
Chapter 3CONSERVATION LAWSInitiation of relative 
uid motion and thus development of velocity gradients occursunder the action of external force gradients, such as those due to pressure, elevation,shear stresses, density, electromagnetic forces, etc. For example, rain falls to earthdue to elevation di�erences (i.e., gravity di�erential), and butter spreads thin ontoast due to the shearing action of a knife. Additionally, industrial liquids aretransferred by means of piping systems, after being pushed by pumps or pulled byvacuum, both of which generate pressure di�erentials. Meteorological phenomenaare primarily due to air circulation, as a result of density di�erences induced bynonisothermal conditions. Finally, conducting liquids 
ow in non-uniform magnetic�elds.3.1 Control Volume and SurroundingsMass, momentum and energy within a 
owing medium may be transferred by con-vection and/or di�usion. Convection is due to bulk 
uid motion, and di�usion isdue to molecular motions which can take place independently of the presence ofbulk motion. These transfer mechanisms, are illustrated in Fig. 3.1, where, withoutloss of generality, we consider a stationary control volume interacting with its sur-roundings through the bounding surface, S. Due to the velocity u, 
uid entering orleaving the stationary control volume carries by means of convection:(a) Net mass per unit time, _mC = ZS � (n � u) dS ; (3.1)where n is the local outward-pointing unit normal vector, and � is the 
uiddensity (subscript C denotes 
ux by convection).(b) Net momentum per unit time,_JC = ZS �u (n � u)dS ; (3.2)1
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Figure 3.1. Convection and di�usion between a control volume and its surround-ings. where J = �u is the momentum per unit volume.(c) Net mechanical energy per unit time,_EC = ZS � u22 + p� + gz! n � u dS ; (3.3)where the three scalar quantities in parentheses correspond to the kineticenergy, the 
ow work and the potential energy per unit mass 
ow rate; p isthe pressure, g is the gravitational acceleration, and z is the vertical distance.(d) Net thermal energy per unit time,_HC = ZS �U(n � u) dS ; (3.4)where U is the internal energy per unit mass. This is de�ned as dU � Cv dT ,where Cv is the speci�c heat at constant volume, and T is the temperature.(e) Total energy per unit time,( _ET )C = _EC + _HC = ZS � u22 + p� + gz + U! (n � u) dS : (3.5)While convection occurs due to bulk motion, di�usion is independent of it, andit is entirely due to a gradient that drives to equilibrium. For instance, di�usion,



3.1 Control Volume and Surroundings 3commonly known as conduction, of heat occurs whenever there is a temperaturegradient (i.e., potential), rT 6= 0. Di�usion of mass occurs due to a concentrationgradient, rc 6= 0, and di�usion of momentum takes place due to velocity, or forcegradients. Table 3.1 lists common examples of di�usion.Quantity Resistance Result or FluxTemperature; T 1=k �krTSolute; c 1=D �DrcPotential; V R � 1RrVVelocity; u 1=� �[ru+ (ru)T ]Table 3.1. Common examples of di�usion.Common forms of di�usion in 
uid mechanics are:(a) Heat conduction, which according to Fourier's law is expressed as_HD = � ZS k (n � rT ) dS ; (3.6)where k is the thermal conductivity (subscript D denotes 
ux by di�usion).(b) Momentum di�usion, which according to Newton's law of viscosity is expressedas f = ZS n �T dS ; (3.7)where f , T, � and ru are, respectively, the traction force per unit area,the local total stress tensor, the viscosity and the velocity gradient tensor.Momentum di�usion also occurs under the action of body forces, according toNewton's law of gravity, f = ZV � g dV ; (3.8)where f is the weight, and g is the gravitational acceleration vector.



4 Chapter 3. Conservation LawsProduction, destruction or conversion of 
uid quantities may take place withina system or a control volume, such as mechanical energy conversion expressed by_E = ZV [ _W � p(r � u)� ( � : ru)] dV 6= 0 ; (3.9)and thermal energy conversion given by_H = ZV ( � : ru+ pr � u)� _Hr dV 6= 0 ; (3.10)where _W is the rate of production of work, and _Hr is production or consumptionof heat by exothermic and endothermic chemical reactions. While mechanical andthermal energy conversion within a control volume is �nite, there is no total mass,or momentum conversion.According to the sign convention adopted here, mechanical energy is gained bywork W done to (+) (e.g., by a pump) or by (-) the control volume (e.g., by aturbine). In addition, mechanical energy is lost to heat due to volume expansion(r�u), and due to viscous dissipation ( � : ru), as a result of friction between 
uidlayers moving at di�erent velocities, and between the 
uid and solid boundaries.Overall change of 
uid quantities within the control volume such as mass, mo-mentum and energy is expressed as ddt ZV q dV ; (3.11)where q is the considered property per unit volume or, the density of the property.3.2 The General Equations of ConservationThe development of the conservation equations starts with the general statement ofconservation( Rate ofchange ) = ( Netconvection ) � ( Netdi�usion ) � ( Production=Destruction ) ; (3.12)which, in mathematical terms, takes the form,ddt ZV ( ) dV = � ZS( )n � u dS + ZS kr( ) � n dS + ZV ( ) dV : (3.13)Here, V and S are respectively the volume and the bounding surface of the controlvolume, n is the outward-pointing unit normal vector along S, u is the 
uid velocity



3.2 The General Equations of Conservation 5with respect to the control volume, k is a di�usion coe�cient, and r( ) is thedriving gradient responsible for di�usion. By substituting the expressions of Sec-tion 3.1 in Eq. (3.13), the integral forms of the conservation equations are obtainedas follows:(a) Mass conservation ddt ZV � dV = � ZS � (n � u) dS : (3.14)(b) Linear momentum conservationddt ZV �u dV = � ZS �u (n � u) dS + ZS n �T dS + ZV �g dV : (3.15)(c) Total energy conservationddt ZV �ET dV = � ZS �ET (n � u) dS + ZS (n �T) � u dS + ZV � (u � g) dV ; (3.16)where the total energy is de�ned as the sum of the mechanical and internal energy,ET � E + U . The last two terms in Eq. (3.16) are the rate of work or power, dueto contact and body forces, respectively.(d) Thermal energy changeddt ZV �U dV = � ZS �U(u � n) dS + ZV [(� : ru) + p (r � u)] dV� ZV _Hr dV + ZS krT � n dS ; (3.17)where � is the viscous stress tensor related to the total stress tensor by T=�pI+� .(e) Mechanical energy changeddt ZV �E dV = ddt ZV �(ET � U) dV= � ZS �E(u � n) dS + ZS n � (u � T ) dS � ZV [� : ru+ pr � u] dV+ ZV �(u � g) dV � ZV _Hr dV � ZS k(rT � n) dS : (3.18)



6 Chapter 3. Conservation LawsThe energy equations are typically expressed in terms of a measurable property, suchas temperature, by means of dU � CvdT . For constant Cv, U = U0 + Cv(T � T0),where T0 is a reference temperature of known internal energy U0.The minus sign associated with the convection terms is a consequence of the signconvention adopted here: the unit normal vector is positive when pointing outwards.Therefore, a normal velocity towards the control volume results in a positive increaseof a given quantity, i.e., d=dt > 0.Example 3.2.1Derive the conservation of mass equation by means of a control volume, movingwith the 
uid velocity.Solution:The total change of mass within the control volume, given byddt ZV � dV = � ZS �(n � uR) dS ;is zero because the relative velocity, uR, between the control volume and its sur-roundings, is zero. Furthermore, according to Reynolds transport theorem,ddt ZV � dV = ZV @�@t dV + ZS �(n � u) dS = 0 :By invoking the divergence theorem, we getZV @�@t dV = � ZS(n � �u) dS = � ZV r � (�u) dV =)ZV �@�@t +r � (�u)� dV = 0 : (3.19)Since the control volume is arbitrary,@�@t +r � (�u) = 0 ; (3.20)which is the familiar form of the continuity equation. 2Example 3.2.2. Flow in an inclined pipeApply the integral equations of the conservation of mass, momentum and mechanicalenergy, to study the steady incompressible 
ow in an inclined pipe (Fig. 3.2).
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Figure 3.2. Flow in an inclined pipe and stationary control volume.Solution:For the selected control volume shown in Fig. 3.2, the rate of change of mass forincompressible or steady 
ow isddt ZV � dV = ZV @�@t dV = 0 :Therefore, net convection of mass is zero, i.e.,ZS �(n � u) dS = ZSI �(uI � nI) dSI + ZSo �(uo � no) dSo + ZSC �(uC � nC) dSC = 0 ;where nI ;no and nC are, respectively, the unit normal vectors at the inlet, outletand cylindrical surfaces of the control volume. The velocities at the correspondingsurfaces are denoted by uI ;uo and uC .At the inlet, nI �uI = �uIn = �uI (r); at the outlet no �uo = uon = uo(r); nC �uCis the normal velocity to the cylindrical surface which is zero. Moreover,dSI = d(�r2I) = (2�rdr)I ; dSo = d(�r2o) = (2�rdr)o ; dSC = 2�Rdz ;and dV = d(�r2)dz = 2�rdrdz :



8 Chapter 3. Conservation LawsThe above expressions are substituted in the appropriate terms of the conserva-tion of mass equation, Eq. (3.14), to yield�2� Z R0 [ru(r)]I dr + 2� Z R0 [ru(r)]o dr+ 0 = 0 ;and Z R0 ([ru(r)]I � [ru(r)]o) dr = 0 :Since the control volume is arbitrary, we must have[ru(r)]I = [ru(r)]o ;which yields the well known result for steady pipe 
ow, u(r)I = u(r)o = u(r), i.e.,the 
ow is characterized by a single velocity component which is parallel to the pipewall and depends only on r.For the same control volume, the rate of change of linear momentum for steady
ow is ddt ZV �u dV = ZV �@u@t dV = 0 :Convection of momentum in the 
ow direction (z-direction) is given byez � ZS �u(n � u) dS = �ez � ZSI uI(nI � uI) dSI + �ez � ZSo uo(no � uo) dSo+�ez � ZSC uC(nC � uC) dSC= �2�� Z R0 ru2I(r) dr + 2�� Z R0 ru2o(r) dr + 0 = 0 :The contact force (stress) contribution isez �ZSn �TdS = ez � ZSI nI �TI dSI + ez � ZSo no �To dSo + ez � ZSC nC �TC dSC= ez � ZSI nI � (�pI+ � ) dSI + ez � ZSo no � (�pI+ � ) dSo+ ez � ZSC nC � (�pI+ �) dSC= �2� Z R0 (�p+ �zz)I rdr+ 2� Z R0 (�p+ �zz)o rdr+ 2�(�z)R �wrz ;



3.2 The General Equations of Conservation 9where �wrz is the shear stress at the wall. By means of macroscopic balances, thevarious quantities are approximated by their average values. Therefore,ez � ZS n �T dS = �2�R22 [(�p+ �zz)I � (�p+ �zz)o] + 2�R�z �wrz= �R2[��p+ ��zz ] + 2�R�wrz�z ;where �p=po � pI < 0.Finally, the body force contribution in the 
ow direction isez � ZV �g dV = ez � "Z R0 �(grer + gzez + g�e�)2� rdr#�z= �2��z Z R0 �g sin� rdr = �2�R22 �z�g sin � :Therefore, the overall, macroscopic momentum equation is��p�z + ��zz�z + 2R�wrz � �g sin � = 0 : 2Example 3.2.3. Growing bubbleA spherical gas bubble of radius R(t) grows within a liquid at a rate _R=dR=dt. Thegas inside the bubble behaves as incompressible 
uid. However, both the mass andvolume change due to evaporation of liquid at the interface. By choosing appropriatecontrol volumes show that:(a) the gas velocity is zero;(b) the mass 
ux at r < R is �G _R;(c) the mass 
ux at r > R is �(�L � �G) _R(R2=r2).Solution:The problem is solved by applying the mass conservation equation,ddt ZV (t) � dV = � ZS(t) n � �(u� us) dS ;where V is the control volume bounded by the surface S, u is the velocity of the
uid under consideration, and us is the velocity of the surface bounding the controlvolume. In the following, the control volume is always a sphere. Therefore, thenormal to the surface S is n=er.



10 Chapter 3. Conservation Laws(a) The control volume is �xed (us=0) of radius r, and contains only gas, i.e., r < R.From Reynolds transport theorem, we haveddt ZV �G dV = ZV @�G@t dV = 0 :Therefore, for the mass 
ux we get� ZS n � �G(u� us) dS = ddt ZV (t) � dV = 0 =)ZS n � �Gu dS = 0 =) u = 0 for all r < R :(b) The control volume is moving with the bubble (us= _Rer) and contains only gas(r < R). From Reynolds transport theorem, we getddt ZV (t) �G dV = ZV (t) @�G@t dV +ZS(t) n � (�Gus)dS = 0+�G _R (4�r2) = 4��G _Rr2 :The mass 
ux is given byddt ZV (t) �G dV = � ZS(t) n � �G(u� us) dS = q 4�r2 ;where q is the relative 
ux per unit area. Combining the above expressions, we getq=�G _R.(c) The control volume is �xed (us=0) and contains the bubble (r > R). FromReynolds transport theorem, we getddt ZV � dV = ddt ZVG(t) �G dV + ddt ZVL(t) �L dV= ZVG(t) @�G@t dV + ZS(R) n � (�Gus) dSZVL(t) @�L@t dV + ZS(r) n � (�Lus) dS + ZS(R) n � (�Lus) dS= 0 + ZS(R) er � (�Gus) dS + 0 + 0 � ZS(R) er � (�Lus) dS= ZS(R)(�G � �L) us dS = �(�L � �G) _R (4�R2) :



Sec. 3.3. The Di�erential Forms of the Conservation Equations 11For the mass 
ux, we have� ZS �n � (u� us) dS = q 4�r2 :Combining the above two equations, we getq = �(�L � �G) _RR2r2 : 23.3 The Di�erential Forms of theConservation EquationsThe integral forms of the conservation equations derived in Section 3.2, arise natu-rally from the conservation statement, Eq. (3.13). However, these equations are notconvenient to use in complex 
ow problems. To address this issue, the conservationequations are expressed in di�erential form by invoking the integral theorems ofChapter 1.The general form of the integral equation of change, with respect to a stationarycontrol volume V bounded by a surface S, may be written asZV @@t( )1 dV = � ZS n � ( )1u dS + ZS n � ( )2 dS + ZV ( )3 dV : (3.21)Here ( )1 is a scalar (e.g., energy or density) or a vector (e.g., momentum),( )2 is a vector (e.g., gradient of temperature) or a tensor (e.g., stress tensor),and ( )3 is a vector (e.g., gravity) or a scalar (e.g., viscous dissipation or heatrelease by reaction).By invoking the Gauss divergence theorem, the surface integrals of Eq. (3.21)are expressed as volume integrals:ZS n � ( )1u dS = ZV r � [( )1u] dV ;ZS n � ( )2 dS = ZV r � ( )2 dV :Equation (3.21) then becomesZV � @@t( )1 +r � [( )1u]�r � ( )2 � ( )3� dV = 0 : (3.22)



12 Chapter 3. Conservation LawsSince the choice of the volume V is arbitrary, we deduce that@@t( )1 +r � [( )1u]�r � ( )2 � ( )3 = 0 : (3.23)Equation (3.23) is the di�erential analogue of Eq. (3.21). It states that driv-ing gradients r( )2, or equivalent mechanisms, ( )1;3, compete to generatechange, @( )=@t. The term r � ( )2 contains the transfer or resistance coe�-cients according to Table 3.1. These coe�cients are scalar quantities for isotropicmedia, vectors for media with two-directional anisotropies, and tensors for mediawith three-directional anisotropies. Typical transfer coe�cients are the scalar viscos-ity of Newtonian liquids, the vector-conductivity (and mass di�usivity) in long-�bercomposite materials, and the tensor-permeability of three-dimensional porous me-dia. As shown below, particular conservation equations are obtained by �lling theparentheses of Eq. (3.23) with the appropriate variables.Mass conservation (continuity equation)For any 
uid, conservation of mass is expressed by the scalar equation@@t(�)1 +r � [( � )1u] =)@�@t +r � (�u) = 0 : (3.24)Hence, a velocity pro�le represents an admissible (real) 
ow, if and only if it satis�esthe continuity equation. For incompressible 
uids, Eq. (3.24) reduces tor � u = 0 : (3.25)Momentum equationFor any 
uid, the momentum equation is@@t(�u)1 +r � [(�u)1u]� r � (T)2 � (�g)3 = 0 : (3.26)Since T=�pI+ � , the momentum equation takes the form��@u@t + u � ru� = r � (�pI+ � ) + �g : (3.27)Equation (3.27) is a vector equation and can be decomposed further into three scalarcomponents by taking the scalar product with the basis vectors of an appropriate



3.3 The Di�erential Forms of the Conservation Equations 13orthogonal coordinate system. By setting g = �grz, where z is the distance froman arbitrary reference elevation in the direction of gravity, Eq. (3.27) can be alsoexpressed as �DuDt = ��@u@t + u � ru� = r � (�pI+ � ) +r(��gz) ; (3.28)where D=Dt is the substantial derivative introduced in Chapter 1. The momentumequation then states that the acceleration of a particle following the motion is theresult of a net force, expressed by the gradient of pressure, viscous and gravity forces.Mechanical energy equationThis takes the form@@t  �u22 !+ u � r �u22 ! = p(r � u)� r � (pu)� � : ru+r � (� � u) + �(u � g) : (3.29)To derive the above equation, we used the identitiesu � rp = r � (pu)� pr � u ; u � r � � = r � (� � u)� � : ruand the continuity equation, Eq. (3.24).Thermal energy equationConservation of thermal energy is expressed by� �@U@t + u � rU� = [� : ru+ pr � u] +r(�rT )� _Hr ; (3.30)where U is the internal energy per unit mass, and _Hr is the heat of reaction.Temperature equationBy invoking the de�nition of the internal energy, dU � CvdT , Eq. (3.30) becomes,�Cv �@T@t + u � rT� = � : ru+ pr � u+r(krT )� _Hr : (3.31)For heat conduction in solids, i.e., when u = 0, ru = 0; and Cv = C, the resultingequation is �C@T@t = r(krT )� _Hr : (3.32)



14 Chapter 3. Conservation LawsFor phase change, the latent heat rate per unit volume must be added as a sourceterm to the energy equation.Total energy and enthalpy equationsBy adding Eqs. (3.29) and (3.30) and rearranging terms, we get� " @@t  u22 + U!+ u � r u22 + gz + U!# = �r�u+r�(� �u)+r�(krT ) : (3.33)By invoking the de�nition of enthalpy, H � U + p=�, we getrH = rU +r(pV ) = rU + pr�1��+ 1�rp : (3.34)Equation (3.33) then becomes� " @@t  u22 + U!+ u � r u22 + gz +H!# = �pr�u+r�(� �u)+r�(krT ) : (3.35)The term (pr � u) represents work done by expansion or compression. This term isimportant for gases and compressible liquids, but vanishes for incompressible liquids.Notice also that the viscous dissipation term disappears from the total energy andenthalpy equations.The equations of motion of any incompressible 
uid are tabulated in Tables 3.2to 3.4 for the usual orthogonal coordinate systems. The above equations are special-ized for incompressible, laminar 
ow of Newtonian 
uids by means of the Newton'slaw of viscosity T = �pI+ � = �pI+ � hru+r(u)T i : (3.36)In the context of this book, we mostly deal with continuity, and the three com-ponents of the momentum equation. The �rst four equations under considerationare commonly known as equations of motion.Example 3.3.1Repeat Example 3.2.2 by using now the di�erential form of the equations of Ta-ble 3.3. First derive the appropriate di�erential equations by simplifying the con-servation equations; then state appropriate assumptions based on the geometry, thesymmetry of the problem, and your intuition.Solution:We employ a cylindrical coordinate system with the z-axis alligned with the axis of



3.3 The Di�erential Forms of the Conservation Equations 15Continuity equation@ux@x + @uy@y + @uz@z = 0Momentum equationx�component :��@ux@t + ux@ux@x + uy @ux@y + uz @ux@z � == �@p@x + �@�xx@x + @�yx@y + @�zx@z �+ �gxy�component :��@uy@t + ux@uy@x + uy @uy@y + uz @uy@ � == �@p@y + �@�xy@x + @�yy@y + @�zy@z � + �gyz�component :��@uz@t + ux@uz@x + uy @uz@y + uz @uz@z � == �@p@z + �@�xz@z + @�yz@y + @�zz@z �+ �gzTable 3.2. The equations of motion for incompressible 
uids in Cartesian coordi-nates.



16 Chapter 3. Conservation Laws
Continuity equation1r @@r + (rur)1r @u�@� + @uz@z = 0Momentum equationr�component :��@ur@t + ur@ur@r + u�r @ur@� � u2�r + uz @ur@z � == �@p@r + h1r @@r (r�rr) + 1r @�r�@� � ���r + @�rz@z i+ �gr��component :� �@u�@t + ur @u�@r + u�r @u�@� + uru�r + uz @u�@z � == �1r @p@� + h 1r2 @@r(r2�r�) + 1r @���@� + @��z@z i+ �g�z�component :� �@uz@t + ur @uz@r + u�r @uz@� + uz @uz@z � == �@p@z + h1r @@r(r�rz) + 1r @��z@� + @�zz@z i+ �gzTable 3.3. The equations of motion for incompressible 
uids in cylindrical coordi-nates.



3.3 The Di�erential Forms of the Conservation Equations 17Continuity equation1r2 @@r (r2ur) + 1r sin � @@� (u� sin �) + 1r sin � @u�@� = 0Momentum equationr�component :� @ur@t + ur @ur@r + u�r @ur@� + u�r sin � @ur@� � u2� + u2�r ! = �@p@r+ � 1r2 @@r(r2�rr) + 1r sin � @@� (�r� sin �) + 1r sin � @�r�@� � ��� + ���r �+ �gr��component :� @u�@t + ur @u�@r + u�r @u�@� + u�r sin � @u�@� + uru�r � u2� cot �r ! = �1r @p@�+ � 1r2 @@r(r2�r�) + 1r sin � @@� (��� sin �) + 1r sin � @���@� + �r�r � cot �r ����+ �g���component :��@u�@t + ur @u�@r + u�r @u�@� + u�r sin � @u�@� + u�urr + u�u�r cot �� == � 1r sin � @p@� + � 1r2 @@r(r2�r�) + 1r @���@� + 1r sin � @���@� + �r�r + 2cot �r ����+ �g�Table 3.4. The equations of motion for incompressible 
uids in spherical coordi-nates.



18 Chapter 3. Conservation Lawssymmetry of the pipe. It is obvious then that ur=u�=0; since the 
ow is axisym-metric, @uz=@�=0. The continuity equation from Table 3.3 then yields @uz=@z=0.Therefore, the axial velocity is only a function of r, uz=uz(r). Using gz = �g sin�,the z-component of the momentum equation becomes0 = �@p@z + 1r @@r(r�rz) + @�zz@z + �gz : (3.37)The above microscopic, di�erential equation has a form similar to the macroscopicone (�nal result of Example 3.2.2). As discussed in Chapter 5, Eq. (3.37) can besolved for the unknown velocity pro�le, uz(r), given an appropriate constitutiveequation that relates velocity to viscous stresses. 23.4 Problems3.1. Repeat Example 3.2.1 for the conservation of linear momentum. Assume thatthe control volume travels with the 
uid, i.e., it is a material volume.3.2. Derive the equation of change of mechanical energy under the conditions ofExample 3.2.2.3.3. Prove that the velocity in the surrounding liquid at distance r > R(t) of thegrowing bubble of Example 3.2.3 isur = ��L � �G�L � R2(t)r2 dR(t)dt ;using as a control volume either(a) a �xed sphere of radius r > R(t), or(b) a sphere of constant mass with radius r > R(t)that contains the growing bubble and the adjacent part of the liquid.3.4. Starting from the macroscopic mechanical energy equation, Eq. (3.18), showhow the corresponding di�erential one, Eq. (3.29), is obtained. Explain the physicalsigni�cance of each of the terms in Eq. (3.29). Repeat for Eqs. (3.17) and (3.30),and Eqs. (3.16) and (3.35).3.5. For a three-dimensional source at the origin, the radial velocity u is given byu = kr2 er ;where k is a constant. This expression represents the Eulerian description of the
ow. Determine the Lagrangian description of this velocity �eld. Show that the
ow is dynamically admissible.



3.4 Problems 19
rR

u(r)Figure 3.3. Radial 
ow from a porous sphere.3.6. Analyze the purely radial 
ow of water through a porous sphere of radius R0by �rst identifying, and then simplifying the appropriate equations of motion.3.7. What are the appropriate conservation equations for steady, isothermal, com-pressible 
ow in a pipe?3.8. The momentum equation for Newtonian liquid is��@u@t + u � ru� = �rp + �r2u+ �g :Assuming that the liquid is incompressible, and by using vector-vector, vector-tensor, and di�erential operations, show how to derive the following equations:(a) Conservation of vorticity, ! = r� u(b) Kinetic energy change, Ek = 1=2(u � u)�(c) Conservation of angular momentum, J� = r� J = r� �uExplain the physical signi�cance of the terms in each equation.3.9. Incompressibility paradox [7]. Here is a proof that the only velocity �eld thatsatis�es incompressibility is a zero velocity! Starting withr � u = 0 ; (3.38)where u is the velocity �eld, and using the divergence theorem, we �nd thatZS n � u dS = ZV r � u dV = 0 : (3.39)



20 Chapter 3. Conservation LawsAs a result of Eq. (3.38), there is a stream function, A, such thatu = r�A ;and, therefore, Eq. (3.39) implies thatZS n � (r�A) dS = 0 :Using Stokes' theorem we get,IC(A � t) d` = ZS n � (r�A) dS = 0 :The circulation of A is path-independent and, therefore, there exists a scalar func-tion,  , such that A = r ;and u = r�A = r�r = 0 :What went wrong in this derivation?3.10. Conservative force and work [8]. A conservative force, F, is such thatF = �r� ;where � is a scalar �eld, called potential.(a) Show that any work done by a conservative force is path-independent.(b) Show that the sum of the potential and the kinetic energy of a system underonly conservative force action is constant.(c) Consider a sphere moving along an inclined surface in a uniform gravity �eld.Identify the developed forces, characterize them as conservative or not, and evalu-ate the work done by them during a translation dr. Show that the system is notconservative. Under what conditions does the system approach a conservative one?3.5 References1. R.B. Bird, W.E. Stewart and E.N. Lightfoot, Transport Phenomena, John Wiley& Sons, New York, 1960.2. L.E. Scriven, Intermediate Fluid Mechanics Lectures, University of Minnesota,1980.3. R.L. Panton, Incompressible Flow, John Wiley & Sons, New York, 1984.
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