrepancy concerning the vortex position
for {Re = 1000, Bn = 10} with some of the other publications, while
we should also note that Vola et al. [49] predict somewhat stronger
vortices. In addition to these results, for creeping flow our previous
Table 1
L1 norms (Eq. (14)) of the flow variables (1st data column), of the discretisation errors �/

G on
of the difference dM1

M2
of solutions obtained with different regularisation parameters M1 and

the order of grid convergence (Eq. (15)), calculated in two different ways (see text). Data in
otherwise stated, M ¼ 400.

j/j1 j�/
128j1 (%) j�/

256j1 (%) j�/
512j1 (%

Bn ¼ 1 # volumes ! 16,384 65,536 262,144
/ � u 1:322� 10�1 1.762 0.466 0.119

v 1:317� 10�1 1.840 0.487 0.125

p 5:316� 10�2 3.142 0.823 0.213

Bn ¼ 10 # volumes ! 16,384 65,536 262,144
/ � u 5:555� 10�2 3.550 1.166 0.383

v 3:260� 10�2 4.982 1.639 0.534

p 1:052� 10�2 7.000 2.443 0.834

Bn ¼ 100 # volumes ! 16,384 65,536 262,144
/ � u 2:818� 10�2 9.618 5.721 2.498

v 1:106� 10�2 8.948 5.504 2.379

p 7:233� 10�2 7.831 2.912 1.078
study [26] showed that the present method produces results that
are in very good agreement with the literature.

The rest of this paragraph investigates the effect of Bn;M, and
the grid spacing h on the accuracy. To confine the investigation,
three cases were selected: Bn = 1, 10 and 100, with Re fixed at Re
= 1000. To aid the investigation, grid-independent solutions were
sought by solving the cases also on finer grids of 1024 � 1024
and 2048 � 2048 volumes, and performing Richardson extrapola-
tion (see, for example, [1]), assuming second-order convergence.
For the Bn = 100 case, results were not obtained on the 2048 �
2048 grid because this would require a computing time of a few
months with our present serial code. Instead, Richardson extrapo-
lation was performed using the 512 � 512 and 1024 � 1024 grids.
The present finite volume method adopts a cell-centred strategy
for storing the variables, which implies that cell centres of different
grids do not coincide. Therefore, interpolation is needed in order to
compare the solutions of two different grids and perform Richard-
son extrapolation. We use a third-order accurate interpolation
scheme which is described in [30], so that the errors introduced
by this interpolation are smaller than those of the finite volume
discretisation.

Table 1 summarises most of the results. Use is made of the
following norm:

jwj1 ¼
1
X
�
XN

P¼1

jwPj �XP ð14Þ

where w is an arbitrary quantity, wP is the value of this quantity at
the centre of cell P of the grid, XP is the volume of cell P;N is the
total number of cells of the grid, and X is the total volume of the
domain. Table 1 contains the following columns:

� The first data column displays the norm j/j1, on the 2048 grid
(or the 1024 grid, for Bn = 100), where / stands for each of
the three main flow variables, u;v and p (one per row).
� The next four columns display the j�/

Gj1 norms of the discretisa-
tion errors of the variable / on grid G, computed by comparison
against the Richardson extrapolation solution. They are
expressed as a percentage of the norm j/j1. In the last column,
LR stands for the Locally Refined grid shown in Fig. 16.
� The next column is the order of grid convergence q defined as

(see [1])
differen
M2 on th

column

)

q �
log

j�/
4h
j1�j�

/
2h
j1

j�/
2h
j1�j�

/
h
j1

� �
logð2Þ ð15Þ
t grids G (data columns 2–5; LR stands for Locally Refined grid, see Fig. 16), and
e 512� 512 grid (last two columns). Data columns 6 and 7 (q and q�) display
s 2–5 and 8–9 are expressed as a percentage of the data in column 1. Unless

j�/
LRj1 (%) q q� jd100

200j1 (%) jd200
400 j1 (%)

268,456
0.045 1.90 2.00 0.020 0.012

0.047 1.90 2.00 0.015 0.009

0.089 1.93 2.04 0.019 0.012

284,896
0.166 1.60 1.76 0.831 0.437

0.243 1.60 1.71 1.091 0.577

0.393 1.50 1.75 1.055 0.603

279,280
0.673 0.27 1.53 1.856 1.006

0.826 0.14 1.55 2.927 1.619

0.448 1.42 1.63 1.294 0.784
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where the subscripts denote the grid where / was calculated: h;2h
and 4h are the 512, 256 and 128 grids, respectively. Since the equa-
tions were discretised using 2nd-order accurate central differences,
q should normally equal 2.
� The column q� provides an alternative calculation of the order of

grid convergence. It uses the solutions on the three finest avail-
able grids (512, 1024 and 2018 for Bn = 1 and 10; 256, 512 and
1024 for Bn = 100) instead of those used by q, and applies a
pointwise version of Eq. (15) (i.e. without the norm) at each cell
centre of the coarsest of these grids, to calculate the local order
of convergence there. Then, q� is the average over all grid cells.
In this calculation, cells, where Eq. (15) returns an undefined or
negative result are excluded from the averaging.
� Finally, the last two columns are the norm (14) of the difference

dM1
M2
¼ /ðM2Þ � /ðM1Þ of the solutions obtained with different

regularisation parameters M1 and M2 on the 512 grid, expressed
again as a percentage of j/j1. As both results are obtained on the
same grid, no interpolation is necessary.

The Table has three sections, for Bn = 1, 10 and 100 respectively.
The header rows of these sections display also the number of vol-
umes of each grid. Of course, the number of volumes of the uniform
Fig. 15. Contours of the absolute value of the truncation error of the x-momentum equat
in black. In all cases, Re = 1000.
grids is independent of the Bingham number. The Locally Refined
grids slightly vary in volume number (268,456, 284,896 and
279,280 volumes for Bn = 1, 10 and 100, respectively), but in every
case the number of volumes is very close to that of the 512 � 512
grid (262,144 vols.), and therefore a direct comparison can be
made between the accuracies on the Locally Refined and 512 �
512 grids.

The results of Table 1 show that for Bn = 1 the finite volume
method exhibits its nominal 2nd-order convergence, but for Bn =
10 the order of convergence drops to 1.60–1.75. For Bn = 100, q
is very small because the differences ðj�/

4hj1 � j�
/
2hj1Þ and

ðj�/
2hj1 � j�

/
h j1Þ are nearly equal. However, the fact that �/

512 is
already quite small relative to �/

256 and �/
128 means that conver-

gence is accelerating as the grid is refined, and the result q � 0:2
is too pesimistic. A much more optimistic picture is given by the
index q� � 1:55 which is calculated on finer grids. It is noticeable
that increasing the Bingham number causes also a significant
increase of the discretisation error, as a percentage of the solution;
it increases by a factor of 3–4 if Bn is raised by an order of magni-
tude, and this factor appears to increase as the grid is refined.

The fact that increasing the Bingham number causes a deterio-
ration of the convergence rate and an increase in the relative
ion, on the 512 � 512 grid, according to the estimate (11). The yield lines are shown



Table 2
{Re = 1000, Bn = 10} case: Values of u (the x-velocity component) and related
discretisation errors �u

G , obtained on various grids G and expressed as a percentage of
u, at selected points of the vertical centreline whose vertical coordinates are shown in
the first column. The values of u shown were obtained from the 2048 � 2048 grid
solution with linear interpolation. LR stands for the Locally Refined grid shown in
Fig. 16(b), where the selected points are indicated.

y u �u
256 (%) �u

512 (%) �u
1024 (%) �u

LR (%)

1.000 1.00000 0.00 0.00 0.00 0.00
0.990 0.78310 0.09 0.04 0.01 0.02
0.980 0.58701 0.25 0.07 0.01 0.02
0.960 0.29412 0.60 0.18 0.06 0.04
0.920 0.04561 5.07 1.79 0.47 0.71
0.880 �0.02002 8.29 2.88 0.79 1.37
0.850 �0.03879 0.63 0.32 0.12 0.19
0.750 �0.05521 0.02 0.02 0.01 0.05
0.650 �0.06820 0.84 0.27 0.07 0.09
0.580 �0.07597 0.28 0.10 0.03 0.00
0.540 �0.07941 0.19 0.08 0.03 0.01
0.500 �0.07966 0.69 0.21 0.05 0.17
0.460 �0.06587 1.35 0.39 0.09 0.32
0.420 �0.04296 3.02 0.92 0.22 0.49
0.380 �0.02024 7.25 2.32 0.57 0.95
0.340 �0.00467 16.51 8.26 2.42 4.97
0.300 �0.00083 4.72 1.21 0.27 0.68
0.200 �0.00042 0.97 0.32 0.07 0.19
0.100 �0.00020 0.56 0.17 0.03 0.10
0.000 0.00000 0.00 0.00 0.00 0.00
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discretisation error can be investigated by examining the trunca-
tion error, which is the source of the discretisation error. Fig. 15
shows plots of the absolute value of the truncation error of the x-
momentum equation, calculated according to estimate (11), for
our three selected cases plus the Newtonian case. The truncation
error can be seen to increase by several orders of magnitude as
the Bingham number increases, which results in the loss of accu-
racy observed in Table 1. High truncation errors occur mostly in
the vicinity of the yield surfaces, where the flow field looses its reg-
ularity, but they are also observed elsewhere in the domain. Very
high high-order derivatives develop at these locations, giving rise
to the high truncation errors, which in turn generate high discret-
isation errors that are convected and diffused everywhere in the
domain.

These results suggest that it would be more efficient to use
locally refined instead of uniform grids. Therefore, the selected
cases were solved again, starting on the 256 � 256 uniform grid
and allowing two grid refinements, according to the scheme
described in Section 3.3. So, for each case the problem had to be
solved three times: once on the 256 � 256 grid, and once after each
of the two grid refinements. The final grids obtained are shown on
Fig. 16. They consist of three levels: the coarsest level has the same
density as the 256 � 256 uniform grid; the intermediate level has
the same density as the 512 � 512 grid; and the finest level has the
Fig. 16. Locally refined grids, for Re = 1000 and different Bingham numbers. Actually, for clarity, the grids shown are the underlying grids (see [29]), which are twice as coarse
as the actual ones used. For Bn = 10, the dots along the centreline mark the points that are used in Table 2, Bn = 10.
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same density as the 1024 � 1024 grid. One would then expect on
these composite grids an accuracy greater than that of the 256 �
256 grid, but less than that of the 1024 � 1024 grid. The value of
local refinement is demonstrated in Table 1, where one can see
that the error on the locally refined grids is nearly 2.5 times smaller
than on the equally-sized (in terms of number of volumes) 512 �
512 uniform grid. Table 2, , which displays pointwise data for the
Bn = 10 case, shows that this improvement of accuracy occurs
everywhere in the domain, including in regions where the compos-
ite grid is more coarse than the 512 � 512 grid (see the points
marked in Fig. 16(b)).

The last two columns of Table 1 show the effect of the regular-
isation parameter M. The change inflicted on the flowfield by
changing M from 200 to 400, d200

400, is in every case 0.5–0.6 times
that caused by changing M from 100 to 200 (d100

200). The difference
d200

400 can be viewed as a crude approximation to the error caused
by regularisation. For Bn = 1, this difference is of the order
d200

400 � 0:01% and is much smaller than the discretisation error on
Fig. 17. Maximum x-momentum residual per unit volume (17) versus computational eff
multigrid algebraic solver, using the 8� 8 as the coarsest grid, except for a single-grid ca
grid (n means that the finest grid has n� n control volumes). The algebraic solver parame
= 1.0, au = 0.7, and ap = 0.02 (multigrid) or 0.2 (single grid). For Bn = 10, W(6,6)-10 cycles,
W(9,9)-25 cycles, aMG = 0.9, and {au; ap} = {0.4, 0.002} (multigrid) or {0.6, 0.1} (single grid
guess.
the 512 � 512 grid. For Bn = 10 and 100, d200
400 are significantly

higher, of the order of 0.5% and 1% respectively, and they are com-
parable to the discretisation error on the 512 � 512 grid. These
results indicate the necessity of using larger M parameters for
simulating flows of higher Bn. In contrast to this result, it has been
suggested by researchers who used the Papanastasiou regularisa-
tion, e.g. in [54,56], that smaller values of M can be used with
higher values of Bn, on the basis that the limit of the value of the
viscosity g (9) as _c tends to zero is M � Bnþ 1. This means that if
M is kept constant then in the core of the unyielded regions the vis-
cosity becomes higher as Bn increases, thus providing a better
approximation for the unyielded material. However, away from
the core, near the yield surface, the approximation of the unyielded
material in fact becomes worse as Bn increases, if M is kept con-
stant. This can be seen if one rearranges Eq. (13) as

M ¼ 1
_cy

ln
Bn
_cy

� �
ð16Þ
ort, for Re = 1000, M = 400, and Bn = 1, 10, and 100. The results refer to the SIMPLE/
se which is indicated on each figure. The number on each curve indicates the finest
ters are the following (see Section 3 for definitions): For Bn = 1, W(5,5)-5 cycles, aMG

aMG = 0.9, and {au; ap} = {0.5, 0.02} (multigrid) or {0.7, 0.2} (single grid). For Bn = 100,
). On each grid, the solution of the immediately coarser grid was used as the initial



Fig. 18. The L1 norm of the x-momentum residual plotted against the number nC of
W(6,6)-20 cycles ðau ¼ 0:5; ap ¼ 0:01Þ on the 256� 256 grid, for
Re ¼ 0;Bn ¼ 20;M ¼ 400. The solution of 128� 128 was used as the initial guess
in each case. The red line corresponds to the case that M ¼ 400 is used throughout.
The other lines depict convergence when M is progressively increased by 1 every nM

cycles, until the maximum of M ¼ 400 (marked by dashed lines). (For interpretation
of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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Therefore, if M is constant, then _cy increases with Bn. Fig. 14 shows
an example where _c is plotted for two distinct Bn numbers, Bn ¼ 2
and Bn ¼ 50. It can be seen that for the higher Bn number, Bn ¼ 50; _c
is smaller deep into the unyielded zones and larger near the yield
lines than for the smaller Bn ¼ 2.

4.4. Algebraic convergence of the SIMPLE/multigrid algorithm

In this subsection some results on the algebraic convergence of
the SIMPLE/multigrid algorithm are reported. Fig. 17 shows the
reduction of the algebraic residuals as a function of the computa-
tional effort for Re ¼ 1000 and Bn = 1, 10, and 100, with M = 400,
as typical examples. The ordinate is the L1-norm of the residual
vector of the x-momentum equations,

krk1 ¼ max
P¼1;...;N

fjrP jg; ð17Þ

where rP is the residual, expressed per unit volume, of the
x-momentum equation of volume P and N is the total number of
volumes in the grid. The computational effort is measured in equiv-
alent fine-grid SIMPLE iterations. For the multigrid cases, the num-
ber of equivalent fine-grid SIMPLE iterations is obtained by
multiplying the number of cycles by the number of fine-grid SIMPLE
iterations that cost computationally the same as a single cycle. In
particular, nC cycles of type W(m1; m2)–m3 cost approximately the
same as nS ¼ nC � ½2ðm1 þ m2Þ þ m3� SIMPLE iterations on the finest
grid (see e.g. [52] on how to calculate the cost of W cycles). For
example, one W(6,6)-10 cycle costs the same as 34 fine-grid SIMPLE
iterations. It should be noted that the cost of restriction and prolon-
gation is omitted in this calculation, since it is very small compared
to the cost of the SIMPLE iterations, especially if one considers that
the numbers of pre- and post-smoothing iterations are large, and
fine-grid iterations are also carried out between cycles. Therefore,
multigrid and single-grid convergence rates are directly comparable
in the Figure. The SIMPLE underrelaxation factors were chosen dif-
ferently in the multigrid and single-grid cases, in order to make the
solvers more efficient in each case. For Bn = 100, we were unable to
make the single-grid algorithm converge on the 512 � 512 grid, for
any choice of underrelaxation parameters.

Fig. 17 also shows that the multigrid procedure greatly acceler-
ates the convergence of SIMPLE. One can notice that as the grid
becomes finer, the multigrid convergence slows down in general.
This non-typical multigrid behaviour is explained by the fact that
the present multigrid method contains single-grid features, as
described in Section 3. For Bn = 10, on the 256� 256 and 512�
512 grids the procedure converges fast at the initial stages, due to
a good initial guess, but slows down at later stages of iteration.
For Bn = 100 it is noticeable that convergence is faster on the
512� 512 grid than on the 256� 256 grid; a possible explanation
is that the solution on the 256� 256 grid provides a good initial
guess for the 512� 512 grid, whereas this does not occur on coarser
grids. The convergence rates decrease as Bn increases, and are signif-
icantly worse than those typically exhibited in Newtonian flows. In
fact one may notice that for every ten-fold increase in Bingham
number (Bn = 1 to Bn = 10 to Bn = 100) there is roughly also a ten-fold
increase in the number of equivalent SIMPLE iterations required.

As mentioned in Section 3, it was observed that it is sometimes
advantageous to gradually increase the value of M as multigrid
cycles progress, up to the maximum selected value, instead of
keeping it at this value from the start of the calculations. As an
example, Fig. 18 shows convergence results for Re ¼ 0 and
Bn ¼ 20 with M ¼ 400. The ‘‘M=constant’’ curve depicts conver-
gence when M ¼ 400 throughout. The other two curves depict
the convergence of a procedure where, starting with M ¼ 1, after
every nM cycles the exponent M is increased by one. The two curves
correspond to nM ¼ 2 and nM ¼ 4. The point where M ¼ 400 is
reached is marked with vertical dashed lines of the same colour,
and from that point onwards the value of M is held fixed at 400.
Actually, the residuals shown in Fig. 18 prior to the dashed lines
ðM < 400Þ are not the actual residuals of the exact, M ¼ 400,
momentum equations, but of the temporary momentum equations
with the current value of M (the oscillations are due to the fact that
every time M is incremented there is a sharp increase in the
residual, since the equations change). But from the dashed lines
onwards the residuals can be directly compared among the three
curves. It is evident that this technique can bring significant perfor-
mance gains at no extra cost.
5. Conclusions

A popular method for solving fluid flow problems consists of a
combination of a finite volume discretisation and the SIMPLE alge-
braic solver. Existing codes which use this method are easily
extended to solve also viscoplastic flows by using a regularised ver-
sion of the constitutive equation. Essentially, all that is required is
to write a function to calculate the viscosity from the current esti-
mate of the velocity field. The advantages of this approach are that
minimum modifications to the code are required, and that all the
other features of the code that may have been developed over time
are available also for the viscoplastic flows; finite volume/SIMPLE
solvers have a long tradition, and many existing codes have a rich
set of features including meshing capabilities, numerical schemes,
choices of models for different physical phenomena, graphical user
interfaces, etc. all of which will be also available for the simulation
of viscoplastic flows. On the other hand, regularisation introduces a
deviation from the exact equations, which is controlled by a
parameter, which therefore plays a role similar to the grid spacing
(and the time step if the flow is transient) in determining the accu-
racy with which the original problem is approximated. Depending
on the application, this deviation may not be very important as the
exact constitutive equation is also an approximation to the behav-
iour of true viscoplastic fluids, and for some materials the regular-
ised constitutive equation may actually be a better approximation
of the true behaviour.
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In the present work, the capability of the finite volume/SIMPLE
method for solving viscoplastic flows was tested by applying it to
the very popular lid-driven cavity flow problem, for a range of Bing-
ham and Reynolds numbers, in combination with the regularisation
scheme of Papanastasiou [7]. The results showed that both the dis-
cretisation errors and the errors due to regularisation increase with
the Bingham number. The discretisation error increase is due to the
truncation error increase in the vicinity of the yield surfaces,
because the flow field is nearly discontinuous there and the high-
order derivatives of the flow variables attain very large values. Since
the high truncation errors are localised, local grid refinement is the
most efficient way to reduce them, as the present results verify. On
the other hand, the increase of the regularisation error requires that
the regularisation parameter is assigned larger values as Bn
increases. Unfortunately, with the present method the SIMPLE sol-
ver was found unable to cope with regularisation parameters larger
than about 400, which is an important weakness of SIMPLE as a
viscoplastic flow solver, since this value is rather low according to
the literature. Nevertheless, it appears sufficient to produce satis-
factory results in the range of Bingham numbers considered here,
for the lid-driven cavity problem. This problem is well-behaved in
the sense that, due to the confinement of the flow domain, the
stress variation is rather rapid and extended regions, where the
magnitude of the stress is close to the yield stress are not present.
Otherwise, very high values of M might be required, as Frigaard
and Nouar note [9]. In that case, a stronger solver may be used
instead, with all the additional complexity and modifications to
the code. Finite Element methods usually use Newton solvers, but
the calculation of the Jacobian matrix would be a very difficult task
for a finite volume method which uses non-Cartesian grids, as is the
case if local grid refinement is applied. However, one could use a
Newton–Krylov method thus avoiding explicit calculation of the
Jacobian matrix. Such a solver is used for example by Evans et al.
[57] for a phase change problem which also involves fluid and solid
regions. In fact they use SIMPLE as a preconditioner, so that the
existing SIMPLE routines can be exploited. This is planned to be
the subject of a future study.

Another disadvantage of regularisation is that the yield surfaces
are not clearly defined. Usually they are identified using the crite-
rion s ¼ sy, but it is important to place the results under scrutiny,
by using different values of M, comparing against s ¼ ð1þ �Þsy

contours, and/or using an extrapolation technique such as that pro-
posed by Liu et al. [55]. These techniques, which are all easily
implemented in the post-processing stage without any modifica-
tions to the main code, were applied successfully and provided
minor corrections to the yield surfaces predicted by the s ¼ sy

criterion.
Finally we note that regularisation errors can be avoided

altogether by using a multipliers method, with all the additional
complexity and programming effort involved. This has been
implemented in a Finite Volume context by Vinay et al. [21] and
Glowinski and Wachs [20].
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