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Abstract. The time-dependent, two-dimensional compressible Newtonian flow over the reservoir-die region is 
solved assuming that slip occurs along the die wall following a non-monotonic slip law. The combination of 
compressibility and nonlinear slip leads to self-sustained oscillations of the pressure drop and of the mass flow 
rate at constant piston speed, when the latter falls into the unstable negative slope regime of the flow curve. The 
effect of the reservoir volume on the amplitude, the frequency and the waveform of the pressure oscillations is 
studied and comparisons are made with experimental observations concerning the stick-slip polymer extrusion 
instability.  

1 INTRODUCTION 

Slip at the wall is considered to be a key factor in polymer extrusion instabilities, such as the stick-slip 
instability[1,2]. A characteristic of the stick-slip instability not encountered with other types of extrusion 
instability, such as sharkskin and gross melt fracture, is that this is accompanied by pressure and mass flow rate 
oscillations which result in extrudate shapes characterized by alternating rough and smooth regions[1,2]. Recent 
work concerning numerical modeling of the stick-slip instability has been reviewed by Achilleos et al.[3] who 
discuss three different instability mechanisms: (a) combination of nonlinear slip with compressibility; (b) 
combination of nonlinear slip with elasticity; and (c) constitutive instabilities. In the present work, we 
investigate further the compressibility-slip instability by means of numerical simulations.  

The compressibility-slip mechanism has been tested by Georgiou and Crochet[4,5] in the Newtonian case, 
with the use of an arbitrary non-monotonic slip equation relating the wall shear stress to the slip velocity. These 
authors numerically solved the time-dependent compressible Newtonian Poiseuille and extrudate-swell flows 
with non-linear slip at the wall, showing that steady-state solutions in the negative-slope regime of the flow 
curve (i.e. the plot of the wall shear stress versus the apparent shear rate or the plot of the pressure drop versus 
the volumetric flow rate) are unstable, in agreement with linear stability analysis. Self-sustained oscillations of 
the pressure drop and of the mass flow rate at the exit are obtained, when an unstable steady-state solution is 
perturbed, while the volumetric flow rate at the inlet is kept constant. These oscillations are similar to those 
observed experimentally with the stick-slip extrusion instability. In a recent work, Georgiou[6] obtained similar 
results for the  compressible, axisymmetric Poiseuille and extrudate-swell flows of a Carreau fluid with slip at 
the wall, using an empirical  slip equation that is based on the experimental measurements of Hatzikiriakos and 
Dealy[7,8] on a HDPE melt. Unlike the experimental observations[8,9,10], however, the limit cycles of the periodic 
solution obtained in all these numerical studies do not follow the steady-state branches of the flow curve.   

As pointed out by Georgiou[6], including the reservoir is necessary in order to account for the compression 
and decompression of most part of the fluid, and obtain limit cycles following the steady-state branches of the 
flow curve, i.e. for obtaining pressure and extrudate flow rate oscillations characterized by abrupt changes, as is 
the experiments. Only such abrupt changes can lead to extrudates with alternating relatively smooth and 
sharkskin regions, which is the basic characteristic of the stick-slip instability. Note that the reservoir region is 
taken into account in various one-dimensional phenomenological models, which are also based on the 
compressibility/slip mechanism[11]. These describe very well the pressure oscillations but they are not predictive, 
because they require as input certain experimental parameters.  

The objective of the present work is to extend the simulations of Georgiou[6] by including the reservoir 
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region and study the effect of the reservoir length on the pressure oscillations. According to experiments[8,9,12], 
the period of the oscillations scales roughly with the volume of the polymer melt in the reservoir. Weill[9] and 
Durand et al.[10] also studied experimentally the effect of the reservoir length on the durations of compression 
and relaxation and found that both times increase linearly with the reservoir length, which indicates that the 
latter does not affect the waveform of the oscillations.  

In Section 2, the governing equations, the slip equation and the boundary and initial conditions are discussed. 
In Section 3, we describe briefly the numerical method, present the numerical results, and make comparisons 
with experimental observations. Finally, in Section 4, we summarize the conclusions.  

2 GOVERNING EQUATIONS AND BOUNDARY CONDITIONS 

The geometry of the flow corresponds to the actual setup used in the experiments of Hatzikiriakos and 
Dealy[8]. There is a contraction region at 45 degrees between the barrel and the die as shown in Fig. 1. The 
actual values of the radii of the barrel and the die, denoted respectively by Rb and R, and the length of the die, L, 
are tabulated in Table 1.In the simulations, the length of the barrel, Lb, varied from 20R to 200R.  

 
 

 

Figure 1. Geometry and boundary conditions for the time-dependent. compressible, axisymmetric flow over the 
reservoir-capillary region, with slip along the capillary wall 

 
 

Symbol Parameter Value 
Rb 
Lb 
 
R 
L 

Radius of the barrel 
Length of the barrel 
Contraction angle 
Radius of the die 
Length of the die 

0.9525 cm 
 
45 degrees 
0.0381 cm 
0.762 cm 

Table 1 : Symbols and values of various lengths concerning the flow geometry 

 
To non-dimensionalize the governing equations, we scale the lengths by the capillary radius, R, the velocity 

vector, v, by the mean velocity V in the capillary, the pressure, p, by  ηV/R, η denoting the constant viscosity, the 
density, ρ, by a reference density, ρ0, and the time by R/V. With these scalings, the dimensionless continuity and 
momentum equations for time-dependent, compressible, isothermal viscous flow in the absence of body forces 
become: 
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and 
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where Re is the Reynolds number, defined by  
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The above equations are completed by an equation of state relating the pressure to the density. We used the first-
order expansion:  

 
1 B pρ = +       (4) 

 
where B is the compressibility number, 
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β being the isothermal compressibility.  

Along the capillary wall, slip is assumed to occur following the three-branch multi-valued slip model:  
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where vw is the relative dimensionless velocity of the fluid with respect to the wall, σw is the dimensionless shear 
stress on the wall, vc2 is the maximum slip velocity at σc2, and  vmin is the minimum slip velocity at σmin. The third 
branch is the power-law slip equation suggested by Hatzikiriakos and Dealy[8] for the right branch of their flow 
curve. The first branch results from the slip equation they propose for the left branch of  their slope curve after 
substituting all parameters for resin A at 180oC and taking  the normal stress as infinite. Finally, the second 
negative-slope branch, which corresponds to the unstable region of the flow curve for which no measurements 
have been possible, is just the line connecting the other two branches. The values of all the slip equation 
parameters and the definitions of the dimensionless numbers Ai can be found in Ref. 6.  

The other boundary conditions of the flow are shown in Fig. 1. Along the axis of symmetry, we have the 
usual symmetry conditions. Along the barrel and the contraction walls both velocity components are zero (no 
slip). Along the capillary wall, only the radial velocity is zero, whereas the axial velocity satisfies the slip 
equation (6). At the inlet plane, it is assumed that the radial velocity component is zero while the axial velocity 
is uniform, corresponding to the motion of the piston at constant speed. Note that the imposed volumetric flow 
rate, Q, is scaled by πR2V. The simulations are carried out on a fixed domain, i.e. the motion of the piston is not 
taken into account. This is a reasonable assumption provided that the piston speed is low. At the capillary exit, 
the radial velocity component and the total normal stress are assumed to be zero.  

Finally, as initial condition, we use the steady-state solution corresponding to a given volumetric flow rate 
Qold that we perturb to Q at t=0. 

3 NUMERICAL RESULTS 

We use the finite element formulation for solving this Newtonian flow problem, employing biquadratic-
velocity and bilinear-pressure elements. For the spatial discretization of the problem, we use the Galerkin forms 
of the continuity and momentum equations. For the time discretization, the standard fully-implicit (Euler 
backward-difference) scheme is used. Various finite element meshes have been used in the simulations with the 
reservoir length, Lb, ranging from 20 to 200. These were refined near the walls, and around the entrance of the 
capillary. The longest mesh (Lb=200) consisted of 4511 elements corresponding to 42403 unknowns. In all 
results presented below the following values for the slip equation parameters and the compressibility number 
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have been used: m1=3.23, A1=0.0583, m2=2.86, A2=0.929, m3=-4.43, A3=4.04, and B=1.54 10-4 .  

We first constructed the steady-state flow curves for the reservoir-capillary region. In Fig. 2, we show the 
log-log plot of the pressure drop, measured along the centerline from the piston to the die exit, versus the 
volumetric flow rate obtained with Re=0.01 and Lb=80. Due the non-monotonicity of the slip equation, the flow 
curve exhibits a maximum and a minimum, which define the limits of the unstable regime, i.e. only the steady-
state solutions corresponding to the two positive-slope branches are stable. As already mentioned, the steady-
state solutions are perturbed by changing the volumetric flow rate from an old value to the desired one Q. Given 
that the flow is compressible, the behavior of the time-dependent solution depends on whether the new value of 
Q corresponds to a positive-slope branch, or to the negative-slope branch which is unstable. In the first case, the 
new steady-state is obtained without any oscillations, whereas, in the second case, the solution is oscillatory and, 
after a transition period, becomes periodic. Self-sustained oscillations of the pressure drop and the mass flow 
rate are obtained which are similar to those observed experimentally in the stick-slip extrusion instability 
regime. All the results presented below have been obtained in the unstable regime.  

 

 

Figure 2. Flow curve for Re=0.01 and Lb=80 

 
In Fig. 3, we show the oscillations of the pressure drop (Fig. 3a) and the volumetric flow rate (Fig. 3b) 

obtained by perturbing the steady-state solution for Re=0.01, Lb=80 and Q=1.35. In Fig. 3a, we show two 
different possibilities when the pressure drop is measured across the entire flow domain, (∆P)tot, and across the 
capillary, (∆P)cap. Sudden jumps of the pressure drop are observed in the latter case. The volumetric flow rate at 
the capillary exit is also characterized by sudden jumps which is consistent with experimental observations. 
Plotting the trajectory of the solution on the flow curve plane (Fig. 4) shows that, after a transition period, a limit 
cycle is reached which follows exactly the positive-slope branches of the steady-state flow curve. The 
volumetric flow rate increases together with the pressure following exactly the left positive-slope branch of the 
flow curve and, when the pressure reaches its maximum value, Q jumps to the right positive slope branch. The 
volumetric flow rate then starts decreasing together with the pressure following this branch till the pressure 
reaches its minimum and then jumps to the left positive-slope branch and starts the next oscillation cycle. This 
behavior agrees well with experimental observations[8,10]. Note also that in our previous study[6], the limit cycles 
did not follow the steady-state flow curve due to the omission of the reservoir region. This drawback was also 
exhibited by the one-dimensional model of Greenberg and Demay[13] , which does not include the barrel region. 
Note that one-dimensional phenomenological relaxation/oscillation describe the oscillations of the pressure and 
the volumetric flow rate in the stick-slip instability regime under the assumption that these follow the 
experimental flow curve[14,15]. The present simulations are the first to show that the limit cycle follows the 
steady-state flow curve.  
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Figure 3. Pressure and flow rate oscillations for Q=1.35, Re=0.01 and Lb=80 

 
 

 

Figure 4. Trajectory of the solution on the flow curve plane; Q=1.35, Re=0.01 and Lb=80 

 
We then reduced the value of the Re from 0.01 to 0.001 in an attempt to approach the experimental value 

(1.43 10-5). As shown in Fig. 5, where we compare the oscillations of ∆P during one cycle for Re=0.01 and 
0.001, Lb=80 and Q=1.35, decreasing the Reynolds number has no practical effect on the oscillations. However, 
the artificial overshoots are observed in the flow rate. Thus instead of trying to eliminate the overshoots by 
reducing the time step (which would have resulted into much longer runs), we decided to continue the runs with 
Re=0.01. Note that in our previous study[6] for the extrudate-swell flow, in which the reservoir region has been 
excluded, we observed that as the Reynolds number is reduced the amplitude of the pressure-drop oscillations is 
reduced, the amplitude of the mass-flow-rate oscillations is increased and the frequency of the oscillations is 
considerably increased. This shows once again the importance of including the reservoir region.  
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Figure 5. Comparison of the pressure oscillations for Re=0.01 and 0.001; Lb=80 and Q=1.35 

 

 

Figure 6. Effect of the reservoir length on the pressure oscillations; Q=1.35 and Re=0.01 
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In order to study the effect of the reservoir length on the pressure oscillations we obtained results for various 

values of Lb. In Fig. 6, we show the pressure oscillations for different values of Lb, Re=0.01 and Q=1.35. We 
observe that the period of the pressure oscillations increases with Lb while their amplitude seems to be less 
sensitive. This is more clearly shown in Fig. 7, where the period and the amplitude of the pressure oscillations 
are plotted versus the reservoir volume. In agreement with experiments with different polymer melts[8,10,16,17] , 
the period T increases linearly with the reservoir volume while the amplitude is essentially constant. In Fig. 7a, 
the period appears to pass through the origin which is not the case with the experiments. Finally, in order to 
show the effect of the reservoir on the waveform of the pressure oscillations we plotted the normalized pressure 
oscillations during one cycle for Lb =20 and 200 (Fig. 8). The waveform is independent of the reservoir length, 
i.e., the durations of the compression and relaxation increase linearly with the reservoir length. This agrees well 
with the experiments of Weill[9], Hatzikiriakos and Dealy[8] and Durand et al.[10].  

 

 
 

Figure 7. The period and the amplitude of the pressure oscillations versus the reservoir volume; Q=1.35 and 
Re=0.01 

 

 

Figure 8. Effect of the reservoir length on the waveform of the pressure oscillations; Q=1.35 and Re=0.01 
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4 CONCLUSIONS 

We solved numerically the time-dependent, compressible flow of a Newtonian fluid over the reservoir-
capillary region, assuming that slip occurs along the capillary wall following a non-monotonic slip law based on 
the experimental findings of Hatzikiriakos and Dealy[7,8] for certain polyethylene melts. By using meshes of 
different length, we have studied the effect of the reservoir length on the pressure oscillations occurring when 
the imposed flow rate falls in the unstable negative-slope regime of the flow curve. Our calculations showed that 
the pressure oscillations follow the steady-state flow curve and that their period increases linearly with the 
reservoir length, while their amplitude and waveform remain unaffected. These results are in good agreement 
with the experiments of Weill[9] , Hatzikiriakos and Dealy[8], Durand et al.[10], and others, which have also shown 
that the period and the shape of the pressure oscillations vary also with the imposed flow rate, where their 
amplitude remains unaffected. The effect of Q on the pressure oscillations is currently under study.   
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