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Abstract 
We solve a Laplacian problem over an L-shaped domain using a singular function boundary integral 
method as well as the p/hp finite element method. In the former method, the solution is approximated 
by the leading terms of the local asymptotic expansion, and the unknown singular coefficients are 
calculated directly. In the latter method, these coefficients are computed by post-processing the finite 
element solution. The predictions of the two methods are discussed and compared with recent 
numerical results in the literature. 
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1 Introduction 

In the past few decades, many different methods have been proposed for the numerical solution of 
plane elliptic boundary value problems with boundary singularities, aiming at improving the accuracy 
and resolving the convergence difficulties that are known to appear in the neighborhood of such 
singular points. These methods range from special mesh-refinement schemes to sophisticated 
techniques that incorporate, directly or indirectly, the form of the local asymptotic expansion, which is 
known in many occasions. In polar coordinates (r,θ) centered at the singular point, the local solution is 
of the general form 
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where µj are the eigenvalues and fj are the eigenfunctions of the problem, which are uniquely 
determined by the geometry and the boundary conditions along the boundaries sharing the singular 
point. The singular coefficients αj , also known as generalized stress intensity factors, are determined 
by the boundary conditions in the remaining part of the boundary. Knowledge of the singular 
coefficients is of importance in many engineering applications. 
 
In the Finite Element Method (FEM), which is the most commonly used method for solving structural 
mechanics problems, the singular coefficients are calculated by post-processing the numerical solution. 
Generally speaking, the most effective versions of the FEM are the high-order p and hp versions, in 
which instead of simply refining the mesh, convergence is achieved by: (i) increasing the degree of the 
piecewise polynomials in the case of the p version, and (ii) by increasing p and decreasing h in the 
case of the hp version. The reason for the success of these methods is that they are able to approximate 
singular components of the solution to elliptic boundary value problems (that arise, for example, at 
corners of the domain) very efficiently. For instance, the hp version, over appropriately designed 
meshes, approximates these singularities at an exponential rate of convergence [1]. 
 
In the past few years, Georgiou and co-workers [2–4] developed the Singular Function Boundary 
Integral Method (SFBIM), in which the unknown singular coefficients are calculated directly. The 
solution is approximated by the leading terms of the local asymptotic solution expansion and the 
Dirichlet boundary conditions are weakly enforced by means of Lagrange multipliers. The method has 
been tested on standard Laplacian problems, yielding extremely accurate estimates of the leading 
singular coefficients, and exhibiting exponential convergence with respect to the number of singular 
functions. 
 
The objective of the present paper is to compare the predictions of the SFBIM against those of the p/hp 
version of the FEM. We consider as a test problem the Laplacian problem over an L-shaped domain 
solved by Igarashi and Honma [5] with a singular boundary integral method. The accuracy of the 
calculated singular coefficients in [5] is restricted to five significant digits. As shown below, the 
predictions of both the SFBIM and the p/hp FEM are of much higher accuracy. 
 

2 Application of the SFBIM to a test problem 

We consider the same Laplacian problem over an L-shaped domain as that solved by Igarashi and 
Honma [5], shown in Figure 1. Taking into account the symmetry of the problem, we consider only 
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half of the domain and note that even-numbered coefficients are zero. The local solution expansion 
around the singularity at O may be written as follows:  
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where  
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are the singular functions.  
 

 
 

Figure 1: Geometry and boundary conditions of the test problem. 

 

The SFBIM is based on the approximation of the solution by the leading terms of the local solution 
expansion:  
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where Nα is the number of singular functions. It should be noted that this approximation is valid only if 
the domain Ω is a subset of the convergence domain of the expansion (2). Given that the singular 
functions W j are harmonic, applying Galerkin’s principle and the second identity of Green, we obtain 
the following discretized equations:  
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Since W j exactly satisfy the boundary conditions along S1 and S2, the above integral along these 
boundary segments is identically zero. Along boundary S4 the normal derivative is zero. Finally, the 
Dirichlet condition along S3 is imposed by means of a Lagrange multiplier function λ, replacing the 
normal derivative. The function λ is expanded in terms of standard, polynomial functions M j,  
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where Nλ represents the total number of the unknown discrete Lagrange multipliers along S3. The basis 
functions M j are used to weight the Dirichlet condition along the corresponding boundary segment S3. 
We thus obtain the following system of Nα + Nλ discretized equations:  

3 4

0, 1,...,
i i

i

S S

W WW u dy u dx i N
x y αλ

   ∂ ∂
− − − = =   ∂ ∂   
∫ ∫

   
(7) 

 

3 3

, 1, ,i i

S S
uM dy M dy i Nλ= =∫ ∫ L       (8) 

It is easily shown that the above linear system is symmetric. The integrands in Eq. (7) are non-singular 
and all integrations are carried out far from the boundaries causing the singularity.  
 
In Ref. [5], the quantity 
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referred to as the capacitance, was of interest; we will also consider this quantity in our computations.  

3 Numerical results with the SFBIM 

The Lagrange multiplier function λ used to impose the Dirichlet condition along S3 is expanded in 
terms of quadratic basis functions. Boundaries S3 and S4 are subdivided, respectively, into 2N and N 
quadratic elements of equal size. Thus, the number of Lagrange multipliers is Nλ = 4N + 1. The 
integrals in Eqs. (7) and (8) are calculated numerically by subdividing each quadratic element into 10 
subintervals and using a 15-point Gauss-Legendre quadrature over each subinterval. In computing the 
coefficient matrix, its symmetry is taken into account.  
 
Several series of runs were performed in order to obtain the optimal values of Nα and Nλ. Our search 
was guided by the fact that Nλ should be large enough in order to assure accurate integrations along the 
boundary (which is divided into smaller elements) but much smaller than Nα in order to avoid ill-
conditioning of the stiffness matrix. On the other hand, Nα cannot be very high, given that the 
computer accuracy cannot handle the contributions of the higher-order singular functions which 
become very small for r < 1 or very large for r > 1. Hence, Nλ was varied from 4 up to 65 and Nα from 
a value slightly above Nλ up to 100.  
 
The convergence of the solution with the number of Lagrange multipliers is shown in Table 1, where 
we tabulate the values of α1, α2 and α5 and the capacitance C calculated with Nα = 60. We observe that 
the values of the singular coefficients converge rapidly with Nλ, , up to Nλ = 41, and that very accurate 
estimates are obtained. For higher values of Nλ , however, signs of divergence are observed, due to the 
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ill-conditioning of the stiffness matrix. In addition to the divergence of the singular coefficients, 
another manifestation of ill-conditioning is the appearance of wiggles on the calculated Lagrange 
multiplier function [4]. The quality of the solution for Nα = 60 and Nλ = 41 was checked by verifying 
that λ is smooth and free of oscillations (Figure 2).  
 

Table 1: Convergence of the solution with Nλ; SFBIM with Nα=60. 

Nλ α1 α2 α5 C 
5 
9 

17 
25 
33 
41 
49 

1.1279711841411 
1.1279803092068 
1.1279803999530 
1.1279804009824 
1.1279804010572 
1.1279804010593 
1.1279803890036 

0.1699398299069 
0.1699337683363 
0.1699338640943 
0.1699338663255 
0.1699338665021 
0.1699338665022 
0.1699338432193 

0.0009643027153 
0.0009165693315 
0.0009151547343 
0.0009151568948 
0.0009151571075 
0.0009151570991 
0.0009152237210 

2.5585187 
2.5585226 
2.5585229 
2.5585231 
2.5585226 
2.5585231 
2.5556215 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Calculated Lagrange multipliers with Nα = 60 and Nλ = 41. 

 
The values of the leading singular coefficients and the capacitance C calculated for Nλ = 41 and 
various values of Nα are shown in Table 2. Exponential convergence with respect to Nα is observed 
and extremely accurate estimates of the singular coefficients are obtained. Our calculations with 
different values of Nα and Nλ show that the optimal values are Nα = 60 and Nλ = 41. In Table 3, the 
converged values of the singular coefficients calculated with these optimal choices are present. The 
CPU time required for the above run is 1.6 s on an IBM RS6000 (Processor type: Power PC 604e/375 
MHz).  
 
In Table 3, we see that the contributions of the higher-order terms are progressively vanishing. Note 
that the converged value of α1 (1.12798040105939) is accurate to fifteen significant digits, while the 
value provided by Igarashi and Honma [5] (1.1280) is accurate only to five significant digits. The 
improved accuracy is also reflected on the calculated value of the capacitance which is converged to 
eight significant digits, C = 2.5585231.  
 
Finally, in Figure 3, we plot the errors in the calculated values of the leading singular coefficients for  
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Nα = 60 versus the number of Lagrange multipliers. The errors are based on the converged values 
tabulated in Table 3. It is clear that the SFBIM converges exponentially with Nλ, and the error is 
reduced rapidly down to machine accuracy.  
 

Table 2: Convergence of the solution with Nα; SFBIM with Nλ = 41. 

Nα α1 α2 α5 C 
45 
50 
55 
60 

1.1279804692965 
1.1279804011162 
1.1279804010593 
1.1279804010599 

0.1699339145019 
0.1699338669346 
0.1699338665022 
0.1699338665022 

0.0009133748200 
0.0009150946530 
0.0009151570990 
0.0009151570991 

2.5467734 
2.5585230 
2.5585231 
2.5585231 

65 
70 
75 
80 

1.1279804010593 
1.1279804010598 
1.1279804010592 
1.1279804010595 

0.1699338665022 
0.1699338665017 
0.1699338665030 
0.1699338665024 

0.0009151570991 
0.0009151571004 
0.0009151570926 
0.0009151571030 

2.5585231 
2.5585230 
2.5585230 
2.5585232 

 
 
 

Table 3: Converged values of the leading singular coefficients; SFBIM with Nλ = 41 and Nα = 60. 

i αi Ref. [5] 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

 1.12798040105939 
 0.16993386650225 
-0.02304097399348 
 0.0034711966582 
 0.0009151570991 
-0.0001128038345 
 0.0000877165245 
 0.0000277603137 
-0.0000044161578 
 0.0000027539457 
 0.0000009219619 
-0.0000001554459 
 0.0000001088408 
 0.0000000379699 
-0.0000000066619 
 0.000000004711 
 0.00000000168 
 0.00000000030 
 0.00000000022 
 0.00000000008 

1.1280 
0.1699 
-0.0230 
0.0035 
0.0009 

C  2.5585231 2.5585 
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Figure 3: Convergence of the SFBIM with Nλ ; Nα = 60 
 

 

4 Numerical results with the p/hp version of the FEM 

In this section we present the results of solving the same test problem, using the p/hp version of the 
FEM a geometrically graded mesh seen in Figure 4. This is, to our knowledge, the most effective 
technique for approximating the solution to elliptic boundary value problems with corner singularities 
in the context of the FEM. We refer to the book of Szabó and Babuška [6] for more details on corner 
singularities and geometrically graded meshes in conjunction with the p and hp versions of the FEM. 
Once the solution is obtained, the singular coefficients are obtained as a post-solution operation. In 
particular, the algorithm for computing the αj’s is based on an L2-projection of the finite element 
solution into the space of functions characterized by the asymptotic expansion in terms of the 
eigenpairs, which are computed using a modified Steklov method (see [7,8] for details).  
 

  

Figure 4: (a) Geometrically graded mesh over the domain Ω; (b) Mesh detail near the re-entrant 
corner. 
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The computations were performed using the commercial FEM package STRESSCHECK (E.S.R.D. St. 
Louis, MO) on an IBM Pentium III machine. Since this is a p version package, the geometrically 
graded mesh was constructed a priori and the polynomial shape functions were taken to have degree p 
= 1 up to p = 8, uniformly over all elements in the (fixed) mesh. The CPU time was approximately 9 s 
for the calculation of the finite element solution, uFE, and about 2 s for the calculation of the singular 
coefficients. Table 4 shows the potential energy as well as the (estimated) percentage relative error in 
the energy norm,  

( ) ( )100 EX FE EXE
Error u u u

Ω
= × −

E Ω
     (10) 

indicating that the solution uFE is computed accurately (see e.g. [6] for the definition of the energy 
norm). Table 5 shows the computed singular coefficients, which were obtained using the finite element 
solution corresponding to p = 8. These results show that the p version of the FEM (on geometrically 
graded meshes) seems to perform quite well when compared with the results obtained using other 
methods found in the literature.  
 

The capacitance C, defined by Eq. (9), was calculated using the finite element solution uFE 
corresponding to p = 8, by employing a 5-point Gaussian quadrature (to ensure the integral in Eq. (9) 
is evaluated exactly). We obtained C = 2.557256, an approximation which is not as good as that 
obtained using the SFBIM. We believe this is due to the pollution effects that are influencing the 
extraction of the data of interest (see e.g. Ref. [6]). Pollution is a phenomenon that occurs when 
singularities are present in the solution of an elliptic boundary value problem. These singularities 
cause the numerical method to yield inaccurate results away from the singularity point (as is the case 
here), when certain quantities of engineering interest are computed. The p version of the FEM is 
especially susceptible to pollution effects (in contrast to the h and hp versions). We repeated the 
calculation using a more refined mesh near the re-entrant corner, as seen in Figure 5. The newly 
computed singular coefficients are shown in Table 5 and the capacitance is recomputed as C = 
2.558588, which is a much better approximation. The refined mesh required 691 degrees of freedom 
(for p = 8) as opposed to 519 used before, and the CPU time increased by 1 s.  
 

Table 4: Values of the potential energy and the percentage relative error in the p/hp method. 

p DOF Energy Error (%) 
1 
2 
3 
4 
5 
6 
7 
8 

 10 
 39 
 74 
127 
198 
287 
394 
519 

1.3385078 
1.2819648 
1.2806200 
1.2793571 
1.2792877 
1.2792738 
1.2792690 
1.2792667 

21.52 
4.60 
3.26 
0.85 
0.43 
0.28 
0.20 
0.15 

 

Table 5: Values of the leading singular coefficients obtained with p/hp finite element method. 

i αi, DOF=519 αi, DOF=691 
1 
2 
3 
4 
5 

 1.12797960 
 0.16993396 
-0.0230434 
-0.0034780 
 0.0009115 

 1.12798010 
 0.16993387 
-0.0230419 
-0.0034755 
 0.0009126 

C 2.557256 2.558588 
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Figure 5: Refined mesh. 

5 Conclusions 

We have solved a Laplacian problem over an L-shaped domain using both the SFBIM and the p/hp 
finite element method, and studied the convergence of the solution with the numbers of singular 
functions and of Lagrange multipliers, and the number of degrees of freedom, respectively. With the 
SFBIM the leading singular coefficients of the local singularity expansion are calculated explicitly, 
whereas with the p/hp-FEM they are calculated by post-processing the numerical solution.  
 
Fast convergence is achieved and highly accurate results are obtained with both methods, which 
perform considerably better than other techniques found in the literature (e.g. that of Igarashi and 
Honma [5]). Given that there are no known exact values for the singular coefficients, the very good 
agreement between the SFBIM and the p/hp FEM serves as validation for the computational results 
presented here. We should point out that, in terms of efficiency, the SFBIM is a better choice, since the 
singular coefficients are computed directly and no post-processing is necessary. On the other hand, the 
FEM can be applied to a much wider class of problems than those that can efficiently and effectively 
be handled by the SFBIM. We should mention that currently there is no mathematical theory that 
establishes the observed exponential convergence rate of the SFBIM. This is the focus of our current 
research efforts. 
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