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A B S T R A C T

We provide an explicit analytical solution of the planar Poiseuille flow of a viscoplastic fluid governed by the
constitutive equation proposed by De Kee and Turcotte (1980). Formulae for the velocity and the flow rate
are derived, making use of the Lambert W function. It is shown that a solution does not always exist because
the flow curve is bounded from above and hence the rheological model can accommodate stresses only up
to a certain limit. In fact, the flow curve reaches a peak at a critical shear rate, beyond which it exhibits a
negative slope, giving rise to unstable solutions.
1. Introduction

Viscoplastic fluids are characterised by the property of behaving
in a solid-like manner when the applied stress is below a limit value
called the yield stress (Coussot, 2017; Balmforth et al., 2014). Examples
of such fluids include toothpaste, hair gel, mayonnaise, shaving foam,
mud, mucus, clay, fresh concrete, crude oil, and many others. This
class of fluids includes a variety of materials such as foams, emulsions,
colloids, and physical gels, with the emergence of yield stress as a
macroscopic property being attributable to a variety of microscopic
mechanisms, possibly different for each material type (Bonn et al.,
2017).

Mathematical modelling of the rheological behaviour of viscoplastic
fluids is a field that has been developing during the last century
or so. Classic viscoplastic models originate in the work of Eugene
Bingham who proposed the famous constitutive model that carries his
name (Bingham, 1922). These models, commonly called simple yield
stress fluids, assume the material to have a solid state that is completely
rigid, and a fluid state which is that of a generalised Newtonian
fluid. The most popular such model, which incorporates both a yield
stress and shear thinning or thickening, is the Herschel–Bulkley (HB)
model (Herschel and Bulkley, 1926):

⎧

⎪

⎨

⎪

⎩

�̇� = 0 𝜏 < 𝜏0

𝜏 =
(

𝜏0
�̇�

+ 𝑘�̇�𝑛−1
)

�̇� 𝜏 ≥ 𝜏0
(1)

where �̇� is the rate-of-strain tensor and �̇� = (�̇� ∶ �̇� ∕ 2)1∕2 is its
magnitude, 𝜏 is the deviatoric stress tensor and 𝜏 = (𝜏 ∶ 𝜏 ∕ 2)1∕2 is
its magnitude, 𝜏0 is the yield stress, 𝑘 is the consistency index, and the
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exponent 𝑛 determines the intensity of shear-thinning (𝑛 < 1) or shear-
thickening (𝑛 > 1). For 𝑛 = 1 the Herschel–Bulkley model reduces to
the Bingham model. Another popular model of this class is the Casson
model (Casson, 1959).

Real viscoplastic fluids exhibit additional rheological properties
such as elasticity and thixotropy (Dinkgreve et al., 2017; Larson and
Wei, 2019), a fact that has given rise to recent efforts for the de-
velopment of more complicated rheological models with expanded
physics (Saramito, 2009; Dimitriou and McKinley, 2019; Varchanis
et al., 2019). Nevertheless, simple yield stress fluids continue to be
used at present and will most likely persist in the future, having the
advantages of simplicity and focus on plasticity and shear-thinning,
which are the defining aspects of many flows of interest. A recent
defence of this class of rheological models is provided by Frigaard
(2019).

Simple yield stress fluids are challenging from mathematical and
computational perspectives. The stress tensor is indeterminate in the
unyielded (solid-state) regions, while the evolution of the yield sur-
faces (the boundaries between the yielded and unyielded material) is
not described explicitly by some equation. Several numerical meth-
ods have been developed for solving the flows of simple yield stress
fluids (Mitsoulis and Tsamopoulos, 2017; Saramito and Wachs, 2017;
Moschopoulos et al., 2022), some of which solve the original models
directly while others first regularise them, effectively converting the
unyielded material into a very viscous fluid (something that may also
have some physical justification, at least for some materials). The most
popular regularisation method is that of Papanastasiou (Papanastasiou,
1987).
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A less popular simple yield stress fluid model was proposed by De
Kee and Turcotte (De Kee and Turcotte, 1980):

⎧

⎪

⎨

⎪

⎩

�̇� = 0 𝜏 < 𝜏0

𝜏 =
(

𝜏0
�̇�

+ 𝜂1𝑒−𝑡1 �̇�
)

�̇� 𝜏 ≥ 𝜏0
(2)

ompared to the Herschel–Bulkley model (1), instead of the consistency
and the power-law exponent 𝑛, the De Kee model employs constants

1 and 𝑡1 which have units of viscosity and time, respectively. For
ur analysis, it is convenient to define also the reciprocal of the time
onstant as �̇�1 = 𝑡−11 , which has dimensions of strain rate, because, as
ill be shown, this is a critical value of strain-rate that delimits distinct

egions where the properties of the model differ drastically. Like the
erschel–Bulkley model, the De Kee model can predict both plasticity
nd shear-thinning.

In a later work (Zhu et al., 2005), De Kee and co-workers presented
Papanastasiou-type regularised version of the model in order to bound

he viscosity at vanishing shear rate. Since the viscous component
1𝑒−𝑡1 �̇� is already bounded – which is an advantage of the De Kee model
ver the HB model – the regularisation needs to be applied only to
he plastic component 𝜏0∕�̇� (nevertheless, it should be pointed out that
he HB viscosity is easily bounded by applying the regularisation also
o the viscous component 𝑘�̇�𝑛−1 (Sverdrup et al., 2018; Syrakos et al.,
020)). Another advantage of the De Kee model is that the dimensions
f its constants, 𝜂1 and 𝑡1, are fixed, and they have a clear physical
ignificance, in contrast to the HB parameters where the dimensions of
he consistency 𝑘 depend on 𝑛.

The De Kee–Turcotte model has been used in various experimental
nd numerical studies. Kaczmarczyk et al. (2023) fitted the model
2), incorporating additional viscous terms 𝜂2𝑒−𝑡2 �̇� and 𝜂3𝑒−𝑡3 �̇� , to rhe-
logical measurements for Plantago ovata water extract solutions. They
xamined both dilute (zero yield stress) and semi-dilute (non-zero
ield stress) solutions. Yahia and Khayat (2001) made rheological
easurements on cement grout and found that the De Kee model is

uitable for mixtures made of 100% cement and rheology-modifying
dmixtures. Seo et al. (2011) proposed a generalised model for elec-
rorheological fluids which reduces to the De Kee–Turcotte model
or particular choices of parameters. The regularised version of the
odel (Zhu et al., 2005) was used by Zare and Rhee (2019) to model
olymer blends and nanocomposites containing poly (lactic acid), poly
ethylene oxide) and carbon nanotubes. In numerical studies, the model
as used for the numerical simulation of the cessation of viscoplastic
ouette flow (Zhu and De Kee, 2007) and the numerical simulation of
he flow in a rheometer with concentric cylinder geometry (Wang et al.,
011).

The present work exposes an inherent limitation of the model: it
nly yields solutions within limited parameter ranges. This limitation
s due to its excessive shear thinning. As an application, we will solve
nalytically the planar Poiseuille flow and determine the range of
arameters for which a solution exists. The solution is obtained with
he use of the Lambert W function (Corless et al., 1996), which has
roved quite useful in non-Newtonian fluid mechanics. This function
s briefly presented in Section 2. The aforementioned limitation of the
odel is exposed in Section 3, and the analytical solutions, both stable

nd unstable, of planar Poiseuille flow are presented in Section 4.

. The Lambert W function

Our analytical solution makes use of the Lambert W function, which
eturns the solution, in terms of 𝑦, of the equation 𝑦𝑒𝑦 = 𝑥, where 𝑥 is
ome real number:

𝑒𝑦 = 𝑥 ⇔ 𝑦 = 𝑊 (𝑥) (3)

he function is plotted in Fig. 1. It is multivalued in the interval
2

−1∕𝑒, 0), and therefore consists of two branches: the principle branch, t
Fig. 1. The Lambert W function, with its two branches, 𝑊0 and 𝑊−1.

denoted by 𝑊0(𝑥), for 𝑥 ∈ [−1∕𝑒,∞), and the secondary branch, denoted
as 𝑊−1(𝑥), for 𝑥 ∈ [−1∕𝑒, 0). These branches are illustrated in Fig. 1;
the principal branch is strictly increasing from −1 to infinity, while the
secondary branch is strictly decreasing from −1 to minus infinity. It is
important to note that Eq. (3) does not have a solution for 𝑥 < −1∕𝑒
and hence 𝑊 (𝑥) is not defined for 𝑥 < −1∕𝑒.

An overview of the Lambert W function and its applications can
e found in Corless et al. (1996). The function is useful in Newtonian
luid mechanics (Pitsillou et al., 2020b), and more so in non-Newtonian
luid mechanics where it has many applications (Pitsillou et al., 2020a;
uilgol and Georgiou, 2022).

Some integrals involving the Lambert function that are useful for
he present application are:

∫ 𝑊 (𝑥) 𝑑𝑥 = 𝑥𝑊 (𝑥) − 𝑥 + 𝑒𝑊 (𝑥) + 𝑐 (4)

∫ 𝑥𝑊 (𝑥) 𝑑𝑥 = 1
8
(

2𝑊 (𝑥)2 + 1
)

(2𝑊 (𝑥) − 1) 𝑒2𝑊 (𝑥) + 𝑐 (5)

∫ 𝑒𝑊 (𝑥) 𝑑𝑥 = 1
4
(1 + 2𝑊 (𝑥)) 𝑒2𝑊 (𝑥) + 𝑐 (6)

here 𝑐 is an arbitrary constant of integration. All of these expressions
an be obtained by making the substitution 𝑊 (𝑥) = 𝑣 ⇔ 𝑣𝑒𝑣 = 𝑥 ⇒
𝑥 = 𝑒𝑣(1 + 𝑣)𝑑𝑣, and then repeatedly performing integration by parts.

. Flow curve

Figs. 2 and 3 illustrate the variation of stress and viscosity, re-
pectively, with shear rate, for the De Kee–Turcotte model. Plot 2 is
btained by taking the norm of Eq. (2). In plot 3 only the ‘‘viscous’’
art, 𝜂1𝑒−𝑡1 �̇� , of the viscosity is considered — the ‘‘plastic’’ part, 𝜏0∕�̇�,
s omitted.

What is immediately striking in Fig. 2 is that 𝜏(�̇�) is not a strictly
ncreasing function, but has a maximum of 𝜏𝑚 = 𝜏0 + 𝜂1�̇�1∕𝑒 at �̇� = �̇�1.
his is due to the excessive shear-thinning for �̇� > �̇�1, which causes
ot only the viscosity, but even the stress itself, to fall. This has the
ollowing repercussions.

Firstly, the stress cannot increase beyond the value 𝜏𝑚. This means
hat there are many cases for which steady-state solutions do not exist
ecause the momentum balance would require higher stress values than
he model can provide. One example is Poiseuille flows whose pressure
radient exceeds a certain threshold, a case that will be examined
hortly.

Secondly, for those cases that a solution exists, we can see that
he same stress state can be achieved with two different values of the
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Fig. 2. Variation of stress with the strain rate, for the De Kee model.

Fig. 3. Variation of the ‘‘viscous’’ component of the viscosity, 𝜂1𝑒−𝑡1 �̇� , with the strain
rate. The viscosity is normalised by 𝜂1 and the strain rate by �̇�1 = 𝑡−11 .

shear rate — that is, for each value of 𝜏 ∈ (𝜏0, 𝜏𝑚) the corresponding
orizontal line in Fig. 2 intersects the 𝜏(�̇�) curve at two points, say

�̇�− < �̇�0 and �̇�+ > �̇�0. Hence, we expect multiple solutions, when
hey exist. Of these solutions, those with shear rates �̇� > �̇�0 will be
nstable because any perturbation in �̇� will cause the stress to change
n such a direction that will amplify further the change in the shear
ate, starting a vicious circle. If �̇� is increased, 𝜏 falls and the reduced
iscous resistance in the fluid will cause a further increase in �̇� and so
n. The opposite will happen if �̇� is perturbed in the negative direction:
his will cause 𝜏 to increase, strengthening the viscous resistance to the

flow and causing further decrease to �̇� etc. A formal stability analysis
showing that solutions corresponding to a negative-slope branch of a
steady-state flow curve are unstable has been reported in the early
work of Yerushalmi et al. (1970). These features of the model will be
demonstrated in the case of planar Poiseuille flow in the next section.

Concerning the viscosity, Fig. 3 seems like a typical shear-thinning
viscosity curve. At low shear rates, �̇� ≪ �̇�1, the ‘‘viscous’’ contribution
to the viscosity, 𝜂1𝑒−�̇�∕�̇�1 , is approximately constant and equal to 𝜂1,

ith the model exhibiting an almost Newtonian behaviour, in contrast
o the 𝑘�̇�𝑛−1 component of the HB viscosity which becomes infinite at
anishing shear rate. At �̇� = �̇�1 this viscosity component has decreased
3

o 𝜂𝑣 = 𝜂1∕𝑒 ≈ 0.37𝜂1. Beyond �̇� = �̇�1 the shear thinning intensifies
Table 1
Parameters of the model (2) as fitted to rheological data for various real fluid by De Kee
and Turcotte (1980). The last two columns list the critical rate of strain and the
maximum attainable stress, respectively (Fig. 2).

𝜏0 [Pa] 𝜂1 [Pa.s] 𝑡1 [s] �̇�1 [1/s] 𝜏𝑚 [Pa]

Banana puree 1.04 × 102 6.26 × 104 6.23 × 101 1.61 × 10−2 4.74 × 102

Blood 3.81 × 10−3 7.17 × 10−3 3.29 × 10−2 3.04 × 101 8.40 × 10−2

Mayonnaise 1.35 × 102 4.20 × 10−1 1.44 × 10−4 6.94 × 103 1.21 × 103

Yogurt 4.17 × 101 1.15 × 10−2 4.52 × 10−5 2.21 × 104 1.35 × 102

dramatically. However, it should be noted that �̇� > �̇�1 lies in the un-
stable regime and therefore the lowest practically achievable viscosity
is 𝜂𝑣 = 𝜂1∕𝑒 ≈ 0.37𝜂1 with viscosities lower than that being practically
impossible to achieve in steady flow. In other words, practically 𝜂𝑣 ∈
[0.37𝜂1, 𝜂1].

To give a feel of the practical range of applicability of the model,
Table 1 lists the values of its parameters as fitted to rheological data
for various real fluids by De Kee and Turcotte (1980), together with
the corresponding values of critical rate of strain �̇�1 and maximum
attainable stress 𝜏𝑚.

It is perhaps useful to note that a constitutive model can have
a monotonically increasing yield curve which is, at the same time,
bounded. For example, regularised versions of the Bingham constitutive
model with zero plastic viscosity have been proposed and used for the
plastic flow of ductile solids (Bašić et al., 2005) and for viscoplastic
fluids (Garimella et al., 2022) (the model (Garimella et al., 2022) is
equivalent to the Papanastasiou-regularised Bingham model with zero
plastic viscosity). In such cases the monotonicity allows the existence of
stable solutions for all values of the shear rate. On the other hand, the
boundedness means again that there are cases for which steady-state
solutions do not exist because they would require higher stresses than
the model can provide. This can be the case for flow configurations
that are defined in terms of specified dynamics (e.g. Poiseuille flow
under a specified pressure gradient), whereas cases defined in terms
of specified kinematics (e.g. Poiseuille flow under imposed flow rate or
Couette flow under specified wall velocity) would be solvable. But the
subject of our present investigation, the De Kee–Turcotte model, has a
flow curve that is both bounded and non-monotonic.

4. Planar Poiseuille flow

With these considerations, let us proceed to the analytical solution
of planar Poiseuille flow.

4.1. Preliminary considerations

For simple shear flow, the De Kee model (2) reduces to the following
form:
⎧

⎪

⎨

⎪

⎩

𝑑𝑢
𝑑𝑦

= 0 |𝜏𝑦𝑥| < 𝜏0

𝜏𝑦𝑥 =
(

𝜏0
|𝑑𝑢∕𝑑𝑦|

+ 𝜂1𝑒
− |𝑑𝑢∕𝑑𝑦|

�̇�1

)

𝑑𝑢
𝑑𝑦

|𝜏𝑦𝑥| ≥ 𝜏0
(7)

where 𝑥 is the flow direction and 𝑢 is the velocity in that direction, 𝑦
is the perpendicular direction across which 𝑢(𝑦) varies, and 𝜏𝑦𝑥 is the
shear stress.

One such flow is planar Poiseuille flow, a steady flow where fluid
is pushed along a channel formed by two infinite horizontal parallel
plates, located at a distance 2𝐻 apart, by an imposed pressure gradient,
𝐺 = −𝑑𝑝∕𝑑𝑥 (Fig. 4). For this flow, the momentum balance (Cauchy
equation) reduces to:

𝜏𝑦𝑥 = −𝐺𝑦 (8)

where 𝑦 = 0 is set midway between the plates (Fig. 4). The stress
grows linearly with distance from the midplane, ranging from zero at
the midplane to a maximum magnitude of 𝐺𝐻 at the plates. Therefore,
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Fig. 4. Sketch of the configuration of viscoplastic planar Poiseuille flow.
as long as 𝜏0 ≠ 0, an unyielded core will form in the middle of the
domain, up to a distance of

𝑦0 =
𝜏0
𝐺

(9)

from the midplane (from Eq. (8)). If 𝑦0 > 𝐻 then obviously no flow will
occur and the whole material will be unyielded, provided that no-slip
conditions apply at the plates, which is an assumption that will be made
in the present paper. Otherwise, if 𝑦0 < 𝐻 , then there will be a yielded
zone in 𝑦 ∈ [𝑦0,𝐻] and flow will occur. We can therefore focus on the
partially yielded case and first consider the yielded zone, where we can
substitute Eq. (7) in Eq. (8); in the upper half (𝑦 > 0) of the domain,
where 𝑑𝑢∕𝑑𝑦 < 0, this substitution gives
(

𝜏0
−𝑑𝑢∕𝑑𝑦

+ 𝜂1 𝑒
𝑑𝑢∕𝑑𝑦
�̇�1

)

𝑑𝑢
𝑑𝑦

= −𝐺𝑦 (10)

This can be easily manipulated into the form

1
�̇�1

𝑑𝑢
𝑑𝑦

𝑒
1
�̇�1

𝑑𝑢
𝑑𝑦 =

𝜏0 − 𝐺𝑦
𝜂1 �̇�1

(11)

Applying the Lambert function to both sides and rearranging we get

𝑑𝑢
𝑑𝑦

= �̇�1 𝑊
(

𝜏0 − 𝐺𝑦
𝜂1 �̇�1

)

(12)

The left-hand side, 𝑑𝑢∕𝑑𝑦, is negative, and hence the output of the
Lambert function on the right-hand side must also be negative, which
requires that its argument is negative (Fig. 1). This is indeed the case, as
the occurrence of flow means that 𝐺𝑦 > 𝜏0 (Eq. (8)). But this means that
we are in the region where 𝑊 has two branches, and hence there are
two solutions to Eq. (12), one employing 𝑊0 and one employing 𝑊−1.
We will examine this issue later, but for now let us proceed without
particularising the branch that is selected.

According to what was said in Section 2, in order for Eq. (12) to
have a solution, the argument of the Lambert function must be greater
than or equal to −1∕𝑒. This argument is negative, and its magnitude
is maximised at 𝑦 = 𝐻 . Therefore, the existence of a solution requires
that

− 1
𝑒

≤
𝜏0 − 𝐺𝐻
𝜂1 �̇�1

⇔ 𝐺𝐻 ≤ 𝜏0 +
𝜂1�̇�1
𝑒

(13)

Now, from Eq. (8), 𝐺𝐻 is the maximum stress value, required at the
plates so that the pressure gradient is counterbalanced and the flow is
steady. Therefore, Eq. (13) is equivalent to the condition

𝜏𝑥𝑦(𝑦 = 𝐻) ≤ 𝜏0 +
𝜂1�̇�1
𝑒

≡ 𝜏𝑚 (14)

which simply says that the stress should be everywhere smaller than
the maximum value 𝜏𝑚 producible by the De Kee–Turcotte model, as
shown in Section 3. If the pressure gradient 𝐺 is too large for 𝜏𝑚 to
counteract it (i.e. condition (13) is not satisfied), then steady-state flow
is not possible.
4

4.2. Velocity profile

Assuming that the pressure gradient is sufficiently small to satisfy
condition (13), we will proceed with the integration of Eq. (12). For
convenience, it will be brought to non-dimensional form by employing
the following non-dimensionalisation:

�̃� = 𝑢
�̇�1𝐻

, �̃� =
𝑦
𝐻

⇒
𝑑
𝑑𝑦

= 1
𝐻

𝑑
𝑑�̃�

, �̃� = 𝐺𝐻
𝜂1�̇�1

(15)

We will also substitute 𝜏0 = 𝐺𝑦0 (Eq. (9)). The non-dimensional form
of (12) is then:
𝑑�̃�
𝑑�̃�

= 𝑊
(

�̃�(�̃�0 − �̃�)
)

(16)

This can be integrated using Eq. (4), while the constant of integration
can be determined by the boundary condition �̃�(𝐻) = 0, to arrive at the
following velocity profile for the yielded region:

�̃� =
(

�̃� − �̃�0
) [

𝑊
(

�̃�
(

�̃�0 − �̃�
))

− 1
]

−
(

1 − �̃�0
) [

𝑊
(

�̃�
(

�̃�0 − 1
))

− 1
]

+ 1
�̃�

[

𝑒𝑊 (�̃�(�̃�0−1)) − 𝑒𝑊 (�̃�(�̃�0−�̃�))
]

, �̃� ∈ [�̃�0, 1]

(17)

In the unyielded region the velocity is uniform and equal to that of the
yielded region at �̃� = �̃�0:

�̃� = 1
�̃�

[

𝑒𝑊 (�̃�(�̃�0−1)) − 𝑒𝑊 (0)
]

−
(

1 − �̃�0
) [

𝑊
(

�̃�
(

�̃�0 − 1
))

− 1
]

, �̃� ∈ [0, �̃�0] (18)

At this point, it is pertinent to consider the issue of the branches of
𝑊 . Returning to Eq. (12), we note the following.

Principal branch
For 𝑥 ≤ 0, 𝑊0(𝑥) ∈ [−1, 0], so that it follows from Eq. (12) that

|𝑑𝑢∕𝑑𝑦| ≤ �̇�1 and we are in the stable region of Fig. 2.
With increasing 𝑦, i.e. closer to the wall, the argument (𝜏0−𝐺𝑦)∕𝜂1�̇�1

of 𝑊 in Eq. (12) becomes more negative, and hence |𝑊0(⋅)| increases
(Fig. 1), implying that |𝑑𝑢∕𝑑𝑦| also increases (Eq. (12)). This is nor-
mal behaviour: higher velocity gradients develop near the walls; it is
because higher stresses require higher velocity gradients in the stable
region.

On the other hand, considering what happens when 𝑦 → 𝑦0, due
to Eq. (9) the argument of 𝑊0 in Eq. (12) tends to zero, and so does
𝑊0(⋅) itself, so that the velocity gradient is zero at the yield surface —
again, normal behaviour exhibited by other viscoplastic models as well.
Stress continuity at the yield surface requires that the viscous part of
the stress decreases towards zero, leaving only the plastic part, as we
approach the yield surface from the yielded side.

Velocity profiles for cases without yield stress (�̃�0 = 0) and with
yield stress (�̃�0 = 0.5) are shown in Figs. 5(a) and 6(a), respectively,
for various values of dimensionless pressure gradient �̃�, up to the
maximum allowable for steady-state attainment (�̃� = 1∕𝑒 for �̃� = 0
max 0
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Fig. 5. Velocity profiles, normalised by the mean velocity, for 𝑦0 = 0 (no yield stress), obtained with (a) 𝑊0 (stable) and (b) 𝑊−1 (unstable).
Fig. 6. Velocity profiles, normalised by the mean velocity, for 𝑦0 = 0.5 obtained with (a) 𝑊0 (stable) and (b) 𝑊−1 (unstable).
nd �̃�max = 2∕𝑒 for �̃�0 = 0.5). The maximum allowable dimension-
ess pressure gradient is obtained by substituting 𝜏0 = 𝐺𝑦0 in the
ondition (13) and non-dimensionalising it to get:

̃ (1 − �̃�0
)

≤ 1
𝑒

(19)

Secondary branch
Since 𝑊−1(⋅) ≤ −1, it follows from Eq. (12) that |𝑑𝑢∕𝑑𝑦| ≥ �̇�1 and

e are in the unstable region of Fig. 2.
With increasing 𝑦, i.e. closer to the wall, the argument (𝜏0−𝐺𝑦)∕𝜂1�̇�1

f 𝑊 in Eq. (12) becomes more negative, and hence |𝑊−1(⋅)| decreases
(Fig. 1), implying that |𝑑𝑢∕𝑑𝑦| decreases as well (Eq. (12)). This is
the opposite of what is normally expected, but due to 𝜏𝑦𝑥(�̇�) being a
decreasing function in the unstable region (Fig. 2), in order to get the
needed higher stresses near the wall the shear rate has to decrease
there.

Again counterintuitively, when 𝑦 → 𝑦0, due to Eq. (9) the argument
of 𝑊−1 in Eq. (12) tends to zero, and 𝑊−1(⋅) tends to −∞, so that the
velocity gradient becomes infinite at the yield surface.

Velocity profiles for cases without yield stress (�̃�0 = 0) and with
yield stress (�̃� = 0.5) are shown in Figs. 5(b) and 6(b), respectively,
5

0

for various values of dimensionless pressure gradient �̃�, up to the
maximum allowable for steady-state attainment. Of course, these solu-
tions are unstable. The plots seem to show finite values of the velocity
gradient (16) at �̃� → �̃�0 instead of the theoretical infinite one, but this
is due to the slowness of the decrease of 𝑊−1(𝑥) towards −∞ as 𝑥 → 0.
For example, for �̃�0 − �̃� = 0.001, which is a typical �̃�-value resolution
for drawing the plots, Eq. (16) gives a dimensionless velocity gradient
𝑑�̃�∕𝑑�̃� of −14.2 for �̃� = 0.01 and −11.7 for �̃� = 0.1 (note also that the
slopes in Figs. 5(b) and 6(b) are not to scale, because the velocities have
been normalised by their average values).

4.3. Flow rate

When a solution exists, the flow rate, per unit width, can be cal-
culated by integrating the velocity across the height of the channel:

𝑄 = ∫

𝑦=+𝐻

𝑦=−𝐻
𝑢 𝑑𝑦 = 2∫

𝑦=𝐻

𝑦=0
𝑢 𝑑𝑦 (20)

where the symmetry about the 𝑦 = 0 plane has been exploited. Also, it
will be convenient to non-dimensionalise the flow rate:

�̃� ≡ 𝑄 =
�̃�=�̃�0

�̃�0 𝑑�̃� +
�̃�=1

�̃� 𝑑�̃� (21)

2�̇�1𝐻2 ∫�̃�=0 ∫�̃�=�̃�0
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Fig. 7. Plots of dimensionless flow rate �̃� as a function of the dimensionless pressure gradient �̃�, for the case that the fluid has no yield stress (a) and for the viscoplastic case
with �̃�0 held at 0.5 (b).
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where, for convenience, the steady velocity (18) of the unyielded plug
is denoted as �̃�0. With this notation, the velocity in the yielded region
can be written as

�̃� = �̃�0 +
(

�̃� − �̃�0
) [

𝑊
(

�̃�
(

�̃�0 − �̃�
))

− 1
]

− 1
�̃�

𝑒𝑊 (�̃�(�̃�0−�̃�)) + 1
�̃�
𝑒𝑊 (0) , �̃� ∈ [�̃�0, 1] (22)

and the above integral becomes

�̃� = �̃�0 +
1 − �̃�0
�̃�

𝑒𝑊 (0) + ∫

�̃�=1

�̃�=�̃�0

(

�̃� − �̃�0
) [

𝑊
(

�̃�
(

�̃�0 − �̃�
))

− 1
]

𝑑�̃�

− 1
�̃� ∫

�̃�=1

�̃�=�̃�0
𝑒𝑊 (�̃�(�̃�0−�̃�))𝑑�̃�

(23)

his can be evaluated with the help of Eqs. (5) and (6), to obtain

̃ = �̃�0 +
1 − �̃�0
�̃�

𝑒𝑊 (0) + 1
8�̃�2

[(

2𝜛2 + 1
)

(2𝜛 − 1) 𝑒2𝜛 + 𝑒𝑊 (0)]

−
(1 − �̃�0)2

2

+ 1
4�̃�2

[

(2𝜛 + 1) 𝑒2𝜛 − 𝑒𝑊 (0)]

(24)

here 𝜛 = 𝑊 (�̃�(�̃�0 − 1)). Because 𝑊0(0) = 0 and 𝑊−1(0) = −∞, the
erm 𝑒𝑊 (0) equals 1 for the stable branch and 0 for the unstable one.
ig. 7 shows plots of the dimensionless flow rate �̃� as a function of
he dimensionless pressure gradient �̃� for �̃�0 = 0 (no yield stress) and
�̃�0 = 0.5. Note that in the latter case, since �̃�0 = 0.5 is held constant in
ig. 7(b) irrespective of �̃�, the curve �̃� = 𝑓 (�̃�) should not be construed
s varying the pressure gradient in a fixed channel with a fixed fluid,
ut in order for �̃�0 to remain constant as the pressure gradient varies the
ield stress of the fluid must vary simultaneously with �̃� (from Eq. (9)
e get �̃�0 = 𝜏0∕�̃� where 𝜏0 = 𝜏0∕𝜂1�̇�1).

. Conclusions

The De Kee–Turcotte model has the advantages of the physical
ignificance of its parameters and its viscous plateau at low shear rates.
n the other hand, its exponential shear-thinning limits its range of
pplicability: it bounds the magnitude of the stress that it can produce,
aking it unusable in high-stress flows. Furthermore, its flow curve

xhibits a maximum which splits it into a stable (stress-increasing) part
nd an unstable (stress-decreasing) part. The behaviour of the model in
he stable region is akin to the other simple viscoplastic models, such
s the Herschel–Bulkley. An analytical solution was given for planar
6

oiseuille flow in terms of the Lambert W function.
Ironically, the model’s exponential shear-thinning behaviour with
he resulting limitation that it imposes on the model allows solutions
nly in cases with mild shear-thinning. Hence, the velocity profiles in
igs. 5(a) and 6(a) are reminiscent of mildly shear-thinning power-
aw and Herschel–Bulkley profiles. However, power-law and Herschel–
ulkley fluids can undergo much more shear-thinning than a De Kee
luid. In any case the viscosity 𝜂1𝑒−𝑡1 �̇� cannot drop below 1∕𝑒 ≈ 36.8%
f its zero-shear-rate value 𝜂1 if we are to remain in the stable region
Fig. 3).

One can try to increase the range of applicability by decreasing
he time constant 𝑡1 (increasing the critical rate of strain �̇�1), but this
ill expand the Newtonian plateau (Fig. 3) making the fluid more
ewtonian (or more Bingham-like in the viscoplastic case). On the
ther hand, another possibility for extending the model’s range of
pplicability would be to incorporate multiple viscous components
𝑖 𝜂𝑖𝑒

−𝑡𝑖 �̇� (De Kee and Turcotte, 1980; Kaczmarczyk et al., 2023). Also,
e did not discuss the shear-thickening case, which is achieved by using
egative time constants 𝑡1 < 0 (critical rates-of-strain �̇�1 < 0). In this
ase the stress can grow without bound and the limitation vanishes.
or the Poiseuille flow, this has the implication that in Eq. (12) the
rgument of the 𝑊 function is now positive and therefore there are no
imitations concerning its magnitude (Fig. 1).

The non-monotonicity of the De Kee flow curve establishes the
xistence of unstable solutions alongside the stable ones, whenever
here are solutions at all. The unstable velocity profiles in planar
oiseuille flow were seen to exhibit inverted and unrealistic features
ompared to the stable ones.
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