Chapter 3

CONSERVATION LAWS

Initiation of relative fluid motion and thus development of velocity gradients occurs
under the action of external force gradients, such as those due to pressure, elevation,
shear stresses, density, electromagnetic forces, etc. For example, rain falls to earth
due to elevation differences (i.e., gravity differential), and butter spreads thin on
toast due to the shearing action of a knife. Additionally, industrial liquids are
transferred by means of piping systems, after being pushed by pumps or pulled by
vacuum, both of which generate pressure differentials. Meteorological phenomena
are primarily due to air circulation, as a result of density differences induced by
nonisothermal conditions. Finally, conducting liquids flow in non-uniform magnetic

fields.

3.1 Control Volume and Surroundings

Mass, momentum and energy within a flowing medium may be transferred by con-
vection and/or diffusion. Convection is due to bulk fluid motion, and diffusion is
due to molecular motions which can take place independently of the presence of
bulk motion. These transfer mechanisms, are illustrated in Fig. 3.1, where, without
loss of generality, we consider a stationary control volume interacting with its sur-
roundings through the bounding surface, S. Due to the velocity u, fluid entering or
leaving the stationary control volume carries by means of convection:

(a) Net mass per unit time,

mc:/sp(n-u)dS, (3.1)

where n is the local outward-pointing unit normal vector, and p is the fluid
density (subscript C' denotes flux by convection).

(b) Net momentum per unit time,

jc:/gpu(n-u)dS, (3.2)
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Figure 3.1. Convection and diffusion between a control volume and its surround-
ngs.
where J = pu is the momentum per unit volume.

(¢) Net mechanical energy per unit time,
. u2 p

Ec:/p —+=+4+gz] n-uds, (3.3)
s 2 p

where the three scalar quantities in parentheses correspond to the kinetic
energy, the flow work and the potential energy per unit mass flow rate; p is
the pressure, g is the gravitational acceleration, and z is the vertical distance.

(d) Net thermal energy per unit time,
o = / pU(n-u)dS (3.4)
S

where U is the internal energy per unit mass. This is defined as dU = C,, dT,
where C,, is the specific heat at constant volume, and T is the temperature.
(e) Total energy per unit time,

- - - 2
(ET)OIEO-I-HOI/S,O(%-I-%—I-W—I-U)(n-u)dS. (3.5)

While convection occurs due to bulk motion, diffusion is independent of it, and
it is entirely due to a gradient that drives to equilibrium. For instance, diffusion,
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commonly known as conduction, of heat occurs whenever there is a temperature
gradient (i.e., potential), V1" # 0. Diffusion of mass occurs due to a concentration
gradient, Ve # 0, and diffusion of momentum takes place due to velocity, or force
gradients. Table 3.1 lists common examples of diffusion.

Quantity Resistance | Result or Flux
Temperature, T 1/k —kVT

Solute, ¢ 1/D —DVe
Potential, V R -£VV
Velocity, u 1/n n[Vu+ (Vu)?]

Table 3.1. Common examples of diffusion.

Common forms of diffusion in fluid mechanics are:

(a) Heat conduction, which according to Fourier’s law is expressed as
fip = —/ k(n-VT)ds, (3.6)
S

where k is the thermal conductivity (subscript D denotes flux by diffusion).

(b) Momentum diffusion, which according to Newton’s law of viscosity is expressed
as

f:/n-TdS, (3.7)
S

where f, T, n and Vu are, respectively, the traction force per unit area,
the local total stress tensor, the viscosity and the velocity gradient tensor.
Momentum diffusion also occurs under the action of body forces, according to
Newton’s law of gravity,

f:/png, (3.8)
14

where f is the weight, and g is the gravitational acceleration vector.
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Production, destruction or conversion of fluid quantities may take place within
a system or a control volume, such as mechanical energy conversion expressed by

E:/[W—p(V-u)—(T:Vu)]dV;éO, (3.9)
1%
and thermal energy conversion given by

H:/(T:Vu—l—pV-u):l:HTdV;JEO, (3.10)
1%

where W is the rate of production of work, and I, is production or consumption
of heat by exothermic and endothermic chemical reactions. While mechanical and
thermal energy conversion within a control volume is finite, there is no total mass,
or momentum conversion.

According to the sign convention adopted here, mechanical energy is gained by
work W done to (4) (e.g., by a pump) or by (-) the control volume (e.g., by a
turbine). In addition, mechanical energy is lost to heat due to volume expansion
(V-u), and due to viscous dissipation ( T : Vu), as a result of friction between fluid
layers moving at different velocities, and between the fluid and solid boundaries.

Overall change of fluid quantities within the control volume such as mass, mo-
mentum and energy is expressed as

d
— A% 3.11
T faav (3.11)

where ¢ is the considered property per unit volume or, the density of the property.

3.2 The General Equations of Conservation

The development of the conservation equations starts with the general statement of
conservation

Rate of | Net Net Production/
{ change }_{ convection }i{ diffusion }i{ Destruction } » (3.12)
which, in mathematical terms, takes the form,

%/V( )dV:—/S( )n-udS—l—/SkV( )-ndS—I—/V( ydv . (3.13)

Here, V' and S are respectively the volume and the bounding surface of the control
volume, n is the outward-pointing unit normal vector along S, u is the fluid velocity
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with respect to the control volume, £ is a diffusion coefficient, and V( ) is the
driving gradient responsible for diffusion. By substituting the expressions of Sec-
tion 3.1 in Eq. (3.13), the integral forms of the conservation equations are obtained
as follows:

(a) Mass conservation

jt/pdv_—/sp(n-u)dS. (3.14)

(b) Linear momentum conservation

d
dt/pudV——/pu(n-u)dS—l—/n-TdS—I—/png. (3.15)
S S |4

(c¢) Total energy conservation

d
/ pEr dV = —/,oET (n-u) dS—I—/ (n-T)-udS—I—/ p(u-g)dV , (3.16)
dt S S v
where the total energy is defined as the sum of the mechanical and internal energy,
Ep = F 4 U. The last two terms in Eq. (3.16) are the rate of work or power, due

to contact and body forces, respectively.

(d) Thermal energy change

d
/ pU dV = —/pU(u-n)dS—l—/[(T:Vu)—l—p(V-u)]dV
dt s v
j:/ H, dV—|—/kVT-ndS, (3.17)
14 S
where 7 is the viscous stress tensor related to the total stress tensor by T=—pl+ 7.

(e) Mechanical energy change

d d
FEdV — FEr—-U)dV
dt/’o dt/’o( r=0)

= /pE(u ndS—I—/ T)ds — /[T Vu+ pV -u] dV

—I—/ (u-g) dV:l:/ H, dV — / (VT -n) (3.18)
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The energy equations are typically expressed in terms of a measurable property, such
as temperature, by means of dU = C,dT. For constant C,,, U = Uy + C,(T — Tp),
where Ty is a reference temperature of known internal energy Uy.

The minus sign associated with the convection terms is a consequence of the sign
convention adopted here: the unit normal vector is positive when pointing outwards.
Therefore, a normal velocity towards the control volume results in a positive increase
of a given quantity, i.e., d/dt > 0.

Example 3.2.1
Derive the conservation of mass equation by means of a control volume, moving
with the fluid velocity.

Solution:
The total change of mass within the control volume, given by

d
—/pdV:—/p(n-uR)dS,
dt Jv s

is zero because the relative velocity, uf?, between the control volume and its sur-
roundings, is zero. Furthermore, according to Reynolds transport theorem,

d ap
— dv = | —dV cu)dS =0.
L G [

By invoking the divergence theorem, we get

.,

T V:—/S(n-pu)dS:—/VV-(pu)dV =

/V [%—I—V-(pu)] v = 0. (3.19)

Since the control volume is arbitrary,

dp

— 4+ V. =0 3.20

5y TV (pw)=0, (3.20)
which is the familiar form of the continuity equation. |

Example 3.2.2. Flow in an inclined pipe
Apply the integral equations of the conservation of mass, momentum and mechanical
energy, to study the steady incompressible flow in an inclined pipe (Fig. 3.2).
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Figure 3.2. Flow in an inclined pipe and stationary control volume.

Solution:
For the selected control volume shown in Fig. 3.2, the rate of change of mass for
incompressible or steady flow is

d ap
Ll oav=[2Lav=0.
dt/v’o /Vat

Therefore, net convection of mass is zero, i.e.,

/ p(n-u)ds = / p(ur-ny) dSy -I-/ p(u,-n,) dS, + [ p(uc-neg)dSc =0,
S Sr So Sc

where ny, n, and ng are, respectively, the unit normal vectors at the inlet, outlet
and cylindrical surfaces of the control volume. The velocities at the corresponding
surfaces are denoted by uy,u, and ug.

At the inlet, ny-u; = —ul = —uy(r); at the outlet n, - u, = ug = u,(r); n¢ - ug
is the normal velocity to the cylindrical surface which is zero. Moreover,

dS; = d(nr3) = (2rrdr);, dS, = d(7r?) = (2rrdr),, dSc =27Rdz,

and

dV = d(nr?)dz = 2rrdrdz .
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The above expressions are substituted in the appropriate terms of the conserva-
tion of mass equation, Eq. (3.14), to yield

R R
—27r/0 [ru(r)]; dr + 27r/0 [ru(r)], dr+0=0,

and
R
/0 ([ru(r)]; = [ru(r)],) dr =0

Since the control volume is arbitrary, we must have

[ru(r)]r = [ru(r),

which yields the well known result for steady pipe flow, u(r)r = u(r), = u(r), i.e.,
the flow is characterized by a single velocity component which is parallel to the pipe
wall and depends only on r.

For the same control volume, the rate of change of linear momentum for steady
flow is

d ou
4 av=_[,2av=o0.
dt/v’”“ /V'Oat

Convection of momentum in the flow direction (z-direction) is given by

e. [putn-wyds = pe.- [ wimi-un)dsi+pe. [ uw(n-u)ds,
S St

o

+pe. / uc(ng - ug) dSg
Sc

R R
= —27r,0/ rud(r) dr + 27r,0/ ru?(r)dr +0=0.
0 0

The contact force (stress) contribution is

ez-/n-TdS
S

ez-/ Il[-T[dS[—I—eZ-/ nO-TOdSO—I—eZ-/ ng - Teo dSe
S] o SC

ez-/ nI-(—pI—I—T)dSI—I—eZ-/ n, - (—pl+7)ds,
S; s

o

—I—ez-/ ne - (—pI+ 7)dSe
Sc

R R
= —27r/ (=p+ 7)1 rdr—|—27r/ (=p+ Tez)o rdr + 27(A2)R T,
0 0
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where 7% is the shear stress at the wall. By means of macroscopic balances, the
various quantities are approximated by their average values. Therefore,

2
ez-/n-TdS = —QFR?[(—])—I—TZZ)[—(—p—I—TZZ)O]—I—QﬂRAZT;“;
S

= TR)[-Ap+ A7, ]+ 27RTY Az,

where Ap=p, — p; < 0.
Finally, the body force contribution in the flow direction is

R
e, - /V,og dV. = e, - [/ p(gre, + g.e. + goeq)2m rdr| Az
0
R R2
= —QFAZ/ pgsin ¢ rdr = —2%7Ang sin ¢ .
0
Therefore, the overall, macroscopic momentum equation is

Ap ATZZ_I_Q w iné=0
Az T Az TR PIERE=E

Example 3.2.3. Growing bubble

A spherical gas bubble of radius R(t) grows within a liquid at a rate R=dR/dt. The
gas inside the bubble behaves as incompressible fluid. However, both the mass and
volume change due to evaporation of liquid at the interface. By choosing appropriate
control volumes show that:

(a) the gas velocity is zero;

(b) the mass flux at » < R is pgR;

(¢) the mass flux at 7 > R is —(pr, — pg)R(R?/r?).

Solution:
The problem is solved by applying the mass conservation equation,

d
i dV:—/ p(u—u,)dS
dt/V(t)p s p(u - uy)

where V is the control volume bounded by the surface S, u is the velocity of the
fluid under consideration, and u; is the velocity of the surface bounding the control
volume. In the following, the control volume is always a sphere. Therefore, the
normal to the surface S is n=e,.
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(a) The control volume is fixed (us;=0) of radius r, and contains only gas, i.e., r < R.
From Reynolds transport theorem, we have

d Ipg
dV dV = 0.
dt/’oG /v t

Therefore, for the mass flux we get

d

}Qn pa(u —u,) dt vu)p

/n-pGudS:0 = u=0 foral r<R.
S

(b) The control volume is moving with the bubble (u,=Re,) and contains only gas
(r < R). From Reynolds transport theorem, we get

i/ padV = / 3,0(; dV—I—/ “(pgus)dS = O—I—pgR(47r7‘ ) = AmpeRr?.
dt Jv () V(t)

The mass flux is given by

i/ png:—/ n-pe(u—u,)dS = gdnr?,
(t) S(t)

dt Jv
where ¢ is the relative flux per unit area. Combining the above expressions, we get
q=pcR.
(¢) The control volume is fixed (us;=0) and contains the bubble (r > R). From
Reynolds transport theorem, we get

d d d
dt/pdv - %/ (),0 G dV +5/()pLdV

= / 3,0(; dV—I—/ (paus) dS
Val(t
8
/ grL dV—I—/ (prus)dS + / “(prus)dS
Vi(t
= O—I—/ (paus dS—I—O—I—O—/ e - (prus)dS
S(R)

= [ (po—p1)u.dS = ~(p1 - pe) (472
S(R)
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For the mass flux, we have

—/pn-(u—us)dS = g4nr?.
S
Combining the above two equations, we get

. R2
¢ = —(pr = pc)R—7 .

3.3 The Differential Forms of the
Conservation Equations

The integral forms of the conservation equations derived in Section 3.2, arise natu-
rally from the conservation statement, Eq. (3.13). However, these equations are not
convenient to use in complex flow problems. To address this issue, the conservation
equations are expressed in differential form by invoking the integral theorems of
Chapter 1.

The general form of the integral equation of change, with respect to a stationary
control volume V' bounded by a surface S, may be written as

/V%( )1dV=—/Sn-( )1udS—|—/Sn-( )2d5+/v( ) dV . (3.21)

Here ()1 is a scalar (e.g., energy or density) or a vector (e.g., momentum),
()2 is a vector (e.g., gradient of temperature) or a tensor (e.g., stress tensor),
and () is a vector (e.g., gravity) or a scalar (e.g., viscous dissipation or heat
release by reaction).

By invoking the Gauss divergence theorem, the surface integrals of Eq. (3.21)
are expressed as volume integrals:

/Sn-( )1udS:/VV-[( Ju] dV

/Sn-( )stz/vv-( ) dV .

Equation (3.21) then becomes

/V[%( N+V-[( qu=V-( )2—( )3]dV:0. (3.22)
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Since the choice of the volume V is arbitrary, we deduce that

L0 AV =V ()5 =0 (3.23)

ot

Equation (3.23) is the differential analogue of Eq. (3.21). It states that driv-
ing gradients V(  ),, or equivalent mechanisms, ()i 3, compete to generate
change, d(  )/9t. The term V -( )z contains the transfer or resistance coeffi-
cients according to Table 3.1. These coeflicients are scalar quantities for isotropic
media, vectors for media with two-directional anisotropies, and tensors for media
with three-directional anisotropies. Typical transfer coefficients are the scalar viscos-
ity of Newtonian liquids, the vector-conductivity (and mass diffusivity) in long-fiber
composite materials, and the tensor-permeability of three-dimensional porous me-
dia. As shown below, particular conservation equations are obtained by filling the
parentheses of Eq. (3.23) with the appropriate variables.

Mass conservation (continuity equation)

For any fluid, conservation of mass is expressed by the scalar equation

S on+V-lppu] =
%§+_v.(pu):(y (3.24)

Hence, a velocity profile represents an admissible (real) flow, if and only if it satisfies
the continuity equation. For incompressible fluids, Eq. (3.24) reduces to

V.ou=0. (3.25)

Momentum equation

For any fluid, the momentum equation is

(o + V- [(pw)ru] = V- (T~ (pg)s = 0. (3.26)

Since T=—pI+ 7, the momentum equation takes the form

)
p(a—?—l—u-Vu):V-(—pI—l—T)—l—pg. (3.27)

Equation (3.27) is a vector equation and can be decomposed further into three scalar
components by taking the scalar product with the basis vectors of an appropriate
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orthogonal coordinate system. By setting g = —gVz, where z is the distance from
an arbitrary reference elevation in the direction of gravity, Eq. (3.27) can be also
expressed as

D J
por=p (G +usVu) =V (<Lt 7+ V(-pga). (3.28)

where D /Dt is the substantial derivative introduced in Chapter 1. The momentum
equation then states that the acceleration of a particle following the motion is the
result of a net force, expressed by the gradient of pressure, viscous and gravity forces.

Mechanical energy equation
This takes the form

%(pu?z) +u-V (,0%2) = p(V-u)—V.(pu)—7:Vu
+V-(rt-u)+p(u-g). (3.29)
To derive the above equation, we used the identities
u-Vp=V.(pu)—=pV-u, u-V.-r=V.(r-u)—7:Vu
and the continuity equation, Eq. (3.24).

Thermal energy equation
Conservation of thermal energy is expressed by

aUu ]

where U is the internal energy per unit mass, and H, is the heat of reaction.

Temperature equation
By invoking the definition of the internal energy, dU = C,dT', Eq. (3.30) becomes,

oT .

For heat conduction in solids, i.e., when u = 0, Vu = 0, and C,, = C, the resulting
equation is

,0088—1; =V(kVT)+ H, . (3.32)
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For phase change, the latent heat rate per unit volume must be added as a source
term to the energy equation.

Total energy and enthalpy equations
By adding Eqs. (3.29) and (3.30) and rearranging terms, we get

p [% (u; + U) +tu-v (u; +92 4+ U)] = =V ut V(1 u)+V-(kVT). (3.33)

By invoking the definition of enthalpy, H = U + p/p, we get
1 1

VH=VU+V(pV)=VU+ pV (—) + -Vp. (3.34)
p) p

Equation (3.33) then becomes

d 2 2
p [% (u? + U) 4+u-V (u? +gz+ H)] = —pV-u+V-(r-u)+V-(kVT) . (3.35)
The term (pV - u) represents work done by expansion or compression. This term is
important for gases and compressible liquids, but vanishes for incompressible liquids.
Notice also that the viscous dissipation term disappears from the total energy and
enthalpy equations.

The equations of motion of any incompressible fluid are tabulated in Tables 3.2
to 3.4 for the usual orthogonal coordinate systems. The above equations are special-
ized for incompressible, laminar flow of Newtonian fluids by means of the Newton’s
law of viscosity

T=-pl+7=—pl+n [Vu + V(u)T] . (3.36)

In the context of this book, we mostly deal with continuity, and the three com-
ponents of the momentum equation. The first four equations under consideration
are commonly known as equations of motion.

Example 3.3.1
Repeat Example 3.2.2 by using now the differential form of the equations of Ta-

ble 3.3. First derive the appropriate differential equations by simplifying the con-
servation equations; then state appropriate assumptions based on the geometry, the
symmetry of the problem, and your intuition.

Solution:
We employ a cylindrical coordinate system with the z-axis alligned with the axis of
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Continuity equation

Momentum equation
r—component :

p (83?? + ux%?fg’ + uy%%f + uz%??’) =

_ ap 87—1’1’ 87—1/1’ 87—21’

y—component :

ou ou ou ou
p (a—ty Ty t gy +“ZTy) =

_Op OTpy | OTyy | OTzy
__3_y+[890 + Dy + 92 + PGy

zZ—component :

p (33%2 + ux% + uy%—?éj + uz%) =

_ ap 87—1’2 87— z 87—22
——$+[32 + o+ 32]+ng

Table 3.2. The equations of motion for incompressible fluids in Cartesian coordi-
nates.
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Continuity equation

190 1 du ou, _
ror Tu)r gy g =
Momentum equation
r—component :
du, du, ue ou, U_Z ou, \ _
(815 Ty T T T +“232)—

f—component :

(auév_l_uT@ue_l_ue@ue_l_uTue_l_ Juyg ):

It Ir T 00 20z
= —%8—]5 + [%2%(7‘27}9) + %837—36 + + pge
zZ—component :
p (w4 200 10, ) =
= 00 4 [L 2 (rre) + 120 1 O] 4 g,

Table 3.3. The equations of motion for incompressible fluids in cylindrical coordi-

nates.
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Continuity equation

1
7‘2

2 1 9 : _
(r7ur) + rsinOW(uesme)—l_ rsind d¢ 0

S

Momentum equation

r—component :
2

2
p(3“7+urauf+%3“7+ ug  Ouy, ué"“%):_@

ot ar a6 rsinf 06 T ar
. oty Too + T,
+ [%2%(7‘27'”) + rs%n@%(ﬁe sin 0) + Tsiln0 8¢¢ - T M] + Pg-
f—component :
2
dug  , dug , ugdug | _Us Jup , weuy  U3OL0N - 109p
p(at+ufar+rao+rsinoao+ T
. aT
+ [%2%(7‘27}9) + rs%n@%(me sin ) + rsiln08—fb¢ + % - CO;EGTM] + pyge
¢—component :
Jug Jug | ug Quy Uy Jugy  Ugly — UGl B
(815 TGt T g Trsme g T T o o) =
___1 9Op {1382 19764 1 0T | Tre | 5cotd
= "rsnfag T [ﬂ@r(r o)+ 5 99 T rsind R + o 255 s | + g

Table 3.4. The equations of motion for incompressible fluids in spherical coordi-
nates.
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symmetry of the pipe. It is obvious then that u,=ug=0; since the flow is axisym-
metric, du,/00=0. The continuity equation from Table 3.3 then yields du,/dz=0.

Therefore, the axial velocity is only a function of r, u.=u.(r). Using g, = —gsin ¢,
the z-component of the momentum equation becomes
dp 19 OT2s
0= ———+—— . 3.37
9z r GT(TTTZ) + 0z Py ( )

The above microscopic, differential equation has a form similar to the macroscopic
one (final result of Example 3.2.2). As discussed in Chapter 5, Eq. (3.37) can be
solved for the unknown velocity profile, u.(r), given an appropriate constitutive
equation that relates velocity to viscous stresses. |

3.4 Problems

3.1. Repeat Example 3.2.1 for the conservation of linear momentum. Assume that
the control volume travels with the fluid, i.e., it is a material volume.

3.2. Derive the equation of change of mechanical energy under the conditions of
Example 3.2.2.

3.3. Prove that the velocity in the surrounding liquid at distance r > R(t) of the
growing bubble of Example 3.2.3 is

_ (,OL — pg) Rz(t) dR(t)
/U/T - ?
oL r2 dt

using as a control volume either

(a) a fixed sphere of radius r > R(t), or

(b) a sphere of constant mass with radius r > R(¢)

that contains the growing bubble and the adjacent part of the liquid.

3.4. Starting from the macroscopic mechanical energy equation, Eq. (3.18), show
how the corresponding differential one, Eq. (3.29), is obtained. Explain the physical
significance of each of the terms in Eq. (3.29). Repeat for Egs. (3.17) and (3.30),
and Eqs. (3.16) and (3.35).

3.5. For a three-dimensional source at the origin, the radial velocity u is given by

where k is a constant. This expression represents the Eulerian description of the
flow. Determine the Lagrangian description of this velocity field. Show that the
flow is dynamically admissible.
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u(r)

Figure 3.3. Radial flow from a porous sphere.

3.6. Analyze the purely radial flow of water through a porous sphere of radius Ry
by first identifying, and then simplifying the appropriate equations of motion.

3.7. What are the appropriate conservation equations for steady, isothermal, com-
pressible flow in a pipe?

3.8. The momentum equation for Newtonian liquid is

0
p(a—?;—l—u-Vu) = —Vp+nViu+pg.

Assuming that the liquid is incompressible, and by using vector-vector, vector-
tensor, and differential operations, show how to derive the following equations:

(a) Conservation of vorticity, w =V x u
(b) Kinetic energy change, Fr, = 1/2(u-u)p
(¢) Conservation of angular momentum, Jg =r X J =r X pu

Explain the physical significance of the terms in each equation.

3.9. Incompressibility paradox [7]. Here is a proof that the only velocity field that
satisfies incompressibility is a zero velocity! Starting with

V-ou=0, (3.38)

where u is the velocity field, and using the divergence theorem, we find that

/n-udS:/V-udV:O. (3.39)
S |4
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As a result of Eq. (3.38), there is a stream function, A, such that
u=VXA,

and, therefore, Eq. (3.39) implies that
/n-(VXA) s = 0.
S
Using Stokes’ theorem we get,

fc(A-t)dﬁ = /Sn-(VXA) ds = 0.

The circulation of A is path-independent and, therefore, there exists a scalar func-
tion, 1, such that
A = Vi,

and
u=VxA

VxViy =0.
What went wrong in this derivation?

3.10. Conservative force and work [8]. A conservative force, F, is such that
F = —ng,

where ¢ is a scalar field, called potential.

(a) Show that any work done by a conservative force is path-independent.

(b) Show that the sum of the potential and the kinetic energy of a system under
only conservative force action is constant.

(c) Consider a sphere moving along an inclined surface in a uniform gravity field.
Identify the developed forces, characterize them as conservative or not, and evalu-
ate the work done by them during a translation dr. Show that the system is not
conservative. Under what conditions does the system approach a conservative one?

3.5 References

1. R.B. Bird, W.E. Stewart and E.N. Lightfoot, Transport Phenomena, John Wiley
& Sons, New York, 1960.

2. L.E. Scriven, Intermediate Fluid Mechanics Lectures, University of Minnesota,
1980.

3. R.L. Panton, Incompressible Flow, John Wiley & Sons, New York, 1984,



3.5 References 21

4. F. Cajori, Sir Isaac Newton’s Mathematical Principles, University of California
Press, Berkeley, 1946.

5. R.H. Kadlec, Hydrodynamics of Wetland Treatment Systems, Constructed Wet-
lands for Wastewater Treatment, Lewis Publishers, Chelsea, Michigan, 1989.

6. H.A. Stone, “A simple derivation of the time-dependent convective-diffusion

equation for surfactant transport along a deforming interface,” Phys. Fluids
A. 2,111 (1990).

7. H.M. Schey, Div, Grad, Curl and All That, W.W. Norton & Company, Inc.,
New York, 1973.

8. R.R. Long, Engineering Science Mechanics, Prentice-Hall, Englewood Cliffs,
NJ, 1963.





