Chapter 6

UNIDIRECTIONAL FLOWS

Isothermal, laminar, incompressible Newtonian flow is governed by a system of four
scalar partial differential equations (PDEs); these are the continuity equation and
the three components of the Navier-Stokes equation. The pressure and the three
velocity components are the primary unknowns, which are, in general, functions of
time and of spatial coordinates. This system of PDEs is amenable to analytical
solution for limited classes of flow. Even in the case of relatively simple flows in
regular geometries, the nonlinearities introduced by the convective terms rule out
the possibility of finding analytical solutions. This explains the extensive use of
numerical methods in Fluid Mechanics [1]. Computational Fluid Dynamics (CFD)
is certainly the fastest growing branch of fluid mechanics, largely as a result of the
increasing availability and power of computers, and the parallel advancement of
versatile numerical techniques.

In this chapter, we study certain classes of incompressible flows, in which the
Navier-Stokes equations are simplified significantly to lead to analytical solutions.
These classes concern unidirectional flows, that is, lows which have only one nonzero
velocity component, u;. Hence, the number of the primary unknowns is reduced to
two: the velocity component, u;, and pressure, p. In many flows of interest, the PDEs
corresponding to the two unknown fields are decoupled. As a result, one can first find
u;, by solving the corresponding component of the Navier-Stokes equation, and then
calculate the pressure. Another consequence of the unidirectionality assumption, is
that u; is a function of at most two spatial variables and time. Therefore, in the
worst case scenario of incompressible, unidirectional flow one has to solve a PDE
with three independent variables, one of which is time.

The number of independent variables is reduced to two in

(a) transient one-dimensional (1D) unidirectional flows in which w; is a function of
one spatial independent variable and time; and

(b) steady two-dimensional (2D) unidirectional flows in which w; is a function of
two spatial independent variables.
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The resulting PDEs in the above two cases can often be solved using various tech-
niques, such as the separation of variables [2] and similarity methods [3].

In steady, one-dimensional unidirectional flows, the number of independent vari-
ables is reduced to one. In these flows, the governing equation for the nonzero ve-
locity component is just a linear, second-order ordinary differential equation (ODE)
which can be solved easily using well-known formulas and techniques. Such flows are
studied in the first three sections of this chapter. In particular, in Sections 1 and 2,
we study flows in which the streamlines are straight lines, i.e., one-dimensional recti-
linear flows with u,=u.(y) and u,=u.=0 (Section 6.1), and azisymmetric rectilinear
flows with u,=u.(r) and u,=ug=0 (Section 6.2). In Section 6.3, we study azisym-
metric torsional (or swirling) flows, with ug=ug(r) and u.,=u,=0. In this case, the
streamlines are circles centered at the axis of symmetry.

In Sections 6.4 and 6.5, we discuss briefly steady radial flows, with azial and
spherical symmetry, respectively. An interesting feature of radial flows is that the
nonzero radial velocity component, w,=u,(r), is determined from the continuity
equation rather than from the radial component of the Navier-Stokes equation. In
Section 6.6, we study transient, one-dimensional unidirectional flows. Finally, in
Section 6.7, we consider examples of steady, two-dimensional unidirectional flows.

Unidirectional flows, although simple, are important in a diversity of fluid trans-
ferring and processing applications. As demonstrated in examples in the following
sections, once the velocity and the pressure are known, the nonzero components
of the stress tensor, such as the shear stress, as well as other useful macroscopic
quantities, such as the volumetric flow rate and the shear force (or drag) on solid
boundaries in contact with the fluid, can be easily determined.

Let us point out that analytical solutions can also be found for a limited class of
two-dimensional almost unidirectional or bidirectional flows by means of the potential
function and /or the stream function, as demonstrated in Chapters 8 to 10. Approx-
imate solutions for limiting values of the involved parameters can be constructed
by asymptotic and perturbation analyses, which are the topics of Chapters 7 and 9,
with the most profound examples being the lubrication, thin-film, and boundary-
layer approximations.

6.1 Steady, One-Dimensional Rectilinear
Flows

Rectilinear flows, i.e., flows in which the streamlines are straight lines, are usually
described in Cartesian coordinates, with one of the axes being parallel to the flow
direction. If the flow is axisymmetric, a cylindrical coordinate system with the z-axis
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coinciding with the axis of symmetry of the flow is usually used.

Let us assume that a Cartesian coordinate system is chosen to describe a rec-
tilinear flow, with the z-axis being parallel to the flow direction, as in Fig. 6.1,
where the geometry of the flow in a channel of rectangular cross section is shown.
Therefore, u, is the only nonzero velocity component and

Uy =uy, =0. (6.1)
From the continuity equation for incompressible flow,

Uy . % . u,
dx dy dz

=0,

we find that
du,

ox

which indicates that u, does not change in the flow direction, i.e., u, is independent

of z:
uy = ux(y, 2, 1) . (6.2)
Flows satisfying Eqs. (6.1) and (6.2) are called fully developed. Flows in tubes
of constant cross section, such as the one shown in Fig. 6.1, can be considered
fully developed if the tube is sufficiently long so that entry and exit effects can be
neglected.
Due to Eqs. (6.1) and (6.2), the x-momentum equation,

<8uw . Uy . Uy . 8%) _Op . 0%y . 0%, . 0%, .
P\ "% Ty T2 ) T Tar T\ aar T oy T a2 ) TP
is reduced to
Uy @ . 0%u, . 0%u, . (6.3)
P o1 ar T\ Tayr T2 ) T P9 ‘

If now the flow is steady, then the time derivative in the x-momentum equation is
zero, and Eq. (6.3) becomes

dp Pu,  0uy,
“ae Tl T +pge = 0. (6.4)

Oz 972

The last equation which describes any steady, two-dimensional rectilinear flow
in the z-direction is studied in Section 6.5. In many unidirectional flows, it can be
assumed that

9%u,, 9%u,,
0y? > 022 7
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Figure 6.1. Geometry of flow in a channel of rectangular cross section.

and u, can be treated as a function of y alone, i.e.,

Uy = uz(y) . (6.5)
With the latter assumption, the z-momentum equation is reduced to:

dp d?u,,

+ pg. = 0. (6.6)

The only nonzero component of the stress tensor is the shear stress 7,

duy,
T X = ) 6.7
y n dy (6.7)
in terms of which the z-momentum equation takes the form
ap dTys
it 4 . =0. 6.8
ot dy + pg (6.8)

Equation (6.6) is a linear second-order ordinary differential equation and can be
integrated directly if
Ip

3 = const . (6.9)
Its general solution is given by
L (9p 2
) = — (22~ pg, . 6.10
w(y) = 5 <3$ pg)y +oay + e (6.10)
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Figure 6.2. Plane Couette flow.

Therefore, the velocity profile is a parabola and involves two constants, ¢; and cs,
which are determined by applying appropriate boundary conditions for the partic-
ular flow. The shear stress, 7,,=Ty, is linear, i.e.,

B dux_<@
Tyx_ndy_ dx

- pgx) y + neyp . (6.11)

Note that the y- and z-momentum components do not involve the velocity u,; since
uy=1u.=0, they degenerate to the hydrostatic pressure expressions

dp

9p Ip
dy

—0. 6.12
5, TP (6.12)

+ pgy, = 0 and

Integrating Eqs. (6.9) and (6.12), we obtain the following expression for the pressure:

op
p = ot P9yt pgeztc, (6.13)
where ¢ is a constant of integration which may be evaluated in any particular flow
problem by specifying the value of the pressure at a point.
In Table 6.1, we tabulate the assumptions, the governing equations, and the ge-
neral solution for steady, one-dimensional rectilinear flows in Cartesian coordinates.
Important flows in this category are:

1. Plane Couette flow, i.e., fully-developed flow between parallel flat plates of
infinite dimensions, driven by the steady motion of one of the plates. (Such a
flow is called shear-driven flow.) The geometry of this flow is depicted in Fig.
6.2, where the upper wall is moving with constant speed V (so that it remains
in the same plane) while the lower one is fixed. The pressure gradient is zero
everywhere and the gravity term is neglected. This flow is studied in Example
1.6.1.
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Assumptions:

Continuity:

r-momentum:

dp d*u _
Tox T gt T P9 =0
y-momentums:
Ip
3y + pgy = 0
Z-momentum:
Ip _

General solution:

d
Uy = ﬁ(% - pgx) y: 4+ ay + e
o )
Tyac — Txy — <8$ - pgl’) Yy —I_ N

)
p = G a+pgy+pg.z+ec

Table 6.1. Governing equations and general solution for steady, one-dimensional
rectilinear flows in Cartesian coordinates.

2. Fully-developed plane Poiseuille flow, i.e., flow between parallel plates of infi-
nite width and length, driven by a constant pressure gradient, imposed by a
pushing or pulling device (a pump or vacuum, respectively), and/or gravity.
This flow is an idealization of the flow in a channel of rectangular cross section,
with the width W being much greater than the height H of the channel (see
Fig. 6.1). Obviously, this idealization does not hold near the two lateral walls,
where the flow is two-dimensional. The geometry of the plane Poiseuille flow
is depicted in Fig. 6.4. This flow is studied in Examples 6.1.2 to 6.1.5, for
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different boundary conditions.

3. Thin film flow down an inclined plane, driven by gravity (i.e., elevation differ-
ences), under the absence of surface tension. The pressure gradient is usually
assumed to be everywhere zero. Such a flow is illustrated in Fig. 6.8, and is
studied in Example 1.6.6.

All the above flows are rotational, with vorticity generation at the solid bound-

aries,
J k 5
_ _ d _ Uy
w=Vxul, =10 Dy 0 _—<8y)wk7ﬁ0_
u; 0 "

The vorticity diffuses away from the wall, and penetrates the main flow at a rate
v(d*u,/dy*). The extensional stretching or compression along streamlines is zero,
i.e.,

,_8%_0
€= or

Material lines connecting two moving fluid particles traveling along different stream-

lines both rotate and stretch, where stretching is induced by rotation. However, the
principal directions of strain rotate with respect to those of vorticity. Therefore,
strain is relaxed, and the flow is weak.

Example 6.1.1. Plane Couette flow
Plane Couette flow,! named after Couette who introduced it in 1890 to measure
viscosity, is fully-developed flow induced between two infinite parallel plates, placed

at a distance H apart, when one of them, say the upper one, is moving steadily with
speed V relative to the other (Fig. 6.2). Assuming that the pressure gradient and
the gravity in the z-direction are zero, the general solution for w, is:

Uy = 1Y + €2
For the geometry depicted in Fig. 6.2, the boundary conditions are:

uy =0 at y=0 (lower plate is stationary);
uy =V at y=H (upper plate is moving).

By means of the above two conditions, we find that ¢=0 and ¢;=V/H. Substituting
the two constants into the general solution, yields

Up = — Y. (6.14)

!Plane Couette flow is also known as simple shear flow.
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The velocity u, then varies linearly across the gap. The corresponding shear stress
is constant,

v
ﬁ .

A number of macroscopic quantities, such as the volumetric flow rate and the
shear stress at the wall, can be calculated. The volumetric flow rate per unit width
is calculated by integrating w, along the gap:

v = [ g
w =, Uy dy = : Hydy ==

Tye = 1] (6.15)

@ _1
=g AV (6.16)

The shear stress 7,, exerted by the fluid on the upper plate is

v

Tw = —Tyzly=H = — 5 - (6.17)
The minus sign accounts for the upper wall facing the negative y-direction of the
chosen system of coordinates. The shear force per unit width required to move the

upper plate is then

F L Vv
— = - wdr = n—1L,
W /0 Tt =y
where L is the length of the plate.
v
_—
4 A
4 Y
o U=V H
E Y
x
_—
%

Figure 6.3. Plug flow.

Finally, let us consider the case where both plates move with the same speed V,
as in Fig. 6.3. By invoking the boundary conditions
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we find that ¢;=0 and c3=V, and, therefore,
U, = V.
Thus, in this case, plane Couette flow degenerates into plug flow. O

Example 6.1.2. Fully-developed plane Poiseuille flow

Plane Poiseuille flow, named after the channel experiments by Poiseuille in 1840,
occurs when a liquid is forced between two stationary infinite flat plates, under
constant pressure gradient dp/dz and zero gravity. The general steady-state solution
is

1 adp ,
Jy) = — 22 6.18
u(y) o oz Yo+ ay + e (6.18)
and 5
Tye = £ Yy + ner. (6.19)
C)
Ur =g (Y) — 20

Figure 6.4. Plane Poiseuille flow.

By taking the origin of the Cartesian coordinates to be on the plane of symmetry
of the flow, as in Fig. 6.4, and by assuming that the distance between the two plates
is 2H, the boundary conditions are:

d
Tye = 1) diyl’ =0 at y=0 (symmetry);

uy =0 at y=H (stationary plate).

Note that the condition u,=0 at y=—H may be used instead of any of the above
conditions. By invoking the boundary conditions at y=0 and H, we find that ¢;=0
and

1 dp 2

Cy = —%%
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The two constants are substituted into the general solution to obtain the following
parabolic velocity profile,

1 6[) 2 2
r = —— H” — . 6.20

If the pressure gradient is negative, then the flow is in the positive direction, as in
Fig. 6.4. Obviously, the velocity u, attains its maximum value at the centerline

(y=0):
i @ H? .

2n dx

ux,max -

The volumetric flow rate per unit width is

H H 1 8
Q:/ uxdy:2/ ———p(Hz—yz)dy ==
w -H 0

Q = —— — HW. (6.21)

As expected, Eq. (6.21) indicates that the volumetric flow rate @ is proportional
to the pressure gradient, dp/dz, and inversely proportional to the viscosity 7. Note
also that, since dp/dz is negative, Q) is positive. The average velocity, 4,, in the

channel is: 5 8
WH 3n dx
The shear stress distribution is given by
op
s = Ly, 6.22
Ty oz Y ( )

i.e., Ty, varies linearly from y=0 to H, being zero at the centerline and attaining its
maximum absolute value at the wall. The shear stress exerted by the fluid on the
wall at y=H is

dp
Tw = —Tyaly=H = _%H

Example 6.1.3. Plane Poiseuille flow with slip

Consider again the fully-developed plane Poiseuille flow of the previous example,

and assume that slip occurs along the two plates according to the slip law

Tw:ﬁuw at y=H,
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where [ is a material slip parameter, 7, is the shear stress exerted by the fluid on
the plate,

Tw = _Tyx|y:H ’

and w,, is the slip velocity. Calculate the velocity distribution and the volume flow
rate per unit width.

Uny

Figure 6.5. Plane Poiseuille flow with slip.

Solution:
We first note that the flow is still symmetric with respect to the centerline. In this
case, the boundary conditions are:

duy,
dy
Tw = ﬁuw at y:H

Tye = 1) =0 at y=0,

The condition at y=0 yields ¢;=0. Consequently,

1L dp 4
Uy = % % + C2,
and 5 5
P P
Tyos — % Y = Tw = —5- H

Applying the condition at y=H, we obtain

1 1 dp 1 dp 5
w = STw acH = ———0>H —— — —H = ———H.
o = 5T 7 w() 3 oz mar T 3 oz
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Consequently,
1 ap 9 277H)
= g2y
o= g ()
and 19 ol
4 2 1 2
p= —— = (HEP 2 2 6.23
w= g (14T ) (6:23)

Note that this expression reduces to the standard Poiseuille flow profile when g—o0.
Since the slip velocity is inversely proportional to the slip coefficient 3, the standard
no-slip condition is recovered.

An alternative expression of the velocity distribution is

1 dp 2 2
Uy = uw_%% (H _y) 9

which indicates that u, is just the superposition of the slip velocity u,, to the velocity
distribution of the previous example.

For the volumetric flow rate per unit width, we obtain:

Q /H 2 0p 4
— =2 cdy = 2u,H — —— H
w 0 o @Y “ 3n oz
2 dp 3< 377)
= —-———0H 1+—) W. 6.24
@ 3n oz +ﬁH ( )

Example 6.1.4. Plane Couette-Poiseuille flow

Consider again fully-developed plane Poiseuille flow with the upper plate moving
with constant speed, V (Fig. 6.6). This flow is called plane Couette-Poiseuille flow
or general Couette flow. In contrast to the previous two examples, this flow is not

symmetric with respect to the centerline of the channel, and, therefore, having the
origin of the Cartesian coordinates on the centerline is not convenient. Therefore,
the origin is moved to the lower plate.

The boundary conditions for this flow are:

u, =0 at y=0,
u =V at y=ua,

where a is the distance between the two plates. Applying the two conditions, we
get ¢co=0 and
1 ap , |4 1 dp

= — —ua cia = ¢ = ————ua
2n Ox +a ! a 2ndz
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Figure 6.6. Plane Poiseuille flow with the upper plate moving with constant speed.

respectively. Therefore,

Vv 1 ap 9
o, ). 6.25
te = oy = goa (e —y) (6.25)
The shear stress distribution is given by
|4 10p
= — =g —2y). 6.26
T = N = 55, (0= 2Y) (6.26)

It is a simple exercise to show that Eq. (6.25) reduces to the standard Poiseuille
velocity profile for stationary plates, given by Eq. (6.20). (Keep in mind that a=2H
and that the y-axis has been translated by a distance H.) If instead, the pressure
gradient is zero, the flow degenerates to the plane Couette flow studied in Example
1.6.1, and the velocity distribution is linear. Hence, the solution in Eq. (6.25) is the
sum of the solutions to the above two separate flow problems. This superposition
of solutions is a result of the linearity of the governing equation (6.6) and boundary
conditions. Note also that Eq. (6.25) is valid not only when both the pressure
gradient and the wall motion drive the fluid in the same direction, as in the present
example, but also when they oppose each other. In the latter case, some reverse
flow —in the negative x direction— can occur when dp/dz >0.

Finally, let us find the point y* where the velocity attains its maximum value.
This point is a zero of the shear stress (or, equivalently, of the velocity derivative,

du,/dy):

« (3)
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The flow is symmetric with respect to the centerline, if y*=a/2, i.e., when V=0.
The maximum velocity wy 4. is determined by substituting y* into Eq. (6.25).
O

Example 6.1.5. Poiseuille flow between inclined plates

Consider steady flow between two parallel inclined plates, driven by both constant
pressure gradient and gravity. The distance between the two plates is 2H and the
chosen system of coordinates is shown in Fig. 6.7. The angle formed by the two
plates and the horizontal direction is 4.

—gcosfj /0

Figure 6.7. Poiseuille flow between inclined plates.

The general solution for u, is given by Eq. (6.10):

1 0
uy(y) = (—p —pgx) Y+ ay + .

% dx
Since,
gr = g sinf,
we get
1 /0
uz(y) = o (£ —pgsin0) v+ ay + e
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Integration of this equation with respect to y and application of the boundary con-
ditions, du,/dy=0 at y=0 and u,=0 at y=H, give

1

uy(y) = o (—g—i + pg sin@) (H? —y%). (6.27)

The pressure is obtained from Eq. (6.13) as

—@x—l— + ¢ =
p—ax P9y Y

d

p = %x + pgcosby + c (6.28)

Example 6.1.6. Thin film flow
Consider a thin film of an incompressible Newtonian liquid flowing down an inclined
plane (Fig. 6.8). The ambient air is assumed to be stationary, and, therefore, the
flow is driven by gravity alone. Assuming that the surface tension of the liquid is
negligible, and that the film is of uniform thickness é, calculate the velocity and the
volumetric flow rate per unit width.

Solution:
The governing equation of the flow is

d*u d*u .
g TP =0 = o= —pgsind,

Ul

with general solution

sinf y?
%:_pg y—+61y+62-
7 2

As for the boundary conditions, we have no slip along the solid boundary,
u, =0 at y=0,
and no shearing at the free surface (the ambient air is stationary),

d
Tyx:ndiyl’:o at y=26.

Applying the above two conditions, we find that ¢3=0 and ¢;=pg sinf/(nd), and thus

. 0 2
Uy = pg:n (5y— %) . (6.29)
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Stationary air
(Ty»=0 at y=0)

Thin film

—gcosfj/0

Figure 6.8. Film flow down an inclined plane.

The velocity profile is semiparabolic, and attains its maximum value at the free
surface,

inf 62
Ugmaw = Up(8) = 2270
? 2/’7
The volume flow rate per unit width is
§ inf 63
% - /0 up dy = %, (6.30)

and the average velocity, 4,, over a cross section of the film is given by

o Q pgsind 62
W 3n ’

]

Note that if the film is horizontal, then sinf=0 and u, is zero, i.e., no flow occurs.
If the film is vertical, then sinf=1, and

2
Uy = % (5y— %) (6.31)
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and

W 3

Q _ ot (6.32)

By virtue of Eq. (6.13), the pressure is given by
P =p9yy t+c= —pgcosby + c.
At the free surface, the pressure must be equal to the atmospheric pressure, pg, so
py = —pgcoshd + ¢

and
p = po+ pg(6—y) cosh. (6.33)

Example 6.1.7. Two-layer plane Couette flow

Two immiscible incompressible liquids A and B of densities p4 and pp (pa > pB)
and viscosities 174 and np flow between two parallel plates. The flow is induced by
the motion of the upper plate which moves with speed V', while the lower plate is
stationary (Fig. 6.9).

HV
Y
Hy Fluid A ut=ul(y)
T

Figure 6.9. Two-layer plane Couette flow.

The velocity distributions in both layers obey Eq. (6.6) and are given by
Eq. (6.10). Since the pressure gradient and gravity are both zero,

wl =y +ef, 0<y<Hyu,
P = By + B, Hy<y<Hs+ Hp,
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where ¢, ¢!, ¢P and ¢ are integration constants determined by conditions at the

solid boundaries and the interface of the two layers. The no-slip boundary conditions
at the two plates are applied first. At y=0, u2=0; therefore,

0’24:0.

At y=H, + Hp, uB=V; therefore,
B =v_CB(Hy+Hp).
The two velocity distributions become

uﬁchyv OSySHAv
WP =V - B(Hy+Hp—y), Ha<y<Hs+Hp.

At the interface (y=H 4), we have two additional conditions:
(a) the velocity distribution is continuous, i.e.,
d=wl at y=Hy;

u x

(b) momentum transfer through the interface is continuous, i.e.,

A B

Tyr = Tye @b y=Hy —
du? du®

NAa—— = Np—— at y=Hy.
dy dy

From the interface conditions, we find that

A ngV B naV

C = and C = .
! nallp + npHa ! nallp + npHa

Hence, the velocity profiles in the two layers are

A ngV

= B 0<y<Ha, 6.34
W IET y < Hy (6.34)

B naV
=V - — — (H Hp — Hi<y< H Hg . 6.35
U 77AHB‘|‘77BHA( a+Hp—y), Ha<y<Hs+ Hp (6.35)

If the two liquids are of the same viscosity, ng=ng=n, then the two velocity
profiles are the same, and the results simplify to the linear velocity profile for one-
layer Couette flow,

e v il
Hy+ Hp
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6.2 Steady, Axisymmetric Rectilinear Flows

Azisymmetric flows are conveniently studied in a cylindrical coordinate system,
(7,8, z), with the z-axis coinciding with the axis of symmetry of the flow. Azisym-
metry means that there is no variation of the velocity with the angle 6,

ou_ (6.36)
a0 '

There are three important classes of axisymmetric unidirectional flows (i.e., flows
in which only one of the three velocity components, u,, ug and u., is nonzero):

1. Azisymmetric rectilinear flows, in which only the axial velocity component,
U, is nonzero. The streamlines are straight lines. Typical flows are fully-
developed pressure-driven flows in cylindrical tubes and annuli, and open film
flows down cylinders or conical pipes.

2. Azisymmetric torsional flows, in which only the azimuthal velocity component,
ug, is nonzero. The streamlines are circles centered on the axis of symmetry.
These flows, studied in Section 6.3, are good prototypes of rigid-body rotation,
flow in rotating mixing devices, and swirling flows, such as tornados.

3. Azisymmetric radial flows, in which only the radial velocity component, u,,
is nonzero. These flows, studied in Section 6.4, are typical models for radial
flows through porous media, migration of oil towards drilling wells, and suction
flows from porous pipes and annuli.

As already mentioned, in axisymmetric rectilinear flows,
u, =ug = 0. (6.37)

The continuity equation for incompressible flow,

12( )+l%+8u2—0
rors r 08 oz 7
becomes

du,

Jz

From the above equation and the axisymmetry condition (6.36), we deduce that

uy = u(r,t). (6.38)
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Due to Eqs. (6.36)-(6.38), the z-momentum equation,

<8uz Ou, uy Ou, 8u2) Op [1 0 ( 8u2) 1 0%u, 0O%u,
P =—53_T7 .

at T T ee T )T e T rer "ar ) T2 eez a2 | P9

is simplified to

u, dp 18<3u2
= —— —|r

Par T Ta: T ey 87‘) +Pge - (6.39)

For steady flow, u,=u,(r) and Eq. (6.39) becomes an ordinary differential equation,

o 1i<du2) +opg. = 0 (6.40)
0z rdr \ dr pg= = T~ '

The only nonzero components of the stress tensor are the shear stresses 7., and

Tzry
du,
rz — Tzr = ) 6.41
- (6.41)
for which we have 5 p
p 1 .
— 5, t -7 (rme) + pge = 0. (6.42)

When the pressure gradient dp/dz is constant, the general solution of Eq. (6.39)
is

1 /0
u, = E (8_12) —pgz) o+ oelnr 4+ ey (6.43)
For 7,., we get
1 /0p 1
S e o 6.44
T 2<82 pg)r+nr (6.44)

The constants ¢; and ¢y are determined from the boundary conditions of the flow.
The assumptions, the governing equations and the general solution for steady, ax-
isymmetric rectilinear flows are summarized in Table 6.2.

Example 6.2.1. Hagen-Poiseuille flow

Fully-developed azisymmetric Poiseuille flow, or Hagen-Poiseuille flow, studied ex-

perimentally by Hagen in 1839 and Poiseuille in 1840, is the pressure-driven flow in

infinitely long cylindrical tubes. The geometry of the flow is shown in Fig. 6.10.
Assuming that gravity is zero, the general solution for u, is

10
Uy = Ea—irz + cglnr + ¢o.
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Assumptions:

U, = ug = 0, 90 =0, %:const.

Continuity:

z-momentum:

r-momentum:

#-momentum:

9s = — Uy = u(T)
ap 1d/( du, _
—gf + i e (VdE) + pos = 0
3]
~gr + pgr =0
7]
—%—g + pgg = 0

General solution:

us = L(% - pgz) el 4 oo
- pgz) T+ G

d
p = a_é)Z—I_C(TvO)

[ ¢(r,0)=const. when g,=gy=0 |

Table 6.2. Governing equations and general solution for steady, azxisymmetric

rectilinear flows.

The constants ¢; and ¢9 are determined by the boundary conditions of the flow.
Along the axis of symmetry, the velocity w. must be finite,

u, finite  at

r=0.

Since the wall of the tube is stationary,

u, =0 at

r=~R.
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| 1 Z
Figure 6.10. Azisymmetric Poiseuille flow.
By applying the two conditions, we get ¢;=0 and
1 dp
€2 ——— 5o I,
4n dz
and, therefore,
1 9p 2 2
T (R _T) , (6.45)

which represents a parabolic velocity profile (Fig. 6.10). The shear stress varies
linearly with r,

1dp

——=r

20z

and the shear stress exerted by the fluid on the wall is

Trz =

1dp
Tw = —Trzlr=p = ——— R.
w 7’Z|7’—R 292
(Note that the contact area faces the negative r-direction.)

The maximum velocity occurs at r=0,

Uz mar =

_i@ R? .
4n dz

For the volume flow rate, we get:

R R
Q = /0 uy 277 dr = _%%‘/0 (RZ—Tz)TdT =

T Op 4
= —— — R*. 6.46
Q 35 92 (6.46)
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Note that, since the pressure gradient dp/dz is negative, @ is positive. Equation
(6.46) is the famous experimental result of Hagen and Poiseuille, also known as
the fourth-power law. This basic equation is used to determine the viscosity from
capillary viscometer data after taking into account the so-called Bagley correction
for the inlet and exit pressure losses.

The average velocity, ., in the tube is

9 13PR2‘

YT TR T 81 0z

Example 6.2.2. Fully-developed flow in an annulus

Consider fully-developed pressure-driven flow of a Newtonian liquid in a sufficiently
long annulus of radii R and xR, where k <1 (Fig. 6.11). For zero gravity, the
general solution for the axial velocity u, is

10
Uy = EG_§T2+611HT+CQ'

Figure 6.11. Fully-developed flow in an annulus.

Applying the boundary conditions,

we find that

T 4ndz T In(1/k)
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and 18
oy = __ 9 R’—cilnR.
4n 0z
Substituting ¢; and ¢y into the general solution we obtain:
1 0p r\%? 11— k? r
L= —— L R21— (= — In—| . 6.47
B andz [ (R) —I—ln(l//@) "R (6:47)

The shear stress is given by

e =120 2(3) -t (2] (6.45)

The maximum velocity occurs at the point where 7,.,=0 (which is equivalent to

du,/dr=0), i.e., at
) L2 Y2
= R |——— .
2In(1/k)

Substituting into Eq. (6.47), we get

2 2
R S/ 'S IR Sl ui PR S St O
’ andz 2In(1/k) 2In(1/k)
For the volume flow rate, we have

R T dp R r\? 1-k? r
= L 2nrd :———Rz/ 1—(—) — " In—|rd
Q /0 Uy 2w dr o0 92 : [ 7 —I_ln(l/m) n| rdr =
T Op 4 4 (1- “2)2
= ——R 1- - . 6.49
@ 8n dz [( " ) In(1/k) (6:49)
The average velocity, @, in the annulus is

I Q _ 1 dp, 2 (1-r?)
e = TR? — n(kR)? _87782R l(l—l—/@)— | ] ’

Example 6.2.3. Film flow down a vertical cylinder
A Newtonian liquid is falling vertically on the outside surface of an infinitely long
cylinder of radius R, in the form of a thin uniform axisymmetric film, in contact
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bEie

TN T
D

|| Stationary
u.(r) air

Figure 6.12. Thin film flow down a vertical cylinder.

with stationary air (Fig. 6.12). If the volumetric flow rate of the film is @, calculate
its thickness 6. Assume that the flow is steady, and that surface tension is zero.

Solution:
Equation (6.43) applies with g—lz):O:

1 2
Uy = ——pg. " +ecrlnr+ ¢
4n

Since the air is stationary, the shear stress on the free surface of the film is zero,

du. R+ 6)?
Tmznu:0 at r=R+6 — clngﬁ.
dr 27
At r=R, u,=0; consequently,
1 2
cg = —pgR* —ciInR.
4n
Substituting into the general solution, we get
1
u, = —pg |R* —r* +2(R+6)* In - (6.50)

4n R
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For the volume flow rate, ¢, we have:
R+¢6 T R+§ r
QI/ uz%rdr:—pg/ [RQ—TQ-I-Q(R—I—(S)QIH—]rdr.
R 2n " JR R

After integration and some algebraic manipulations, we find that

T \* 6 6 6 6\ 2
= —pgR* {41+~ ) In{1+—-)—-=(2+=)|3(1+=5) —1];. (6.51
95 {(*3) n<+R) R(+R)[(+R) H (6.51)
When the annular film is very thin, it can be approximated as a thin planar film.
We will show that this is indeed the case, by proving that for

6<<1
R ?

Eq. (6.51) reduces to the expression found in Example 6.1.6 for a thin vertical
planar film. Letting

6
€= —
R
leads to the following expression for @,

Q = Ezr—n,ogR4 {4(1—|—€)4 In(14¢€) — €e(2+4¢) [3(1+€)2—1]} .

Expanding In(1 + €) into Taylor series, we get
2 3 4

— e, & 5
In(1+¢€) = ¢ 5 + 3 4—|—O(€).

Thus

2 3 4
(1—|—€)4ln(1—|—€) = (1—|—4€—|—6€2—|—4€3—|—€4) [€—€—+€——€——|—O(€5)]
2 3 4

133 25

= e+ —€ 4+ — 4 126 —|—O(€5)

Consequently,
7T 4 13 5 4 2 3 4
Q:%pgR €—|——€ —|——€ —|——€ + O(e ) —(de+ 14€e” + 127 +3€%) ¢,
o 16 11
T
_ R4 -3 _ -4 9] 5 :|
Q el [ TS (€7)
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Keeping only the third-order term, we get

16 /6\° 63
3n 3

R

2rR 3p

By setting 27 R equal to W, the last equation becomes identical to Eq. (6.32). O

Example 6.2.4. Annular flow with the outer cylinder moving
Consider fully-developed flow of a Newtonian liquid between two coaxial cylinders
of infinite length and radii R and xR, where x <1. The outer cylinder is steadily

translated parallel to its axis with speed V', whereas the inner cylinder is fixed
(Fig. 6.13). For this problem, the pressure gradient and gravity are assumed to be
negligible.

Figure 6.13. Flow in an annulus driven by the motion of the outer cylinder.

The general solution for the axial velocity u, takes the form
U, = ¢ilnr+eq.

For r=rkR, u.=0, and for r=R, u,=V. Consequently,

v
g = —— and ¢y = —VM.
In(1/k)

n(1/k)

Therefore, the velocity distribution is given by

_ (5
u, = VW. (6.52)
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Let us now examine two limiting cases of this flow.
(a) For k—0, the annular flow degenerates to flow in a tube. From Eq. (6.52), we
In (L) In 5
.= lim V —£BEL = Vi [1 R]:v
v = Y k) S LR YY)

In other words, we have plug flow (solid-body translation) in a tube.

(b) For k—1, the annular flow is approximately a plane Couette flow. To demon-
strate this, let

have

1—&k

1
€= ——1 =
K K
and AR
AR =R—-—kR = (1-K) R = KR = —.
€

Introducing Cartesian coordinates, (y, z), with the origin on the surface of the inner
cylinder, we have

r y
— r— kR = =14+
y=r=F W R TAR

Substituting into Eq. (6.52), we get

v
w, =V M (6.53)
In(1 + ¢)

Using L’Hopital’s rule, we find that

In (14 e) y 14 ¢ y
limV ———A&& = limV - ——— = V-,
20" T In(L + e) 0 AR 1+ el AR

Therefore, for small values of ¢, that is for k—1, we obtain a linear velocity dis-
tribution which corresponds to plane Couette flow between plates separated by a
distance AR. |

6.3 Steady, Axisymmetric Torsional Flows

In axisymmetric torsional flows, also referred to as swirling flows,
u =u, =0, (6.54)

and the streamlines are circles centered at the axis of symmetry. Such flows usually
occur when rigid cylindrical boundaries (concentric to the symmetry axis of the
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flow) are rotating about their axis. Due to the axisymmetry condition, dug/86=0,
the continuity equation for incompressible flow,

1 8( )+ 1 duyg u,
rars " r 00 0z
is automatically satisfied.

Assuming that the gravitational acceleration is parallel to the symmetry axis of
the flow,

=0,

g = —ge,, (6.55)
the r- and z-momentum equations are simplified as follows,

ui _ Op

= 6.56
r or’ ( )
Ip
Jz

Equation (6.56) suggests that the centrifugal force on an element of fluid balances

+ pg = 0. (6.57)

the force produced by the radial pressure gradient. Equation (6.57) represents the
standard hydrostatic expression. Note also that Eq. (6.56) provides an example
in which the nonlinear convective terms are not vanishing. In the present case,
however, this nonlinearity poses no difficulties in obtaining the analytical solution
for ug. As explained below, ug is determined from the #-momentum equation which
is decoupled from Eq. (6.56).
By assuming that
ap
5 =
and by integrating Eq. (6.57), we get

0

p = —pgz+e(rit);
consequently, dp/dr is not a function of z. Then, from Eq. (6.56) we deduce that
ug = ug(r,t). (6.58)
Due to the above assumptions, the #-momentum equation reduces to

Jug g (10

For steady flow, we obtain the linear ordinary differential equation

dilr (li(m&)) ~ 0, (6.60)
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the general solution of which is

C

ug = ar + 72 (6.61)

The constants ¢y and ¢y are determined from the boundary conditions of the flow.

Assumptions:
d d

Uy = Uz = 07 % 07 8_]0):07 g=—-ge;
Continuity: Satisfied identically
#-momentum:

d(1d _

dr (7‘ dr(rue)) =0
z-momentum:

d

95 + pg=0
r-momentum:

uz _ dp

p =g, = ug=ug(r)
General solution:

Ug = 1 r + CTQ

Tre = Tor = _277%

2,2 2
p = p(% + 2cicplnr — %) —pgz + c

Table 6.3.
torsional flows.

Governing equations and general solution for steady, axisymmetric

The pressure distribution is determined by integrating Eqs. (6.56) and (6.57):

2
pz/%dr—pgz

=
.
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2.2 2
e s
p=p (—2 + 2¢cico Inr — _2r2) - pgz + c, (6.62)

where ¢ is a constant of integration, evaluated in any particular problem by speci-
fying the value of the pressure at a reference point.

Note that, under the above assumptions, the only nonzero components of the
stress tensor are the shear stresses,

T = Tor = nri (ﬁ) , (6.63)

dr \r

in terms of which the #-momentum equation takes the form

d
%(rzw) =0. (6.64)
The general solution for 7,4 is
C2
T = —271 2 (6.65)

The assumptions, the governing equations and the general solution for steady,
axisymmetric torsional flows are summarized in Table 6.3.

Example 6.3.1. Steady flow between rotating cylinders

The flow between rotating coaxial cylinders is known as the circular Couette flow,
and is the basis for Couette rotational-type viscometers. Consider the steady flow
of an incompressible Newtonian liquid between two vertical coaxial cylinders of
infinite length and radii By and Rs, respectively, occurring when the two cylinders
are rotating about their common axis with angular velocities €7 and 5, in the
absence of gravity (Fig. 6.14).2

The general form of the angular velocity wug is given by Eq. (6.61),

C2
ug = c1r + —.
r

The boundary conditions,

Ug = QlRl at T = R1 )
Ug = QQRQ at T = R2 5

2The time-dependent flow between rotating cylinders is much more interesting, especially the
manner in which it destabilizes for large values of €21, leading to the generation of axisymmetric
Taylor vortices [4].
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I

Figure 6.14. Geometry of circular Couette flow.

result in
R2Q, — R2Q R2R2
0= T ol o= e (-,
2 — 1Y 2 — 14
Therefore,
1 2 2 2 12 1
g — 117 r

Note that the viscosity does not appear in Eq. (6.66), because shearing between
adjacent cylindrical shells of fluid is zero. This observation is analogous to that
made for the plane Couette flow [Eq. (6.14)]. Also, from Eqs. (6.62) and (6.65), we
get

p= pm %(R%Qz — R3O r? 4 2RIRZ(RAQ, — REQ)(Qy — Q) In
1 4 p4 2 1
— S RIR (D2 = )" 5| + ¢, (6.67)
and P2 p2 .
Trg = 27 W (Qy — ) = (6.68)

Let us now examine the four special cases of flow between rotating cylinders,
illustrated in Fig. 6.15.
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(a) The inner cylinder is fixed (£2;=0)

__R39 ( R_%)
ug_R%—R% 7 7

Q

®)

For p, see Eq. (6.70)

(b) ©1=0,=0
ug=Qr

p:%pﬁz r? +ec

&)

(Rigid-body rotation)

(¢) No inner cylinder

Q u@IQQ T

p=1p3 1 ¢

(Rigid-body rotation)

d

(d) No outer cylinder

ug=R3Q, +

\\53
= @

p=—gp R0t 5+

Figure 6.15. Different cases of flow between rotating vertical coaxial cylinders of
infinite height.
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(a) The inner cylinder is fixed, i.e., ,=0. In this case,

R3Q, R?
g = R2 R2 (T — 7) (669)
and
R3OS 2 Ry
= p—"= 2R{Inr — — 6.70
P p(R%_R%)Q + nr—og)te. (6.70)
The constant ¢ can be determined by setting p=pg at r=Ry; accordingly,
R3102 r? — R? 9, T R /1 1
= 2R1———1<———) : 6.71
PEPRE R | T2 TR T2 \m TRt (6.71)

For the shear stress, 7.4, we get

R2RZ 1
Trog = 277 R2 R2 QQ 7‘_2 . (672)

The shear stress exerted by the liquid to the outer cylinder is

R

o (6.73)

Tw = _TT€|T:R2 = _277

In viscosity measurements, one measures the torque T' per unit height L, at the
outer cylinder,

T
L= R(-n) =

L
T RIR:
7= AT ——= - Q. (6.74)

The unknown viscosity of a liquid can be determined using the above relation.
When the gap between the two cylinders is very small, circular Couette flow can
be approximated as a plane Couette flow. Indeed, letting r=R;+Ar, we get from
Eq. (6.69)
R2Q, 243
R} — R} 14+ 4-

g =

When Ry — Ry, Ar/Ry <1 and, therefore,

Ry, Ry,
Uy = —————2Ar = ——— Ar,
T 2ARy— Ry) Ry— Ry
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which is a linear velocity distribution corresponding to plane Couette flow between
plates separated by a distance Ry-Ry, with the upper plate moving with velocity
Ro0s.

(b) The two cylinders rotate with the same angular velocity, i.e.,
2 =0Q,=0.
In thic case, ¢1= and ¢3=0. Consequently,
ug = Qr, (6.75)

which corresponds to rigid-body rotation. This is also indicated by the zero tangen-
tial stress,

C2
Trg = —277T—2 = 0.

For the pressure, we get

1
p = 5,0(22 P+ oc. (6.76)

(c¢) The inner cylinder is removed. In thic case, c;=83 and ¢3=0, since ug (and 7,4)
are finite at r=0. This flow is the limiting case of the previous one for By—0,

1
ug = Q9r, 74 =0 and p:ip(lgrz—l—c.
(d) The outer cylinder is removed, i.e., the inner cylinder is rotating in an infinite

pool of liquid. In this case, ug—0 as r—o0, and, therefore, ¢;=0. At r=Rq, ug=21 Ry
which gives

Cy = R%Ql .
Consequently,
1
ug = RIQ —, (6.77)
r
2 1
Trg = =20 RiQy — (6.78)
r
and
Lorio2 L4 (6.79)
= —= — + c. .
p 20 1 17‘2

The shear stress exerted by the liquid to the cylinder is

Tw = TT€|T:R1 = -2 Q. (680)
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The torque per unit height required to rotate the cylinder is

T
T = 2 RY (—1,) = 47y RIQ, . (6.81)
O

In the previous example, we studied flows between vertical coaxial cylinders of
infinite height ignoring the gravitational acceleration. As indicated by Eq. (6.62),
gravity has no influence on the velocity and affects only the pressure. In case of
rotating liquids with a free surface, the gravity term should be included if the top
part of the flow and the shape of the free surface were of interest. If surface tension
effects are neglected, the pressure on the free surface is constant. Therefore, the
locus of the free surface can be determined using Eq. (6.62).

Example 6.3.2. Shape of free surface in torsional flows
In this example, we study two different torsional flows with a free surface. First,
we consider steady flow of a liquid contained in a large cylindrical container and
agitated by a vertical rod of radius R that is coaxial to the container and rotates at
angular velocity . If the radius of the container is much larger than R, one may
assume that the rod rotates in an infinite pool of liquid (Fig. 6.16).

z
R

\\/Q

/ P=Dpo

R

Figure 6.16. Rotating rod in a pool of liquid.

From the results of Example 6.3.1, we have ¢;=0 and ¢;=QR. Therefore,

1
ug = R*Q =
.
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and
1

2

With the surface tension effects neglected, the pressure on the free surface is equal

1
p = pR4QQT—2—ng—|—c.

to the atmospheric pressure, pg. To determine the constant ¢, we assume that the
free surface contacts the rod at z=zy. Thus, we obtain

151
czpo+§pRQ 72 T Pg 20

and ) )
pRQ? (— — 7‘_2) — pg(z—2) + po. (6.82)

Since the pressure is constant along the free surface, the equation of the latter is

1 .. (1 1
0=p—po = §PRQ (E—T—Q) - pg(z—2) =
R2Q? R?

The elevation of the free surface increases with the radial distance r and approaches
asymptotically the value

R%Q?
Zoo = 2o + .
29

This flow behavior, known as rod dipping, is a characteristic of generalized-Newtonian
liquids, whereas viscoelastic liquids exhibit rod climbing (i.e., they climb the rotating
rod) [5].

Consider now steady flow of a liquid contained in a cylindrical container of radius
R rotating at angular velocity € (Fig. 6.17). From Example 6.3.1, we know that
this flow corresponds to rigid-body rotation, i.e.,

ug = Qr.

The pressure is given by

1
p = 5,0(227‘2 —pgz + c.

Letting zp be the elevation of the free surface at r=0, and py be the atmospheric
pressure, we get

¢ = po + pg 2,
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Z

Figure 6.17. Free surface of liquid in a rotating cylindrical container.

and thus )
p = 5,0(22 r? — pg(z—2) + po- (6.84)

The equation of the free surface is
1
0=p=—po = 51" = pg(z=2) =

02 9
= — 6.85
z zo + 2 e, ( )

i.e., the free surface is a parabola. O

Example 6.3.3. Superposition of Poiseuille and Couette flows
Consider steady flow of a liquid in a cylindrical tube occurring when a constant
pressure gradient dp/dz is applied, while the tube is rotating about its axis with
constant angular velocity € (Fig. 6.18). This is obviously a bidirectional flow, since
the axial and azimuthal velocity components, u, and wug, are nonzero.

The flow can be considered as a superposition of axisymmetric Poiseuille and
circular Couette flows, for which we have:

L 9p 2
Uy = U (T)= —— — (R*—r and  ug =ug(r)= Qr.
=)= g SRR =) s = uo(r)
This superposition is dynamically admissible, since it does not violate the continuity
equation, which is automatically satisfied.
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-

Figure 6.18. Flow in a rotating tube under constant pressure gradient.

Moreover, the governing equations of the flow, i.e., the z- and #-momentum
equations,

@_|_ 12<8u2)_0 d 2(12( ))_0
0z ror \"or ) T an or \ror" V) =

are linear and uncoupled. Hence, the velocity for this flow is given by

1 0
u:uZeZ+U9e9:—Ea—i(RQ—ﬁ)eZ—l—Qreg, (6.86)

which describes a helical flow.
The pressure is obtained by integrating the r-momentum equation,

uj _ Op

r or’

taking into account that dp/dz is constant. It turns out that

dp 1
= = —pQ* r? 6.87
R B AU (6.87)
which is simply the sum of the pressure distributions of the two superposed flows. It
should be noted, however, that this might not be the case in superposition of other
unidirectional flows. |
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6.4 Steady, Axisymmetric Radial Flows

In axisymmetric radial flows,
uy, =ug=0. (6.88)

Evidently, the streamlines are straight lines perpendicular to the axis of symmetry
(Fig. 6.19).

x
Figure 6.19. Streamlines in axisymmetric radial flow.

For the sake of simplicity, we will assume that u,, in addition to being axisym-
metric, does not depend on z. In other words, we assume that, in steady-state, .
is only a function of r:

= up(r) . (6.89)

A characteristic of radial flows is that the non-vanishing radial velocity compo-
nent is determined by the conservation of mass rather than by the r-component of
the conservation of momentum equation. This implies that u, is independent of
the viscosity of the liquid. (More precisely, u, is independent of the constitutive
equation of the fluid.) Due to Eq. (6.88), the continuity equation is simplified to

0

E(ruT) =0, (6.90)

which gives
‘1
w = (6.91)
where ¢y is a constant. The velocity u, can also be obtained from a macroscopic

mass balance. If @) is the volumetric flow rate per unit height, L, then

Q = u 27rlL) =
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Up =

Q
orLr’

which is identical to Eq. (6.91) for c4=Q/(27L).

Assumptions:

uy=ug =0, w, =ur), g=-ge,
Continuity:

%(TUT) =0 = u = %1
r-momentum:

du, _ 0Op

PUTT T Ty
z-momentum:

d

5+ pg=0
#-momentum:

p _, _

W_o =  p=pr>)
General solution:

w = &

T = —27 %7 Too = 277%

cf
P= P53 T PIF + c

Table 6.4.
radial flows.

—ge:,

Letting
g =
the r-component of the Navier-Stokes equation is simplified to
du,
P Uy

—

(6.92)

Governing equations and general solution for steady, axisymmetric

(6.93)

(6.94)
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Note that the above equation contains a non-vanishing nonlinear convective term.
The z- and #-components of the Navier-Stokes equation are reduced to the standard
hydrostatic expression,

— =0 6.95
5.+ ry : (6.95)
and to
dp
— =0 6.96
80 b ( )

respectively. The latter equation dictates that p=p(r, z). Integration of Eqs. (6.94)
and (6.95) gives

du,
p(r,z) = —p/urd—idr—pngrc

1
:pc%/r—Sdr—pgz—l—c =

C2

p(r.z) = =pz = pgz +c, (6.97)

where the integration constant ¢ is determined by specifying the value of the pressure
at a point.
In axisymmetric radial flows, there are two non-vanishing stress components:

du, cl
Trr n dr n r2 3 ( )
Uy (4]
T = 2n— = 2n—. 6.99
00 Ui U (6.99)

The assumptions, the governing equations and the general solution for steady,
axisymmetric radial flows are summarized in Table 6.4.

6.5 Steady, Spherically Symmetric Radial
Flows

In spherically symmetric radial flows, the fluid particles move towards or away from
the center of solid, liquid or gas spheres. Examples of such flows are flow around a
gas bubble which grows or collapses in a liquid bath, flow towards a spherical sink,
and flow away from a point source.

The analysis of spherically symmetric radial flows is similar to that of the axisym-
metric ones. The assumptions and the results are tabulated in Table 6.5. Obviously,
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Assumptions:

wg = ug =0, u, =u(r), g=0
Continuity:

%(7‘2%) =0 = U, = %
r-momentums:

pqud?? = —%
f-momentum:

o
¢-momentum:

g8 =0
General solution:

=9

Tor = =4Sk, e = Thy = 277%

Table 6.5. Governing equations and general solution for steady, spherically sym-
metric radial flows.

spherical coordinates are the natural choice for the analysis. In steady-state, the
radial velocity component is a function of the radial distance,

w, = up(r), (6.100)
while the other two velocity components are zero:
ug = up = 0. (6.101)

As in axisymmetric radial flows, u, is determined from the continuity equation
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as

€1
w = (6.102)
or 0
o= s, (6.103)
where () is the volumetric flow rate.
The pressure is given by
2
pr) = —p i+ ¢ (6.104)
5 . .

(Note that, in spherically symmetric flows, gravity is neglected.) Finally, there are
now three non-vanishing stress components:

Tor =~ 35 (6.105)

Example 6.5.1. Bubble growth in a Newtonian liquid

Boiling of a liquid often originates from small air bubbles which grow radially in the
liquid. Consider a spherical bubble of radius R(¢) in a pool of liquid, growing at a
rate

dR
dt
The velocity, wu,, and the pressure, p, can be calculated using Eqs. (6.102)

and (6.104), respectively. At first, we calculate the constant ¢1. At r=R, u,=dR/dt=Fk
or

= k.

¢
=k = = kR
Substituting ¢; into Eqs. (6.102) and (6.104), we get
R2
r = k—
u =

and
R4

= — k‘2 e C .
p=-pk"5 g+
Note that the pressure near the surface of the bubble may attain small or even

negative values, which favor evaporation of the liquid and expansion of the bubble.
O
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6.6 Transient One-Dimensional Unidirectional
Flows

In Sections 6.1 to 6.3, we studied three classes of steady-state unidirectional flows,
where the dependent variable, i.e., the nonzero velocity component, was assumed
to be a function of a single spatial independent variable. The governing equation
for such a flow is a linear second-order ordinary differential equation which is inte-
grated to arrive at a general solution. The general solution contains two integration
constants which are determined by the boundary conditions at the endpoints of the
one-dimensional domain over which the analytical solution is sought.

In the present section, we consider one-dimensional, transient unidirectional
flows. Hence, the dependent variable is now a function of two independent vari-
ables, one of which is time, . The governing equations for these flows are partial
differential equations. In fact, we have already encountered some of these PDEs
in Sections 6.1-6.3, while simplifying the corresponding components of the Navier-
Stokes equation. For the sake of convenience, these are listed below.

(a) For transient one-dimensional rectilinear flow in Cartesian coordinates with
wy=u,=0 and uy=u,(y,1),

du, @ . 0%,
Por = "oz T a2

+ pge - (6.107)

(b) For transient axisymmetric rectilinear flow with u,=us=0 and uw,=u,(r,1),

Ju, _@ 12 (Tauz) .
P ot 9z nr ar ar Pgz
or
Qu: _ _9p | 0, L 1ou) (6.108)
Por T "oz T\ o r Or Pgz - '

(c) For transient axisymmetric torsional flow with w,=u,=0 and uwg=ug(r,?),

Por T Tor\Gar )

) 9? 10 1
U _ ( Yo 2010 —ue) . (6.109)

or

pﬁ ar? r or r2



46 Chapter 6. Unidirectional Flows

The above equations are all parabolic PDEs. For any particular flow, they are
supplemented by appropriate boundary conditions at the two endpoints of the one-
dimensional flow domain, and by an initial condition for the entire flow domain. Note
that the pressure gradients in Eqs. (6.107) and (6.108) may be functions of time.
These two equations are inhomogeneous due to the presence of the pressure gradient
and gravity terms. The inhomogeneous terms can be eliminated by decomposing the
dependent variable into a properly chosen steady-state component (satisfying the
corresponding steady-state problem and the boundary conditions) and a transient
one which satisfies the homogeneous problem. A similar decomposition is often
used for transforming inhomogeneous boundary conditions into homogeneous ones.
Separation of variables [2] and the similarity solution method [3,6] are the standard
methods for solving Eq. (6.109) and the homogeneous counterparts of Eqs. (6.107)
and (6.108).

In homogeneous problems admitting separable solutions, the dependent variable
u(z;,t) is expressed in the form

w(wit) = X(2)T(1). (6.110)

Substitution of the above expression into the governing equation leads to the equiv-
alent problem of solving two ordinary differential equations with X and T as the
dependent variables.

In similarity methods, the two independent variables, x; and ¢, are combined
into the similarity variable

£ = L(aist). (6.111)

If a similarity solution does exist, then the original partial differential equation for
u(z;,t) is reduced to an ordinary differential equation for u(¢).

Similarity solutions exist for problems involving parabolic PDEs in two indepen-
dent variables where external length and time scales are absent. A typical problem
is flow of a semi-infinite fluid above a plate suddenly set in motion with a constant
velocity (Example 6.6.1). Length and time scales do exist in transient plane Couette
flow, and in flow of a semi-infinite fluid above a plate oscillating along its own plane.
In the former flow, the length scale is the distance between the two plates, whereas
in the latter case, the length scale is the period of oscillations. These two flows are
governed by Eq. (6.107), with the pressure-gradient and gravity terms neglected;
they are solved in Examples 6.6.2 and 6.6.3, using separation of variables. In Exam-
ple 6.6.4, we solve the problem of transient plane Poiseuille flow, due to the sudden
application of a constant pressure gradient.

Finally, in the last two examples, we solve transient axisymmetric rectilinear
and torsional flow problems, governed, respectively, by Eqs. (6.108) and (6.109). In
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Example 6.6.5, we consider transient axisymmetric Poiseuille flow, and in Exam-
ple 6.6.6, we consider flow inside an infinite long cylinder which is suddenly rotated.

Example 6.6.1. Flow near a plate suddenly set in motion

Consider a semi-infinite incompressible Newtonian liquid of viscosity 7 and density
p, bounded below by a plate at y=0 (Fig. 6.20). Initially, both the plate and the
liquid are at rest. At time =07, the plate starts moving in the z direction (i.e., along
its plane) with constant speed V. Pressure gradient and gravity in the direction of
the flow are zero. This flow problem was studied by Stokes in 1851, and is called
Rayleigh’s problem or Stokes’ first problem.

t <0 =07t t=11>0
Fluid and plate
Y at rest =
T us(y,t)
T
 ——  ———
Vv Vv

Figure 6.20. Flow near a plate suddenly set in motion.

The governing equation for u,(y,t) is homogeneous:

Uy 9%u,,
TR T (6.112)

where v = n/p is the kinematic viscosity. Mathematically, Eq. (6.112) is called the
heat or diffusion equation. The boundary and initial conditions are:

u, =V at y=0,t>0
u =0 at y—o00,t>0 . (6.113)
u, =0 at 1=0,0<y< >

The problem described by Eqgs. (6.112) and (6.113) can be solved by Laplace trans-
forms and by the similarity method. Here, we employ the latter which is useful in
solving some nonlinear problems arising in boundary layer theory (see Chapter 8).
A solution with Laplace transforms can be found in Ref. [7].

Examining Eq. (6.112), we observe that if y and ¢ are magnified k£ and k% times,
respectively, Eq. (6.112) along with the boundary and initial conditions (6.113) will
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still be satisfied. This clearly suggests that u, depends on a combination of y and ¢
of the form y/v/t. The same conclusion is reached by noting that the dimensionless
velocity u,/V must be a function of the remaining kinematic quantities of this flow
problem: v, t and y. From these three quantities, only one dimensionless group can
be formed, é=y//vt.

Let us, however, assume that the existence of a similarity solution and the proper
combination of y and ¢ are not known a priori, and assume that the solution is of
the form

us(y,t) = V f(£), (6.114)

where
Y .
E=a prlt with n>0. (6.115)

Here £(y,t) is the similarity variable, a is a constant to be determined later so that
£ is dimensionless, and n is a positive number to be chosen so that the original
partial differential equation (6.112) can be transformed into an ordinary differential
equation with f as the dependent variable and £ as the independent one. Note that
a precondition for the existence of a similarity solution is that £ is of such a form
that the original boundary and initial conditions are combined into two boundary
conditions for the new dependent variable f. This is easily verified in the present
flow. The boundary condition at y=0 is equivalent to

f=1at £=0, (6.116)

whereas the boundary condition at y—oo and the initial condition collapse to a
single boundary condition for f,

=0 at { — 0. (6.117)

Differentiation of Eq. (6.114) using the chain rule gives

duy ay £

_ ' S g
o = Vg = Ve S
ou a d%u a?
4 -V = ! d T -V — 7"
ay i f an 8@/2 12n f ’

where primes denote differentiation with respect to £. Substitution of the above
derivatives into Eq. (6.112) gives the following equation:

f// + n_ith—l f/ - 0.

rva
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By setting n=1/2, time is eliminated and the above expression becomes a second-
order ordinary differential equation,

§

2ua?

=0 with &=a-L.

Vi

Taking a equal to 1/,/v makes the similarity variable dimensionless. For convenience
in the solution of the differential equation, we set a=1/(2,/r). Hence,

e Y
N

whereas the resulting ordinary differential equation is
2 =0. (6.119)

This equation is subject to the boundary conditions (6.116) and (6.117). By straight-
forward integration, we obtain

f// _I_

(6.118)

&€,
(&) = 01/0 e dz + e,

where z is a dummy variable of integration. At £=0, f=1; consequently, co=1. At
£—o00, f=0; therefore,

/ Z2d 1 =20 = ——F
c € zZ + = or ] =

1 1 \/—7
and

f6 =1 - % /0g e dz = 1 — erf(€), (6.120)

where erf is the error function, defined as

erf(§) = % /05 e dz (6.121)

Values of the error function are tabulated in several math textbooks. It is a mono-
tone increasing function with

erf(0)=0 and lim erf(§) = 1.

E—00

Note that the second expression was used when calculating the constant ¢;. Substi-
tuting into Eq. (6.114), we obtain the solution

up(y,t) = V [1 ~ erf (2%)] . (6.122)
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y/l

-0.2 0 0.2 0.4 0.6 0.8 1 1.2
u,/V

Figure 6.21. Transient flow due to the sudden motion of a plate. Velocity profiles
at vt/(?=0.0001, 0.001, 0.01, 0.1 and 1, where { is an arbitrary length scale.

The evolution of u,(y,t) is illustrated in Fig. 6.21, where the velocity profiles are
plotted at different values of vt/(2, { being an arbitrary length scale.

From Eq. (6.122), we observe that, for a fixed value of u,/V, y varies as 2y/vt.
A boundary-layer thickness, 6(t), can be defined as the distance from the moving
plate at which w,/V'=0.01. This happens when ¢ is about 1.8, and thus

6(t) = 3.6Vt .

The sudden motion of the plate generates vorticity, since the velocity profile is
discontinuous at the initial distance. The thickness §(%) is the penetration of vorticity
distance into regions of uniform velocity after a time ¢. Note that Eq. (6.112) can
also be viewed as a vorticity diffusion equation. Indeed, since u=u,(y, )i,

Uy

wlyt) = le] = [Vxul = G

and Eq. (6.112) can be cast in the form

J /y d Jw
— w = v—,
0 Y oy
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or, equivalently,
Jw *w

o~ Vot

The above expression is a vorticity conservation equation and highlights the role

(6.123)

of kinematic viscosity, which acts as a vorticity diffusion coefficient, in a manner
analogous to that of thermal diffusivity in heat diffusion.
The shear stress on the plate is given by

du, derf(£) ‘ o¢ nVv
= Tuwlueo = - gV == S . (6.124
e e s F e A v N v By~ A

which suggests that the stress is singular at the instant the plate starts moving, and
decreases as 1/+v/1.

The physics of this example are similar to those of boundary layer flow, which is
examined in detail in Chapter 8. In fact, the same similarity variable was invoked
by Rayleigh to calculate skin-friction over a plate moving with velocity V' through
a stationary liquid which leads to [8]

nVv 14
Tw = —
N/ TV z

by simply replacing ¢ by «/V in Eq. (6.124). This situation arises in free stream

flows overtaking submerged bodies, giving rise to boundary layers [9].
O

In the following example, we demonstrate the use of separation of variables by
solving a transient plane Couette flow problem.

Example 6.6.2. Transient plane Couette flow

Consider a Newtonian liquid of density p and viscosity 7 bounded by two infinite
parallel plates separated by a distance H, as shown in Fig. 6.22. The liquid and the
two plates are initially at rest. At time t=07, the lower plate is suddenly brought

to a steady velocity V in its own plane, while the upper plate is held stationary.
The governing equation is the same as in the previous example,

Uy 0%,
=v

ot oy? 7

with the following boundary and initial conditions:

(6.125)

u, =V at y=0,t1>0
u=0 at y=H, t>0 (6.126)
u =0 at t=0,0<y<H
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v

Figure 6.22. Schematic of the evolution of the velocity in start-up plane Couette
flow.

Note that, while the governing equation is homogeneous, the boundary con-
ditions are inhomogeneous. Therefore, separation of variables cannot be applied
directly. We first have to transform the problem so that the governing equation and
the two boundary conditions are homogeneous. This can be achieved by decom-
posing u;(y,t) into the steady plane Couette velocity profile, which is expected to
prevail at large times, and a transient component:

wa(y,t) = v<1— %) (gt (6.127)

Substituting into Eqs. (6.125) and (6.126), we obtain the following problem

oul, %!,
= 6.128
ot~ oy (6.128)
with
u, =0 at y=0,t>0
uy = at y=H,1>0 (6.129)
u;:V(—%) at t=0,0<y<H

Note that the new boundary conditions are homogeneous, while the governing equa-
tion remains unchanged. Therefore, separation of variables can now be used. The
first step is to express u/(y,t) in the form

ul(y,t) = Y(y)T(1). (6.130)
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Substituting into Eq. (6.128) and separating the functions Y and 7', we get
1 dI 1 d*%Y

vT dt — Y dY?'
The only way a function of ¢t can be equal to a function of y is for both functions
to be equal to the same constant. For convenience, we choose this constant to be
—a?/H?. (One advantage of this choice is that « is dimensionless.) We thus obtain

two ordinary differential equations:

dT va?

— — T =0 6.131
d*Y a?
—— — Y =0. 6.132
dy? + H? ( )
The solution to Eq. (6.131) is
_va?
T =¢e H> | (6.133)

where ¢g is an integration constant to be determined.
Equation (6.132) is a homogeneous second-order ODE with constant coefficients,
and its general solution is

Y(y) = sin(%) + ¢ cos(a (6.134)

Y
The form of the general solution justifies the choice we made earlier for the constant

—a?/H?. The constants ¢; and ¢y are determined by the boundary conditions.
Applying Eq. (6.130) to the boundary conditions at y=0 and H, we obtain

Y(0)T(t) = 0 and Y(H)T(t) = 0.

The case of T'(t)=0 is excluded, since this corresponds to the steady-state problem.
Hence, we get the following boundary conditions for Y:

Y(0)=0 and Y(H)=0. (6.135)

Note that in order to get the boundary conditions on Y, it is essential that the
boundary conditions are homogeneous.
Applying the boundary condition at y=0, we get c3=0. Thus,

Y(y) = ¢ sin(%). (6.136)
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Applying now the boundary condition at y=H, we get
sin(a) = 0, (6.137)
which has infinitely many roots,
ap=kr, k=1,2,- (6.138)

To each of these roots correspond solutions Y3 and Tj. These infinitely many solu-
tions are superimposed by defining

Z/Oék k27r2
t v
H? ", (6.139)

) = ,; By, sin(%)e

where the constants Br=cgrcq; are determined from the initial condition. For ¢=0,
we get

= k
S Bysin(—=2) = v (1 - ﬁ) . (6.140)
H H
k=1
To isolate By, we will take advantage of the orthogonality property
1 1. k=n
/ sin(kra) sin(nre) de = (6.141)
0 0, k#n

BY multiplying both sides of Eq. (6.140) by sin(n7y/H )dy, and by integrating from
0 to H, we have:

kﬂy . nTyY _ H y) . NTY
ZBk/ sin T) sm(T)dy_V/o (1_ﬁ 5111(7)(13/.

0

Setting £=y/H, we get

> mi [ sin

0

sin(kw) sin(nné) d¢ = V/ 1—=¢) sin(nné)dE.

Due to the orthogonality property (6.141), the only nonzero term on the left hand
side is that for k=n; hence,

Bk% =V /01(1—5) sin(kw&) d¢ = VL =
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oV
B, = = 6.142
- ( )

Substituting into Eq. (6.139) gives

k
k A
d(y, 1) = Z w ye HT. (6.143)
=1

y/H

-0.2 0 0.2 0.4 0.6 0.8 1 1.2
u,/V

Figure 6.23. Transient plane Couetle flow. Velocity profiles at vt/ H?*=0.0001,
0.001, 0.01, 0.1 and 1.

Finally, for the original dependent variable u,(y,t) we get

2
T
5Vt

“x(@/at)z‘/(l__)__z . kﬂy _kH_

The evolution of the solution is illustrated in Fig. 6.23. Initially, the presence of the
stationary plate does not affect the development of the flow, and thus the solution
is similar to the one of the previous example. This is evident when comparing
Figs. 6.21 and 6.23. |

(6.144)

Example 6.6.3. Flow due to an oscillating plate

Consider flow of a semi-infinite Newtonian liquid, set in motion by an oscillating
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plate of velocity
V = Vycoswt, ¢>0. (6.145)

The governing equation, the initial condition and the boundary condition at y—oo
are the same as those of Example 6.6.1. At y=0, u, is now equal to Vy coswt. Hence,
we have the following problem:

Uy 0%,
=V — 6.146
ot~ Va2 (6.146)
with
U = Vg coswt at y=0,1>0
Uy — 0 at y—o00,t2>0 . (6.147)

U, =0 at t=0,0<y< 0

This is known as Stokes problem or Stokes’ second problem, first studied by Stokes
in 1845,

Since the period of the oscillations of the plate introduces a time scale, no simi-
larity solution exists to this problem. By virtue of Eq. (6.145), it may be expected
that u, will also oscillate in time with the same frequency, but possibly with a phase
shift relative to the oscillations of the plate. Thus, we separate the two independent
variables by representing the velocity as

up(y,1) = Re [Y(y)e] (6.148)

where Re denotes the real part of the expression within the brackets, 7 is the imagi-
nary unit, and Y (y) is a complex function. Substituting into the governing equation,

we have )
d?Y w
— — —Y =0. 6.149
0 ” ( )

The general solution of the above equation is

Y(y) = exp{—g(l—l—i) y} + ¢ exp{g(l—l—i)y} .

The fact that u,=0 at y—oc0, dictates that ¢ be zero. Then, the boundary condition
at y=0 requires that ¢;=Vy. Thus,

ug(y,t) = Vo Re [exp {—g(l + 1) y} em] ) (6.150)

The resulting solution,

us(y,t) = Vp exp (—gy) cos (wt - gy) , (6.151)
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describes a damped transverse wave of wavelength 27/2rv/w, propagating in the
y-direction with phase velocity v/2vw. The amplitude of the oscillations decays
exponentially with y. The depth of penetration of vorticity is 6 ~ \/2v/w, suggesting
that the distance over which the fluid feels the motion of the plate gets smaller as
the frequency of the oscillations increases. |

Example 6.6.4. Transient plane Poiseuille flow

Let us now consider a transient flow which is induced by a suddenly applied constant
pressure gradient. A Newtonian liquid of density p and viscosity 7, is contained
between two horizontal plates separated by a distance 2H (Fig. 6.24). The liquid
is initially at rest; at time ¢=07, a constant pressure gradient, dp/dz, is applied,

setting the liquid into motion.

Figure 6.24. Schematic of the evolution of the velocity in transient plane Poiseuille

flow.

The governing equation for this flow is

du, @ . 0%u,
Por = “ax T Moy

(6.152)

Positioning the z-axis on the symmetry plane of the flow (Fig. 6.24), the boundary
and initial conditions become:

u, =0 at y=H,t>0

el

T =0 at y=0,t>0 (6.153)
Uy, =0 at t=0,0<y< H
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y/H

-0.5 0 0.5 1 1.5 2
uw/ﬂx,oo
Figure 6.25. Transient plane Poiseuille flow. Velocity profiles at l/t/H2:0.2, 0.4,
0.6, 0.8, 1 and .

The problem of Eqs. (6.152) and (6.153) is solved using separation of variables.
Since the procedure is similar to that used in Example 6.6.2, it is left as an exercise
for the reader (Problem 6.8) to show that

1d 2
uw(yvt) = _%éﬂz{l_ (%)

32 & (—1)k! 2k —)m y (2k — 1)?x?
- — - -t . 6.154
0 kZ::l (2k— 1) COS[ 2 H] xp a2V (6.154)
The evolution of the velocity towards the parabolic steady-state profile is shown in
Fig. 6.25. O

Example 6.6.5. Transient axisymmetric Poiseuille flow
Consider a Newtonian liquid of density p and viscosity 75, initially at rest in an

infinitely long horizontal cylindrical tube of radius R. At time ¢t=0%, a constant
pressure gradient, dp/dz, is applied, setting the liquid into motion.
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This is obviously a transient axisymmetric rectilinear flow. Since gravity is zero,
the governing equation is

du,  OJp (32u2 1 3u2)

ot~ "o "\ Y

p (6.155)

subject to the following boundary conditions:

u, =0 at r=R,t2>0
u, finite at r=0,t>0 (6.156)
U, =0 at t=0,0<r<R

By decomposing u.(r,t) into the steady-state Poiseuille flow component (ex-
pected to prevail at large times) and a new dependent variable,
1 dp
uZ(T,t) = _Ea (R2 - Tz) - U/Z(T,t), (6'157)
the inhomogeneous pressure-gradient term in Eq. (6.155) is eliminated, and the
following homogeneous problem is obtained:

ou, %! 10
= - 6.158
at v (87‘2 + r or ( )
with
ul, =0 at r=R,t>0
u!, finite at r=0,1>0 (6.159)
19
P P

Using separation of variables, we express u/,(7,¢) in the form
ul(r,t) = X(r)T(1). (6.160)

Substituting into Eq. (6.158) and separating the functions X and 7', we get

vT dt X

1 dr 1 d2X+1dX
dr?2 7 dr )’

Equating both sides of the above expression to —a?/R?, where a is a dimensionless
constant, we obtain two ordinary differential equations:

dT va?
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d*X 1dX a?

—— — X =0. 6.162
dr? r dr + R? ( )
The solution to Eq. (6.161) is
—Mt
T =¢pe R*, (6.163)

where ¢q is an integration constant.
Equation (6.162) is a Bessel’s differential equation, whose general solution is

given by
ar ar
X(r) =« Jo(f) + 2 YO(f)v

where Jy and Yy are the zeroth-order Bessel functions of the first and second kind,
respectively. From the theory of Bessel functions, we know that Yp(2) and its first
derivative are unbounded at =0. Since ) and thus X must be finite at r=0, we
get cy=0.

Differentiating Eq. (6.164) and noting that

(6.164)

dJO
D) = (o).

where Jq is the first-order Bessel function of the first kind, we obtain:

dX « ar a dYy ar
= g MR ey g (R

Given that J1(0)=0, we find again that c¢; must be zero so that d.X/dr=0 at r=0.

Thus,
X(r) = CIJO(%). (6.165)

Applying the boundary condition at r=R, we get
Jo(a) = 0. (6.166)
Note that Jo() is an oscillating function with infinitely many roots,
ap, k=1,2,---

Therefore, u/,(r,t) is expressed as an infinite sum of the form

2

> agr —%t
"(r,t) = § By, Jo(— 6.167
UZ(T, ) — k 0( R )6 ’ ( )
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r/R

0.6 -

-0.5 0 0.5 1 1.5 2 2.5

uz/ﬂz,oo

Figure 6.26. Transient avisymmetric Poiseuille flow.  Velocity profiles at
vt/ R*=0.02, 0.05, 0.1, 0.2, 0.5 and oc.

where the constants By are to be determined from the initial condition. For ¢=0,

we have ,
> agr 1dp ., ( T )
BrJo(——) = —— R |1—-| = . 6.168
kZ::l kol R ) An 0z R ( )
In order to take advantage of the orthogonality property of Bessel functions,
1 %le(ak) s k=mn
/ Jo(agr) Jo(a,r) rdr = (6.169)
0 0, k#mn

where both aj and «,, are roots of Jy, we multiply both sides of Eq. (6.168) by
Jo(a,r/R)rdr, and then integrate from 0 to R, to get

R 2
agr anT 9 T anT
g B Jo( Jo(——)rdr = ———R 1-1{= Jo(—5-) rd
k/o OR)O(R)TT 4n 0z /0[ (R)]O(R)TT’

o 1
SR [ (1€ dofang) e
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where £=r/R. The only nonzero term on the left hand side corresponds to k=n.
Hence,

1
B %le(ak) = L0 g /0 (1= &) Jo(apt) £dE | (6.170)

Using standard relations for Bessel functions, we find that

1 4J1(ay
[ 1= ey g = .
0 ay
Therefore,
1 dp 8
By = ——— ——7—,
b 4n 9z o Ji(ay)
and
agr vas
10 = Jo\ ) —SEt
o, = —— 2P (3p?) ZM@ R (6.171)
andz = o Jilag)
Substituting into Eq. (6.167) gives
ET va
1ap AN = Jo () Tk
u(r,t) = ——== R? |1— (—) —sS LR (6.172)
4n 0z R kZ::l o Ji(ag)
The evolution of the velocity is shown in Fig. 6.26. O

Example 6.6.6. Flow inside a cylinder that is suddenly rotated
A Newtonian liquid of density p and viscosity 7 is initially at rest in a vertical,
infinitely long cylinder of radius R. At time ¢=0%, the cylinder starts rotating

about its axis with constant angular velocity €, setting the liquid into motion.
This is a transient axisymmetric torsional flow, governed by

Jduyg 9%ug 1 duyg 1
il 6.173
ot . ( Ir? r or 2] ( )

subject to the following conditions:

ug =R at r=R,1>0
ug finite at r=0,¢>0 (6.174)
g =0 at t=0,0<r<R
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r/R

0 1 1 1 1
-0.2 0 0.2 0.4 0.6 0.8 1

Figure 6.27. Flow inside a cylinder that is suddenly rotated. Velocity profiles at
vt/ R*=0.005, 0.01, 0.02, 0.05, 0.1 and oo.

The solution procedure for the problem described by Eqs. (6.173) and (6.174) is
the same as in the previous example. The steady-state solution has been obtained
in Example 6.3.1. Setting

ug(r,t) = Qr — uy(r,t), (6.175)

we obtain the following homogeneous problem

duy O, 1 duy, 1,
= - - — 6.176
ot (87‘2 + r Or 20 ( )

up=0 at r=R, t>0
uy finite at r=0,t>0 (6.177)
up=Qr at t=0,0<r<R

The independent variables are separated by setting

wh(rt) = X(r)T(1), (6.178)



64 Chapter 6. Unidirectional Flows

which leads to two ordinary differential equations:

dT va?
and , ,
d° X 1dX «a 1
- — — =] X =0. 6.180
dr? + r dr + (R2 7‘2) ( )

Equation (6.179) is identical to Eq. (6.161) of the previous example, whose general

solution is )

_ray
T =coe R* . (6.181)
The general solution of Eq. (6.180) is

ar ar

X(T) = Jl(f) + C9 Yl( R), (6182)

where J; and Y; are the first-order Bessel functions of the first and second kind,
respectively. Since Yi(2) is unbounded at =0, ¢; must be zero. Therefore,

ar

X(r) = C1J1(§)- (6.183)
The boundary condition at r=R requires that
Ji(a) = 0, (6.184)

which has infinitely many roots. Therefore, uj(r,1) is expressed as an infinite sum
of the form
= agr Vazt
Y ———
up(rit) = 3 Behi(—)e R

k=1

: (6.185)

where the constants By are to be determined from the initial condition. For ¢=0,
we have
S B (D) = ar. (6.186)
R
k=1
The constants By are determined by using the orthogonality property of Bessel
functions,
1 %Jg(ak) s k=mn
/ Ji(agr) Ji(a,r) rdr = (6.187)
0 0, k#mn
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where both aj and «,, are roots of J;. Multiplying both sides of Eq. (6.186) by
Ji(a,r/R)rdr, and integrating from 0 to R, we get

apr an
ZBk/OJlj’jz)Jl(R)rdr:Q/Jl Sy v dr,
or

Z By /0 Ji(ax€) Ji(an€) €dE = QR / Ii(an€) €2 de,

where f:r/R. Invokmg Eq. (6.187), we get

1 1 J,
By, §J§(ak) = QR/ Ji(ag€) £2d¢ = _q g Jolon) —
0 Qg
2QR
By = ——.
* ag Jo( o)
Therefore,
2
oo J, (J) _veg,
Wy = —20R S — R TR? 6.188
[ kz:l ag JO(ak) ( )
and )
0o J; (%) _vag,
R 2
U Qr + 2QR —~ /7 . R, 6.189
() = S e (6.159)
The evolution of the wug is shown in Fig. 6.27. O

6.7 Steady Two-Dimensional Rectilinear
Flows

As explained in Section 6.1, in steady, rectilinear flows in the z direction, uy=u.(y, 2)
and the z-momentum equation is reduced to a Poisson equation,
0*u 0*u 10 1
- o 292 . (6.190)
oy? 072 7 Ox v
Equation (6.190) is an elliptic PDE. Since dp/dx is a function of z alone and u,
is a function of y and z, Eq. (6.190) can be satisfied only when dp/dx is constant.
Therefore, the right hand side term of Eq. (6.190) is a constant. This inhomogeneous
term can be eliminated by introducing a new dependent variable which satisfies the

Laplace equation.
Two classes of flows governed by Eq. (6.190) are:
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(a) Poiseuille flows in tubes of arbitrary but constant cross section; and
(b) gravity-driven rectilinear film flows.

One-dimensional Poiseuille flows have been encountered in Sections 6.1 and 6.2.
The most important of them, i.e., plane, round and annular Poiseuille flows, are
summarized in Fig. 6.28. In the following, we will discuss two-dimensional Poiseuille
flows in tubes of elliptical, rectangular and triangular cross sections, illustrated in
Fig. 6.29. In these rather simple geometries, Eq. (6.190) can be solved analytically.
Analytical solutions for other cross sectional shapes are given in Refs. [10] and [11].

Example 6.7.1. Poiseuille flow in a tube of elliptical cross section
Consider fully-developed flow of an incompressible Newtonian liquid in an infinitely
long tube of elliptical cross section, under constant pressure gradient dp/dx. Gravity
is neglected, and thus Eq. (6.190) becomes

Dy Dy 10p . y? . 2? <1 (6.191)
—_— = —-— in =S4 —= .
0y? 022 n Ox a? b2 — 7

where a and b are the semi-axes of the elliptical cross section, as shown in Fig. 6.29a.
The velocity is zero at the wall, and thus the boundary condition is:

2 2
Y z

Let us now introduce a new dependent variable u/,, such that
ue(y,2) = up(y.2) + ey’ + e22?, (6.193)

where ¢1 and ¢y are non zero constants to be determined so that (a) u/, satisfies the
Laplace equation, and (b) u!, is constant on the wall. Substituting Eq. (6.193) into
Eq. (6.191), we get

32ugg n 32ugg 49 42 _ l 3_]) (6 194)
0y? 022 “ 2= n dx '

/

.. satisfies the Laplace equation,

Evidently, u

o’ o’
oy? + 072

=0, (6.195)

if
1
2¢; + 25 = = . (6.196)
n
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2H

Plane Poiseuille flow

1 9

Uy = 2n apl,(I{2 - y2)
2 0 3

Q _5 op H M/

_ 190 2 2
uz_—ﬁﬁ(}{ —7?)
_ 7 Op p4
Q__SUQZR

Annular Poiseuille flow
19 r\2 1-x2 r
u. = -5 B2 [1 — (%)t g 0

Q = —grt [1-m - )]

|

Figure 6.28. One-dimensional Poiseuille flows.
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z
b
a Y
x
(a) Elliptical cross section
z
¢
by
x
(b) Rectangular cross section
z
a a
Y
a
(¢) Triangular cross section x

Figure 6.29. Two-dimensional Poiseuille flow in tubes of various cross sections.
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From boundary condition (6.192), we have

/ _ 2 2 _ 2 C2 9 y? o2
ux(y72) = —C1Yy — C2 = —C1 Y —I—az on ﬁ_l_b_z = 1.
Setting
2
C9 a
PEET) 6.197
(4] b2 ’ ( )
u!, becomes constant on the boundary,
2 2
Y z
u(y,z) = —erd® on oo =1 (6.198)

The mazimum principle for the Laplace equation states that u/ has both its
minimum and maximum values on the boundary of the domain [12]. Therefore, u,
is constant over the whole domain,

ul(y,2) = —cra’. (6.199)

Substituting into Eq. (6.193) and using Eq. (6.197), we get

2 2 2 2 3/2 (&) #?
ul’(y72) = —CGa + a1y + CZ = —C1a 1 — ﬁ — aﬁ —
2 2
_ 2 Y z
uy(y,2) = —c1a [1 -3 b—Q] . (6.200)

The constant ¢; is determined from Eqs. (6.196) and (6.197),

1 9p b
= —— 6.201
“ 2n 0z a® + b2’ ( )
consequently,
1 9p a’b? y? 22
g (y,z) = _%%T—I—b? [ -2, (6.202)

Obviously, the maximum velocity occurs at the origin. Integration of the velocity
profile (6.202) over the elliptical cross section yields the volumetric flow rate

7 op @b
4n dz a® + b2

Q = (6.203)



70 Chapter 6. Unidirectional Flows

Equation (6.202) degenerates to the circular Poiseuille flow velocity profile when
a=b=R,

1 dp y? + 22
= —— 2 R*|1 - .
ta(y,2) 4n Ox [ R2

Setting r?=y?+22, and switching to cylindrical coordinates, we get

1 dp
u.(r) = ~ 19 (R* — r?). (6.204)

If now a=H and b > H, Eq. (6.202) yields the plane Poiseuille flow velocity profile,

wly) = =22 (= ). (6.205)

2n dx
Note that, due to symmetry, the shear stress is zero along symmetry planes. The
zero shear stress condition along such a plane applies also in gravity-driven flow of a
film of semielliptical cross section. Therefore, the velocity profile for the latter flow
can be obtained by replacing —dp/dx by pg,. Similarly, Eqs. (6.204) and (6.205)
can be modified to describe the gravity-driven flow of semicircular and planar films,
respectively. O

Example 6.7.2. Poiseuille flow in a tube of rectangular cross section
Consider steady pressure-driven flow of an incompressible Newtonian liquid in an

infinitely long tube of rectangular cross section of width 2b and height 2¢, as shown
in Fig. 6.29b. The flow is governed by the Poisson equation

0%, 0%, 1 ap
0y? 922 p oz’

(6.206)

Taking into account the symmetry with respect to the planes y=0 and z=0, the flow
can be studied only in the first quadrant (Fig. 6.30). The boundary conditions can
then be written as follows:

8—3/:0 on y=20

(6.207)

U, =0 on z=c¢
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z
u,;=0
(b, c)
Uy
Jy =0 U,=0
Ouy, Y
9z Y

Figure 6.30. Boundary conditions for the flow in a tube of rectangular cross section.

Equation (6.206) can be transformed into the Laplace equation by setting
un(y,z) = —o— 5 (= 2%) + uyly. ). (6.208)

Note that the first term in the right hand side of Eq. (6.208) is just the Poiseuille
flow profile between two infinite plates placed at z=4c. Substituting Eq. (6.208)
into Eqgs. (6.206) and (6.207), we get

2,/ 2,1
88;;’ 88:;’ -0, (6.209)
subject to
85;}’ =0 on y=20
ug:ﬁg—g(@—z?) on y==b
. (6.210)
%UZQL’ =0 on z2=0

w. =0 on z==«c¢
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—_—

Figure 6.31. Velocity contours for steady unidirectional flow in tubes of rectangular
cross section with width-to-height ratio equal to 1, 2 and 4.

The above problem can be solved using separation of variables (see Problem 6.13).
The solution is

us(y,2) = i@02 [1— (i)2 n 4§: (—13)]“ COSh(ZEy) cos <%)] (6.211)

2n dx c i1 % cosh (Tb) c
where .
ap = (2k=1)5., k=12 (6.212)

In Fig. 6.31, we show the velocity contours predicted by Eq. (6.211) for different
values of the width-to-height ratio. It is observed that, as this ratio increases,
the velocity contours become horizontal away from the two vertical walls. This
indicates that the flow away from the two walls is approximately one-dimensional
(the dependence of u, on y is weak).

The volumetric flow rate is given by

4 9p 4 6e o tanh (%)
= —— —b 1—-— —_— . 6.213
@ 3n Oz ¢ b kZ::l o} ( )
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Example 6.7.3. Poiseuille flow in a tube of triangular cross section
Consider steady pressure-driven flow of a Newtonian liquid in an infinitely long tube

whose cross section is an equilateral triangle of side a, as shown in Fig. 6.29¢c. Once

again, the flow is governed by the Poisson equation
0%, 0%, 1 ap
0y? 922 p oz’

(6.214)

If the origin is set at the centroid of the cross section, as in Fig. 6.32, the three sides
of the triangle lie on the lines

2V3z4+a=0, V32+43y—a=0 and V32-3y—a=0.

\/52—33/—(1:0 \/§z—|—3y—a:0

2\/52 + a=0

Figure 6.32. Fquations of the sides of an equilateral triangle of side a when the
origin is set at the centroid.

Since the velocity u,(y,z) is zero on the wall, the following solution form is
prompted

ug(y.2) = A(2V3z+a) (V32 + 3y —a) (V32— 3y —a), (6.215)

where A is a constant to be determined so that the governing Eq. (6.214) is satisfied.
Differentiation of Eq. (6.215) gives

0%u,
oy?

9%u,,
972

= —184(2V32z+a) and = 184 (2V/3z—a).



74 Chapter 6. Unidirectional Flows

It turns out that Eq. (6.214) is satisfied provided that

1 op1
A= -—— L (6.216)
61 dz «a
Thus, the velocity profile is given by
() = ——— P L A (VB 3y — ) (VB —3y—a).  (6.217)
=\ 361 9z a 4 4 ' '

The volumetric flow rate is

V3 op

a

The unidirectional flows examined in this chapter are good approximations to
many important industrial and processing flows. Channel, pipe and annulus flows
are good prototypes of liquid transferring systems. The solutions to these flows
provide the means to estimate the power required to overcome friction and force
the liquid through, and the residence or traveling time. Analytical solutions are
extremely important to the design and operation of viscometers [13]. In fact, the
most known viscometers were named after the utilized flow: Couette viscometer,
capillary or pressure viscometer and parallel plate viscometer [14].

The majority of the flows studied in this chapter are easily extended to nearly
unidirectional flows in non-parallel channels or pipes and annuli, and to non-uniform
films under the action of surface tension, by means of the lubrication approximation
[15], examined in detail in Chapter 9. Transient flows that involve vorticity gener-
ation and diffusion are dynamically similar to steady flows overtaking submerged
bodies giving rise to boundary layers [9], which are studied in Chapter 8.

6.8 Problems

6.1. Consider flow of a thin, uniform film of an incompressible Newtonian liquid
on an infinite, inclined plate that moves upwards with constant speed V', as shown
in Fig. 6.33. The ambient air is assumed to be stationary, and the surface tension
is negligible.

(a) Calculate the velocity u,(y) of the film in terms of V', ¢, p, n, g and 6.

(b) Calculate the speed V' of the plate at which the net volumetric flow rate is zero.
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Stationary air
(Ty»=0 at y=0)

Figure 6.33. Film flow down a moving inclined plate.

6.2. A thin Newtonian film of uniform thickness ¢ is formed on the external surface
of a vertical, infinitely long cylinder, which rotates at angular speed €2, as illustrated
in Fig. 6.34. Assume that the flow is steady, the surface tension is zero and the
ambient air is stationary.

Stationary
air

Figure 6.34. Thin film flow down a vertical rotating cylinder.

(a) Calculate the two nonzero velocity components.
(b) Sketch the streamlines of the flow.
(c¢) Calculate the volumetric flow rate Q).
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at must be the external pressure distribution, p(z), so that uniform thickness
d) What t be the ext 1 distributi that unif thick
is preserved?

6.3. A spherical bubble of radius R4 and of constant mass mg grows radially at a
rate

dR 4

dt
within a spherical incompressible liquid droplet of density pq, viscosity n; and volume
Vi. The droplet itself is contained in a bath of another Newtonian liquid of density
p2 and viscosity 7,2, as shown in Fig. 6.35. The surface tension of the inner liquid is
o1, and its interfacial tension with the surrounding liquid is o5.

=k,

Liquid 2
P2, 12

Liquid 1
£1, ",

Vi

Figure 6.35. Liquid film growing around a gas bubble.

(a) What is the growth rate of the droplet?

(b) Calculate the velocity distribution in the two liquids.

(c) What is the pressure distribution within the bubble and the two liquids?

(d) When does the continuity of the thin film of liquid around the bubble break
down?

6.4. The equations

Ouy  Ouy 0
dx dy
and
( dug | %) _ Pt
PAM dy o ) T dy?

govern the (bidirectional) boundary layer flow near a horizontal plate of infinite
dimensions coinciding with the zz-plane. The boundary conditions for u,(z,y) and

uy (i, y) are
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Uy = Uy = 0 at  y=0
uy=V, uy,=0 at y=o0

Does this problem admit a similarity solution? What is the similarity variable?

6.5. Consider a semi-infinite incompressible Newtonian liquid of viscosity n and
density p, bounded below by a plate at y=0, as illustrated in Fig. 6.36. Both the
plate and liquid are initially at rest. Suddenly, at time ¢=07, a constant shear stress
7 is applied along the plate.

t<0 =0T t=1t1>0
Fluid and plate
yT at rest =
uz(y,t)
z

D D

__Ou __Ou

T=7 ayac T=7 ayac

Figure 6.36. Flow near a plate along which a constant shear stress is suddenly
applied.

(a) Specify the governing equation, the boundary and the initial conditions for this
flow problem.
(b) Assuming that the velocity u, is of the form

Uy = %Mf(f), (6.219)
where y
show that
f&) = €56 = 21¢). (6.221)

(The primes denote differentiation with respect to £.)
(c) What are the boundary conditions for f(£)?
(d) Show that

up = Vit {% 4 5[1—erf (g)]} . (6.222)

n T
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6.6. A Newtonian liquid is contained between two horizontal, infinitely long and
wide plates, separated by a distance 2H, as illustrated in Fig. 6.37. The liquid is
initially at rest; at time =0T, both plates start moving with constant speed V.

i YA i YA
of Fluid Transient
at rest flow

t<0 >0

Figure 6.37. Transient Couette flow (Problem 6.6).

(a) Identify the governing equation, the boundary and the initial conditions for this
transient flow.

(b) What is the solution for ¢ < 07

(c) What is the solution for ¢ — oo?

(d) Find the time-dependent solution wu,(y,t) using separation of variables.

(e) Sketch the velocity profiles at t=0, 07, ¢; >0 and oc.

6.7. A Newtonian liquid is contained between two horizontal, infinitely long and
wide plates, separated by a distance H, as illustrated in Fig. 6.38. Initially, the
liquid flows steadily, driven by the motion of the upper plate which moves with
constant speed V', while the lower plate is held stationary. Suddenly, at time t=07,
the speed of the upper plate changes to 2V, resulting in transient flow.

(a) Identify the governing equation, the boundary and the initial conditions for this
transient flow.

(b) What is the solution for ¢ < 07

(c) What is the solution for ¢ — oo?

(d) Find the time-dependent solution wu,(y,1).

(e) Sketch the velocity profiles at t=0, 0T, #; >0 and oo.

6.8. Using separation of variables, show that Eq. (6.154) is indeed the solution of
the transient plane Poiseuille flow, described in Example 6.6.4.

6.9. A Newtonian liquid, contained between two concentric, infinitely long, vertical
cylinders of radii Ry and Ry, where Ry > Ry, is initially at rest. At time =07, the
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V. 2V
| A 2V
Steady Transient
H flow flow
Y Y
\ x x
t <0 t>0

Figure 6.38. Transient Couette flow (Problem 6.7).

inner cylinder starts rotating about its axis with constant angular velocity ;.
(a) Specify the governing equation for this transient flow.

(b) Specify the boundary and the initial conditions.

(c) Calculate the velocity wug(r,t).

6.10. An infinitely long, vertical rod of radius R is initially held fixed in an infinite
pool of Newtonian liquid. At time t=07, the rod starts rotating about its axis with
constant angular velocity 2.

(a) Specify the governing equation for this transient flow.

(b) Specify the boundary and the initial conditions.

(c) Calculate the velocity wug(r,t).

6.11. Consider a Newtonian liquid contained between two concentric, infinitely
long, horizontal cylinders of radii kR and R, where x < 1. Assume that the liquid
is initially at rest. At time t=0%, the outer cylinder starts translating parallel to its
axis with constant speed V. The geometry of the flow is shown in Fig. 6.13.

(a) Specify the governing equation for this transient flow.

(b) Specify the boundary and the initial conditions.

(c) Calculate the velocity u,(r,t).

6.12. A Newtonian liquid is initially at rest in a vertical, infinitely long cylinder of
radius R. At time t=07, the cylinder starts both translating parallel to itself with
constant speed V and rotating about its axis with constant angular velocity (2.

(a) Calculate the corresponding steady-state solution.

(b) Specify the governing equation for the transient flow.

(c) Specify the boundary and the initial conditions.

(d) Examine whether the superposition principle holds for this transient bidirectional
flow.

(e) Show that the time-dependent velocity and pressure profiles evolve to the steady-
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state solution as t — oo.

6.13. Using separation of variables, show that Eq. (6.211) is the solution of steady
Newtonian Poiseuille flow in a tube of rectangular cross section, described in Exam-
ple 6.7.2.

6.14. Consider steady Newtonian Poiseuille flow in a horizontal tube of square
cross section of side 2b. Find the velocity distribution in the following cases:

(a) The liquid does not slip on any wall.

(b) The liquid slips on only two opposing walls with constant slip velocity .

(c¢) The liquid slips on all walls with constant slip velocity u,,.

(d) The liquid slips on only two opposing walls according to the slip law

Tw = 5 Uy, (6.223)
where 7, is the shear stress, and 3 is a material slip parameter. (Note that, in this

case, the slip velocity u,, is not constant.)

6.15. Integrate u,(y, z) over the corresponding cross sections, to calculate the volu-
metric flow rates of the Poiseuille flows discussed in the three examples of Section 6.7.

6.16. Consider steady, unidirectional, gravity-driven flow of a Newtonian liquid in
an inclined, infinitely long tube of rectangular cross section of width 2b and height
2¢, illustrated in Fig. 6.39.

0 b

N

Figure 6.39. Gravity-driven flow in an inclined tube of rectangular cross section.

Y

(a) Simplify the three components of the Navier-Stokes equation for this two-dimensional
unidirectional flow.

(b) Calculate the pressure distribution p(z).

(c) Specify the boundary conditions on the first quadrant.

(d) Calculate the velocity u,(y, z). How is this related to Eq. (6.211)?



6.9 References 81

6.17. Consider steady, gravity-driven flow of a Newtonian rectangular film in an
inclined infinitely long channel of width 2b, illustrated in Fig. 6.40. The film is
assumed to be of uniform thickness H, the surface tension is negligible, and the air
above the free surface is considered stationary.

Free

surface Stationary

alr

I

X

Figure 6.40. Gravity-driven film flow in an inclined channel.

(a) Taking into account possible symmetries, specify the governing equation and the
boundary conditions for this two-dimensional unidirectional flow.

(b) Is the present flow related to that of the previous problem?

(c) Calculate the velocity u,(y, 2).
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