
Chapter 2INTRODUCTION TO THECONTINUUM FLUID2.1 Properties of the Continuum FluidA 
ow can be of statistical (i.e., molecular) or of continuum nature, depending onthe involved length and time scales. Fluid mechanics is normally concerned with themacroscopic behavior of 
uids on length scales signi�cantly larger than the meandistance between molecules and on time scales signi�cantly larger than those asso-ciated with molecular vibrations. In such a case, a 
uid can be approximated as acontinuum, i.e., as a hypothetical in�nitely divisible substance, and can be treatedstrictly by macroscopic methods. As a consequence of the continuum hypothesis,a 
uid property is assumed to have a de�nite value at every point in space. Thisunique value is de�ned as the average over a very large number of molecules sur-rounding a given point within a small distance, which is still large compared withthe mean intermolecular distance. Such a collection of molecules occupying a verysmall volume is called 
uid particle. Hence, the velocity of a particle is consideredequal to the mean velocity of the molecules it contains. The velocity so de�ned canalso be considered to be the velocity of the 
uid at the center of mass of the 
uidparticle. The continuum assumption implies that the values of the various 
uidproperties are continuous functions of position and of time. This assumption breaksdown in rare�ed gas 
ow, where the mean free path of the molecules may be ofthe same order of magnitude as the physical dimensions of the 
ow. In this case, amicroscopic or statistical approach must be used.Properties are macroscopic, observable quantities that characterize a state. Theyare called extensive, if they depend on the amount of 
uid; otherwise, they arecalled intensive. Therefore, mass, weight, volume and internal energy are extensiveproperties, whereas temperature, pressure, and density are intensive properties. Thetemperature, T , is a measure of thermal energy, and may vary with position and time.The pressure, p, is also a function of position and time, de�ned as the limit of the1



2 Chapter 2. Introduction to the Continuum Fluidratio of the normal force, �Fn, acting on a surface, to the area �A of the surface,as �A! 0, p � lim�A!0 �Fn�A : (2.1)Hence, the pressure is a kind of normal stress. Similarly, the shear stress is de�ned asthe limit of the tangential component of the force, �Ft, divided by �A, as �A! 0.Shear and normal stresses are considered in detail in Chapter 5.Under equilibrium conditions, i.e., in a static situation, pressure results fromrandom molecular collisions with the surface and is called equilibrium or thermo-dynamic pressure. Under 
ow conditions, i.e., in a dynamic situation, the pressureresulting from the directed molecular collisions with the surface is di�erent from thethermodynamic pressure and is called mechanical pressure. The thermodynamicpressure can be determined from equations of state, such as the ideal gas law forgases and the van der Waals equation for liquids. The mechanical pressure can bedetermined only by means of energy-like conservation equations than take into ac-count not just the potential and the thermal energy associated with equilibrium, butalso the kinetic energy associated with 
ow and deformation. The general relation-ship between thermodynamic and mechanical pressures is considered in Chapter 5.The densityA fundamental property of continuum is the mass density. The density of a 
uidat a point is de�ned as � � lim�V!L3 ��m�V � ; (2.2)where �m is the mass of a very small volume �V surrounding the point, and L is avery small characteristic length which, however, is signi�cantly larger than the meandistance between molecules. Density can be inverted to give the speci�c volumeV̂ � 1� ; (2.3)or the molecular volume VM � V̂M ; (2.4)where M is the molecular weight.The density of a homogeneous 
uid is a function of temperature T , pressure p,and molecular weight: � = �(T; p;M) : (2.5)



2.1 Properties of the Continuum Fluid 3Equation (2.5) is an equation of state at equilibrium. An example of such an equationis the ideal gas law, � = pMRT ; (2.6)where R is the ideal gas constant which is equal to 8314 Nm/(Kg mole K).The density of an incompressible 
uid is independent of the pressure. The densityof a compressible 
uid depends on the pressure, and may vary in time and space, evenunder isothermal conditions. A measure of the changes in volume and, therefore,in density, of a certain mass of 
uid subjected to pressure or normal forces, underconstant temperature, is provided by the compressibility of the 
uid, de�ned by� � � 1V �@V@p �T = ��@ lnV@p �T (2.7)The compressibility of steel is around 5 � 10�12 m2=N , that of water is 5 � 10�10m2=N , and that of air is identical to the inverse of its pressure (around 10�3 m2=Nat atmospheric pressure). Under isothermal conditions, solids, liquids and gasesare virtually incompressible at low pressures. Gases are compressible at moderatepressures, and their density is a strong function of pressure. Under nonisothermalconditions, all materials behave like compressible ones, unless their coe�cient ofthermal expansion, � � �@V@T �p ; (2.8)is negligible.Example 2.1.1. Air-density variationsThe basic pressure-elevation relation of 
uid statics is given bydpdz = ��g ; (2.9)where g is the gravitational acceleration, and z is the elevation. Assuming that airis an ideal gas, we can calculate the air density distribution as follows. SubstitutingEq. (2.6) into Eq. (2.9), we getdpdz = �pMgRT =) dpp = �MgRT dz :If p0 and �0 denote the pressure and the density, respectively, at z=0, thenZ p(z)p0 dpp = �MgRT Z z0 dz =) p = p0 exp��MgzRT � ;



4 Chapter 2. Introduction to the Continuum Fluidand � = �0 exp��MgzRT � :In reality, the temperature changes with elevation according toT (z) = T0 � azwhere a is called the atmospheric lapse rate [1]. If the temperature variation is takeninto account, Z p(z)p0 dpp = �MgR Z z0 dzT0 � azwhich yields p(z)p0 = �T0 � azT0 �MgaRand, therefore, �(z)�0 = p(z) T0p0 T (z) = �T0 � azT0 �MgaR � 1 :Thus, the density changes with elevation according to1�0 d�dz = �� aT0� �MgaR � 1� �T0 � azT0 �MgaR � 1 : 2The viscosityA 
uid in static equilibrium is under normal stress, which is the hydrostatic orthermodynamic pressure given by Eq. (2.1). As explained in Chapter 1, the totalstress tensor, T, consists of an isotropic pressure stress component, �pI, and of ananisotropic viscous stress component, � ,T = �p I + � : (2.10)The stress tensor � comes from the relative motion of 
uid particles and is zeroin static equilibrium. When there is relative motion of 
uid particles, the velocity-gradient tensor, ru, and the rate-of-strain tensor,D � 12[ru+ (ru)T ] ; (2.11)



2.1 Properties of the Continuum Fluid 5Shearstress
IID

Yieldstress Bingham plasticHerschel-BulkleyShear thickeningNewtonianShear thinningFigure 2.1. Behavior of various non-Newtonian 
uids.are not zero. Incompressible Newtonian 
uids follow Newton's law of viscosity (dis-cussed in detail in Chapter 5) which states that the viscous stress tensor � is pro-portional to the rate-of-strain tensor,� = 2�D = � [ru+ (ru)T ] (2.12)or, equivalently, [ru+ (ru)T ] = �� : (2.13)The proportionality constant, �, which is a coe�cient of momentum transfer inEq. (2.12) and resistance in Eq. (2.13), is called dynamic viscosity or, simply, vis-cosity. The dynamic viscosity divided by density is called kinematic viscosity and isusually denoted by �: � � �� (2.14)A 
uid is called ideal or inviscid if its viscosity is zero; 
uids of nonzero viscosityare called viscous. Viscous 
uids not obeying Newton's law are generally called non-Newtonian 
uids. These are classi�ed into generalized Newtonian and viscoelastic



6 Chapter 2. Introduction to the Continuum Fluid
uids. Note that the same quali�ers are used to describe the corresponding 
ow,e.g., ideal 
ow, Newtonian 
ow, viscoelastic 
ow etc.Generalized Newtonian 
uids are viscous inelastic 
uids that still follow Eq. (2.12),but the viscosity itself is a function of the rate of strain tensor D; more precisely,the viscosity is a function of the second invariant of D, �=�(IID). A 
uid is saidto be shear thinning, if its viscosity is a decreasing function of IID; when the op-posite is true, the 
uid is said to be shear thickening. Bingham plastic 
uids aregeneralized Newtonian 
uids that exhibit yield stress. The material 
ows only whenthe applied shear stress exceeds the �nite yield stress. A Herschel-Bulkley 
uid is ageneralization of the Bingham 
uid, where, upon deformation, the viscosity is eithershear thinning or shear thickening. The dependence of the shear stress on IID isillustrated in Fig. 2.1, for various non-Newtonian 
uids.Fluids that have both viscous and elastic properties are called viscoelastic 
uids.Many 
uids of industrial importance, such as polymeric liquids, solutions, meltsor suspensions fall into this category. Fluids exhibiting elastic properties are oftenreferred to as memory 
uids.The �eld of Fluid Mechanics that studies the relation between stress and defor-mation, called the constitutive equation, is called Rheology from the Greek words\rheo" (to 
ow) and \logos" (science or logic), and is the subject of many textbooks[2,3].The surface tensionSurface tension, �, is a thermodynamic property which measures the anisotropyof the interactions between molecules on the interface of two immiscible 
uids Aand B. At equilibrium, the capillary pressure (i.e., the e�ective pressure due tosurface tension) on a curved interface is balanced by the di�erence between thepressures in the 
uids across the interface. The jump in the 
uid pressure is givenby the celebrated Young-Laplace equation of capillarity [4],�p = pB � pA = � � 1R1 + 1R2� ; (2.15)where R1 and R2 are the principal radii of curvature, i.e., the radii of the two mu-tually perpendicular maximum circles which are tangent to the (two-dimensional)surface at the point of contact. In Chapter 4, these important principles are ex-panded to include liquids in relative motion.Example 2.1.2. Capillary pressureA spherical liquid droplet is in static equilibrium in stationary air at low pressurepG. How does the pressure p inside the droplet change for droplets of di�erent radiiR, for in�nite, �nite and zero surface tension?



2.1 Properties of the Continuum Fluid 7Solution:In the case of spherical droplets, R1=R2=R, and the Young-Laplace equation isreduced to p� pG = 2�R :The above formula says that the pressure within the droplet is higher than thepressure of the air. The liquid pressure increases with the surface tension anddecreases with the size of the droplet. As the surface tension increases, the pressuredi�erence can be supported by bigger liquid droplets. As the pressure di�erenceincreases, smaller droplets are formed under constant surface tension. 2Measurement of 
uid propertiesThe density, the viscosity and the surface tension of pure, incompressible, New-tonian liquids are functions of temperature and, to a much lesser extent, functionsof pressure. These properties, blended with processing conditions, de�ne a set ofdimensionless numbers which fully characterize the behavior of the 
uid under 
owand processing. Three of the most important dimensionless numbers of 
uid me-chanics are brie
y discussed below.The Reynolds number expresses the relative magnitude of inertia forces to viscousforces, and is de�ned by Re � L�u�� ; (2.16)where L is a characteristic length of the 
ow geometry (i.e., the diameter of a tube),and �u is a characteristic velocity of the 
ow (e.g., the mean velocity of the 
uid).The Stokes number represents the relative magnitude of gravity forces to viscousforces, and is de�ned by St � �gL2��u : (2.17)The capillary number expresses the relative magnitude of viscous forces to surfacetension forces, and is de�ned by Ca � ��u� : (2.18)The �rst two dimensionless numbers, Re and St, arise naturally in the dimensionlessconservation of momentum equation; the third, Ca, appears in the dimensionlessstress condition on a free surface. The procedure of nondimensionalizing these equa-tions is described in Chapter 7, along with the asymptotic analysis which is usedto construct approximate solutions for limiting values of the dimensionless numbers[5]. The governing equations of motion under these limiting conditions are simpli�ed



8 Chapter 2. Introduction to the Continuum Fluidp=0.1 atm p=1 atm p=10 atmProperty Fluid 4oC 20oC 4oC 20oC 40oC 20oC 40oCDensity (Kg=m3) Air 0.129 0.120 1.29 1.20 1.13 12 11.3Water 1000 998 1000 998 992 998 992Viscosity (cP ) Air 0.0158 0.0175 0.0165 0.0181 0.0195 0.0184 0.0198Water 1.792 1.001 1.792 1.002 0.656 1.002 0.657Surface tension Air - - - - - - -with air (dyn=cm) Water 75.6 73 75.6 73 69.6 73 69.6Table 2.1. Density, viscosity and surface tension of air and water at several processconditions.by eliminating terms that are multiplied or divided by the limiting dimensionlessnumbers, accordingly.Flows of highly viscous liquids are characterized by a vanishingly small Reynoldsnumber and are called Stokes or creeping 
ows. Most 
ows of polymers are creeping
ows [6]. The Reynolds number also serves to distinguish between laminar andturbulent 
ow. Laminar 
ows are characterized by the parallel sliding motion ofadjacent 
uid layers without intermixing, and persist for Reynolds numbers below acritical value that depends on the 
ow. For example, for 
ow in a pipe, this criticalvalue is 2,100. Beyond that value, eddies start to develop within the 
uid layersthat cause intermixing and chaotic, oscillatory 
uid motion, which characterizesturbulent 
ow. Laminar 
ows at Reynolds numbers su�ciently high that viscouse�ects are negligible are called potential or Euler 
ows. The Stokes number is zeroin strictly horizontal 
ows and high in vertical 
ows of heavy liquids. The capillarynumber appears in 
ows with free surfaces and interfaces [7]. The surface tension,and thus the capillary number, can be altered by the addition of surfactants to the
owing liquids.The knowledge of the dimensionless numbers and the prediction of the 
owbehavior demand an a priori measurement of density, viscosity and surface tensionof the liquid under consideration. Density is measured by means of pycnometers,the function of which is primarily based on the Archimedes principle of buoyancy.Viscosity is measured by means of viscometers or rheometers in small-scale 
ows;the torque necessary to drive the 
ow and the resulting deformation are relatedaccording to Newton's law of viscosity. Surface tension is measured by tensiometers.These are sensitive devices that record the force which is necessary to overcome thesurface tension force, in order to form droplets and bubbles or to break thin �lms.More sophisticated methods, usually based on optical techniques, are employed when



Sec. 2.2. Macroscopic and Microscopic Balances 9accuracy is vital [8]. The principles of operation of pycnometers, viscometers andtensiometers are highlighted in several chapters starting with Chapter 4. Densities,viscosities and surface tension of air and water at several process conditions aretabulated in Table 2.1.2.2 Macroscopic and Microscopic BalancesThe control volume is an arbitrary synthetic cut in space which can be either �xed ormoving. It is appropriately chosen within or around the system under consideration,in order to apply the laws that describe its behavior. In 
ow systems, these lawsare the equations of conservation (or change) of mass, momentum, and energy. Toobtain information on average or boundary quantities (e.g., of the velocity and thetemperature �elds inside the 
ow system), without a detailed analysis of the 
ow, thecontrol volume is usually taken to contain or to coincide with the real 
ow system.The application of the principles of conservation to this �nite system produces themacroscopic conservation equations.However, in order to derive the equations that yield detailed distributions of�elds of interest, the control volume must be of in�nitesimal dimensions that canshrink to zero, yielding a point-volume. This approach reduces the quantities topoint-variables. The application of the conservation principles to this in�nitesimalsystem produces the microscopic or di�erential conservation equations. In this case,there is generally no contact between the imaginary boundaries of the control volumeand the real boundaries of the system. It is always convenient to choose the shape ofthe in�nitesimal control volume to be similar to that of the geometry of the actualsystem; a cube for a rectangular geometry, an annulus for a cylindrical geometryand a spherical shell for a spherical geometry.Conservation of massConsider an arbitrary, �xed control volume V , bounded by a surface S, as shownin Fig. 2.2. According to the law of conservation of mass, the rate of increase ofthe mass of the 
uid within the control volume V is equal to the net in
ux of 
uidacross the surface S:" Rate of changeof mass within V # = " Rate of additionof mass across S # : (2.19)The mass m of the 
uid contained in V is given bym = ZV � dV ; (2.20)



10 Chapter 2. Introduction to the Continuum FluidSurrounding 
uidControl volume VSurface element dSSurface S
n

Figure 2.2. Control volume in a 
ow �eld.and, hence, the rate of change in mass isdmdt = ddt ZV � dV : (2.21)Since the control volume V is �xed, the time derivative can be brought inside theintegral: dmdt = ZV @�@t dV : (2.22)As for the mass rate across S, this is given by� ZS n � (�u) dS ;where n is the outwardly directed unit vector normal to the surface S, and �u is themass 
ux (i.e., mass per unit area per unit time). The minus sign accounts for thefact that the mass of the 
uid contained in the control volume decreases, when the
ow is outward, i.e., when n � (�u) is positive. By substituting the last expressionand Eq. (2.22) in Eq. (2.19), we obtain the following form of the equation of massconservation for a �xed control volume:dmdt = ZV @�@t dV = � ZS n � (�u) dS : (2.23)Example 2.2.1. Macroscopic balancesA reactant in water 
ows down the wall of a cylindrical tank in the form of thin



Sec. 2.2. Macroscopic and Microscopic Balances 11
h(t) WaterAirdDSink

Source Q
Qout

MacroscopicControlVolume MicroscopicControlVolumedDr r + dr
Figure 2.3. Macroscopic and microscopic balances on a source-sink system.�lm at 
ow rate Q. The sink at the center of the bottom, of diameter d, dischargeswater at average velocity �u = 2kh, where k is a constant. Initially, the sink and thesource are closed and the level of the water is h0. What will be the level h(t) aftertime t?Solution:We consider a control volume containing the 
ow system, as illustrated in Fig. 2.3.The rate of change in mass within the control volume isdmdt = ddt ZV � dV = ddt(�V ) = � ddt  �D24 h! = ��D24 dhdt :We assume that water is incompressible. The net in
ux of mass across the surfaceS of the control volume is� ZS n � (�u) dS = � (Q�Qout) = �  Q� �d24 �u! = �  Q� �d22 kh! ;



12 Chapter 2. Introduction to the Continuum Fluidwhere Q and Qout are the volumetric 
ow rates at the inlet and the outlet, respec-tively, of the 
ow system (see Fig. 2.3). Therefore, the conservation of mass withinthe control volume gives: �D24 dhdt = Q� �d22 kh : (2.24)The solution to this equation, subjected to the initial conditionh(t = 0) = h0 ;is h(t) = 2Q�d2k � � 2Q�d2k � h0� e��2kd2D2 �t : (2.25)The steady-state elevation ishss = limt!1 h(t) = 2Q�d2k : (2.26)Since, Eq. (2.24) is a macroscopic equation, its solution, given by Eq. (2.25),provides no information on the velocity from the wall to the sink, nor on the pressuredistribution within the liquid. These questions are addressed in Example 2.2.2. 2Example 2.2.2. Microscopic balancesAssume now that the system of Example 2.2.1 is a kind of chemical reactor. Find anestimate of the residence time of a reactant particle (moving with the liquid) fromthe wall to the sink.Solution:The reactant 
ows down the vertical wall and enters the radial reacting 
ow atr=D=2 directed towards the cylindrical sink at r=d=2 (r is the distance from thecenter of the sink). If u(r) is the pointwise radial velocity of the 
uid, thenu(r) = drdt ;and, therefore, the residence time of the 
uid in the reaction �eld is given byt = Z d=2D=2 dru(r) : (2.27)Obviously, we need to calculate u(r) as a function of r. The average velocity �ufound in Example 2.2.1 is of no use here. The velocity u(r) can be found only by



Sec. 2.2. Macroscopic and Microscopic Balances 13performing a microscopic balance. A convenient microscopic control volume is anannulus of radii r and r + dr, and of height dz, shown in Fig. 2.3. For this controlvolume, the conservation of mass states thatddt(�2�r dr dz) = [2�r�u(r)dz]r+dr � [2�r�u(r)dz]r : (2.28)Assume, for the sake of simplicity, that the reactor operates at steady state, whichmeans that d=dt=0 and h=hss. From Eq. (2.28), we get:[ru(r)]r+dr � [ru(r)]r = 0 :Dividing the above equation by dr, making the volume to shrink to zero by takingthe limit as dr ! 0, and invoking the de�nition of the total derivative, we get asimple, ordinary di�erential equation:ddr [ru(r)] = limdr!0 [ru(r)]r+dr � [ru(r)]rdr = 0 ; (2.29)The solution of the above equation isu(r) = cr ; (2.30)where c is a constant to be determined. The boundary condition at steady statedemands thatQ = �2� d2hssur����r=d=2 = ��dhss 2cd =) c = � Q2�hss :The velocity pro�le is, therefore, given byu(r) = � Q2�hss 1r : (2.31)We can now substitute Eq. (2.31) in Eq. (2.27) and calculate the residence time:t = � Z d=2D=2 2�hssQ r dr = �hss4Q �D2 � d2� : (2.32)The pressure distribution can be calculated using Bernoulli's equation, developedin Chapter 5. Along the radial streamline,p(r)� + u2(r)2 = "p(r)� + u2(r)2 #r=D2 : (2.33)



14 Chapter 2. Introduction to the Continuum FluidFor d=D � 1, it is reasonable to assume that at r=D=2, u �0 and p �0, and,therefore, p(r) = ��2u2(r) = � �Q28�2h2ss 1r2 < 0 : (2.34)Equation (2.34) predicts an increasingly negative pressure towards the sink. Underthese conditions, cavitation and even boiling may occur, when the pressure p(r) isidentical to the vapor pressure of the liquid. These phenomena, which are impor-tant in a diversity of engineering applications, cannot be predicted by macroscopicbalances. 2Conservation of linear momentumAn isolated solid body of mass m moving with velocity u possesses momentum,J � mu. According to Newton's law of motion, the rate of change of momentum ofthe solid body is equal to the force F exerted on the mass m:dJdt = F ; =) ddt(mu) = F : (2.35)The force F in Eq. (2.35) is a body force, i.e. an external force exerted on the massm. The most common body force is the gravity force,FG = m g ; (2.36)which is directed to the center of the Earth (g is the acceleration of gravity). Elec-tromagnetic forces are another kind of body force. Equation (2.35) describes theconservation of linear momentum of an isolated body or system:264 Rate of changeof momentumof an isolated system 375 = " Bodyforce # : (2.37)In the case of a non-isolated 
ow system, i.e., a control volume V , momentumis convected across the bounding surface S due to (a) the 
ow of the 
uid acrossS, and (b) the molecular motions and interactions at the boundary S. The law ofconservation of momentum is then stated as follows:26664 Rate ofincrease ofmomentumwithin V 37775 = 266666664 Rate ofin
ow ofmomentumacross Sby bulk
ow 377777775 + 266666664 Rate ofin
ow ofmomentumacross Sby molecularprocesses 377777775 + " Bodyforce # : (2.38)



Sec. 2.2. Macroscopic and Microscopic Balances 15The momentum J of the 
uid contained within a control volume V is given byJ = ZV �u dV ; (2.39)and, therefore, dJdt = ddt ZV �u dV : (2.40)The rate of addition of momentum due to the 
ow across S is� ZS n � (�u)u dS = � ZS n � (�uu) dS ;where n is the unit normal pointing outwards from the surface S. The minus signin the above expression accounts for the fact that the content of the control volumeincreases when the velocity vector u points inwards to the control volume. Thedyadic tensor �uu is the momentum 
ux (i.e., momentum per unit area per unittime). The momentum 
ux is obviously a symmetric tensor. Its component �uiuj ijrepresents the j component of the momentum convected in the i direction, per unitarea per unit time.The additional momentum 
ux due to molecular motions and interactions be-tween the 
uid and its surroundings is another symmetric tensor, the total stresstensor T, de�ned in Eq. (2.10). Therefore, the rate of addition of momentum acrossS, due to molecular processes, isZS n �T dS = ZS n � (�pI + � ) dS : (2.41)As already mentioned, the anisotropic viscous stress tensor � accounts for the rel-ative motion of 
uid particles. In static equilibrium, the only non-zero stress con-tribution to the momentum 
ux comes from the hydrostatic pressure p. The vectorn � T is the traction produced by T on a surface element of orientation n. Theterm (2.41) is often interpreted physically as the resultant of the surface (or con-tact) forces exerted by the surrounding 
uid on the 
uid inside the control volumeV . It is exactly the hydrodynamic force acting on the boundary S, as required bythe principle of action-reaction (Newton's third law).Assuming that the only body force acting on the 
uid within the control volumeV is due to gravity, i.e., ZV �g dV ;and substituting the above expressions into Eq. (2.38), we obtain the following formof the law of conservation of momentum:ZV �u dV = � ZS n � (�uu) dS + ZS n � (�pI + � ) dS + ZV �g dV : (2.42)



16 Chapter 2. Introduction to the Continuum FluidThe surface integrals of Eqs. (2.23) and (2.42) can be converted to volume in-tegrals by means of the Gauss divergence theorem. As explained in Chapter 3, thisstep is necessary for obtaining the di�erential forms of the corresponding conserva-tion equations.2.3 Local Fluid KinematicsFluids cannot support any shear stress without deforming or 
owing, and continueto 
ow as long as shear stresses persist. The e�ect of the externally applied shearstress is dissipated away from the boundary due to the viscosity. This gives riseto a relative motion between di�erent 
uid particles. The relative motion forces
uid material lines that join two di�erent 
uid particles to stretch (or compress)and to rotate as the two 
uid particles move with di�erent velocities. In general,the induced deformation gives rise to normal and shear stresses, similar to internalstresses developed in a stretched or twisted rubber cylinder. The di�erence betweenthe two cases is that, when the externally applied forces are removed, the rubbercylinder returns to its original undeformed and unstressed state, whereas the 
uidremains in its deformed state. In the �eld of rheology, it is said that rubber exhibitsperfect memory of its rest or undeformed state, whereas viscous inelastic liquids,which include the Newtonian liquids, exhibit no memory at all. Viscoelastic materi-als exhibit fading memory and their behavior is between that of ideal elastic rubberand that of viscous inelastic liquids. These distinct behaviors are determined by theconstitutive equation, which relates deformation to stress.Since the conservation equations and the constitutive equation are expressedin terms of relative kinematics, i.e., velocities, gradients of velocities, strains andrates of strain, it is important to choose the most convenient way to quantify thesevariables. The interconnection between these variables requires the investigation andrepresentation of the relative motion of a 
uid particle with respect to its neighbors.Flow kinematics, i.e., the relative motion of 
uid particles, can be described byusing either a Lagrangian or an Eulerian description. In the Lagrangian or materialdescription, the motion of individual particles is tracked; the position r� of a marked
uid particle is considered to be a function of time and of its label, such as its initialposition r�0, r�=r�(r�0; t). For a �xed r�0, we haver� = r�(t) ; (2.43)which is a parametric equation describing the locus of the marked particle, called apath line. The independent variables in Lagrangian formulations are the position ofa marked 
uid particle and time, t. This is analogous to an observer riding a 
uid



2.3 Local Fluid Kinematics 17particle and marking his/her position while he/she records the traveling time andother quantities of interest. For example, the pressure p in Lagrangian variables isgiven by p=p(r�0; t).In the Eulerian description, dependent variables, such as the velocity vector andpressure, are considered to be functions of �xed spatial coordinates and of time, e.g.,u=u(r; t), p=p(r; t), etc. If all dependent variables are independent of time, the 
owis said to be steady.Since both Lagrangian and Eulerian variables describe the same 
ow, there mustbe a relation between the two. This relation is expressed by the substantial derivativewhich in the Lagrangian description is identical to the common total derivative.The Lagrangian acceleration, a�, is related to the Eulerian acceleration, a=@u=@t,as follows: a� = DuDt = @u@t + u � ru : (2.44)Note that the velocity u in the above equation is the Eulerian one. In steady 
ows,the Eulerian acceleration, a=@u=@t, is zero, whereas the Lagrangian one, a�, maynot be so, if �nite spatial velocity gradients exist.t t t t -xx0t0=0 x1t01 x2t02 xnt0nFigure 2.4. Positions of a 
uid particle in one-dimensional motion.We will illustrate the two 
ow descriptions using an idealized one-dimensionalexample. Consider steady motion of 
uid particles along the x-axis, such thatx�i = x�i�1 + c (ti � ti�1)2 ; (2.45)where x�i is the position of a 
uid particle at time ti (Fig. 2.4), and c is a positiveconstant. The Lagrangian description of motion gives the position of the particle interms of its initial position, x�0, and the lapsed traveling time, t0,x�(x�0; t0) = x�0 + c t02 : (2.46)The velocity of the particle isu�(x�0; t0) = dx�dt0 = 2c t0 ; (2.47)which, in this case, is independent of x�0. The corresponding acceleration isa�(x�0; t0) = du�dt0 = 2c > 0 : (2.48)



18 Chapter 2. Introduction to the Continuum FluidThe separation distance between two particles 1 and 2 (see Fig. 2.4),�x� = x�2 � x�1 = c (t022 � t021 ) ; (2.49)changes with time according tod�x�dt0 = 2c (t02 � t01) = u�2 � u�1 > 0 ; (2.50)and is, therefore, continuously stretched, given that u�2 > u�1. The velocity gradientis, du�dx� = 1u�(t0) du�dt0 = 2c2ct0 = 1t0 : (2.51)In the above expressions, the traveling time t0 is related to the traveling distance bythe simple kinematic argument, dx� = u(t0)dt0 ; (2.52)and is di�erent from the time t which characterizes an unsteady 
ow, under theEulerian description.In the Eulerian description, the primary variable isu(x) = 2c1=2(x� x0)1=2 : (2.53)Note that time, t, does not appear due to the fact that the motion is steady. Equa-tion (2.44) is easily veri�ed in this steady, one-dimensional 
ow:@u@t + u @u@x = 0 + 2c1=2 (x� x0)1=2 12 2c1=2 (x� x0)�1=2 = 2c = a� :The Eulerian description may not be convenient to describe path lines but it ismore appropriate than the Lagrangian description in calculating streamlines. Theseare lines to which the velocity vector is tangent at any instant. Hence, streamlinescan be calculated by u� dr = 0 ; (2.54)where r is the position vector describing the streamline. In Cartesian coordinates,Eq. (2.54) is reduced to dxux = dyuy = dzuz : (2.55)



2.3 Local Fluid Kinematics 19When the 
ow is steady, a path line coincides with the streamline that passesthrough r�0. The surface formed instantaneously by all the streamlines that passthrough a given closed curve in the 
uid is called streamtube.From Eq. (2.55), the equation of a streamline in the xy-plane is given bydxux = dyuy =) uy dx � ux dy = 0 : (2.56)A useful concept related to streamlines, in two-dimensional bidirectional 
ows, is thestream function. In the case of incompressible 
ow,1 the stream function,  (x; y),is de�ned by2 ux = �@ @y and uy = @ @x : (2.57)An important feature of the stream function is that it automatically satis�es thecontinuity equation, @ux@x + @uy@y = 0 ; (2.58)as can easily be veri�ed. The stream function is a useful tool in solving creeping,two-dimensional bidirectional 
ows. Its de�nitions and use, for various classes ofincompressible 
ow, are examined in detail in Chapter 10.Substituting Eqs. (2.57) into Eq. (2.56), we getd = @ @xdx + @ @y dy = 0 : (2.59)Therefore, the stream function,  , is constant along a streamline. Moreover, fromthe de�nition of a streamline, we realize that there is no 
ow across a streamline. Thevolume 
ow rate, Q, per unit distance in the z direction, across a curve connectingtwo streamlines (see Fig. 2.5) is the integral of d along the curve. Since the1For steady, compressible 
ow in the xy-plane, the stream function is de�ned by� ux = �@ @y and � uy = @ @x :In this case, the di�erence  2� 1 is the mass 
ow rate (per unit depth) between the two streamlines.2Note that many authors de�ne the stream function with the opposite sign, i.e.,ux = @ @y and uy = �@ @x :



20 Chapter 2. Introduction to the Continuum Fluid
xy  = 1 = 21 2Q= 2- 1

Figure 2.5. Volume 
ow rate per unit depth across a curve connecting two stream-lines.di�erential of  is exact, this integral depends only on the end points of integration,i.e., Q = Z 21 d =  2 �  1 : (2.60)Example 2.3.1. Stagnation 
owConsider the steady, two-dimensional stagnation 
ow against a solid wall, shown inFig. 2.6. Outside a thin boundary layer near the wall, the position of a particle,located initially at r�0(x�0; y�0), obeys the following relations:x�(x�0; t0) = x�0 e"t0 and y�(y�0 ; t0) = y�0 e�"t0 ; (2.61)which is, of course, the Lagrangian description of the 
ow. The correspondingvelocity components areu�x(x�0; t0) = dx�dt0 = "x�0 e"t0 and u�y(y�0 ; t0) = dy�dt0 = �"y�0 e�"t0 : (2.62)Eliminating the traveling time t0 from the above equations results in the equationof the path line, x�y� = x�0y�0 ; (2.63)which is a hyperbola, in agreement with the physics of the 
ow.



2.3 Local Fluid Kinematics 21�r0�r r�0(x�0; y�0)r�(x�; y�)xy StreamlineFigure 2.6. Stagnation 
ow.In the Eulerian description, the velocity components are:ux = "x and uy = �"y : (2.64)The streamlines of the 
ow are calculated by means of Eq. (2.55):dxux = dyuy =) dx"x = dy�"y =) xy = x0y0 : (2.65)Equations (2.65) and (2.63) are identical: since the 
ow is steady, streamlines andpath lines coincide. 2The Lagrangian description is considered a more natural choice to representthe actual kinematics and stresses experienced by 
uid particles. However, theuse of this description in solving complex 
ow problems is limited, due to the factthat it requires tracking of 
uid particles along a priori unknown streamlines. Theapproach is particularly convenient in 
ows of viscoelastic liquids, i.e., of 
uids withmemory, that require particle tracking and calculation of deformation and stressesalong streamlines. The Eulerian formulation is, in general, more convenient to usebecause it deals only with local or present kinematics. In most cases, all variablesof interest, such as strain (deformation), rate of strain, stress, vorticity, streamlinesand others, can be calculated from the velocity �eld. An additional advantage of theEulerian description is that it involves time, as a variable, only in unsteady 
ows,whereas the Lagrangian description uses traveling time even in steady-state 
ows.Finally, quantities following the motion of the liquid can be reproduced easily fromthe Eulerian variables by means of the substantial derivative.
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x yz rr0 dr=r-r0u(r0; t)u(r0; t)

u(r; t) du=u(r; t)-u(r0; t)P P 0
Figure 2.7. Relative motion of adjacent 
uid particles.2.4 Elementary Fluid MotionsThe relative motion of 
uid particles gives rise to velocity gradients that are directlyresponsible for strain (deformation). Strain, in turn, creates internal shear andextensional stresses that are quanti�ed by the constitutive equation. Therefore, it isimportant to study how relative motion between 
uid particles arises and how thisrelates to strain and stress.Consider the adjacent 
uid particles P and P 0 of Fig. 2.7, located at points r0and r, respectively, and assume that the distance dr=r-r0 is vanishingly small. Thevelocity u(r; t) of the particle P 0 can be locally decomposed into four elementarymotions:(a) rigid-body translation;(b) rigid-body rotation;(c) isotropic expansion; and(d) pure straining motion without change of volume.Actually, this decomposition is possible for any vector u in the three-dimensionalspace.



2.4 Elementary Fluid Motions 23Expanding u(r; t) in a Taylor series with respect to r about r0, we getu(r; t) = u(r0; t) + dr � ru + O[(dr)2] ; (2.66)where ru is the velocity gradient tensor. Retaining only the linear term, we haveu(r; t) = u(r0; t) + du ; (2.67)where the velocity u(r0; t) of P represents, of course, rigid-body translation, anddu = dr � ru (2.68)represents the relative velocity of particle P 0 with respect to P . The rigid-bodytranslation component, u(r0; t), does not give rise to any strain or stress, and canbe omitted by placing the frame origin or the observer on a moving particle. All theinformation for the relative velocity du is contained in the velocity gradient tensor.The relative velocity can be further decomposed into two components correspondingto rigid-body rotation and pure straining motion, respectively. Recall that ru canbe written as the sum of a symmetric and an antisymmetric tensor,ru = D + S ; (2.69)where D � 12 [ru+ (ru)T ] (2.70)is the symmetric rate-of-strain tensor, andS � 12 [ru� (ru)T ] (2.71)is the antisymmetric vorticity tensor. Substituting Eqs. (2.69) to (2.71) in Eq. (2.68),we getdu = dr � (D+ S) = dr � 12[ru+ (ru)T ] + dr � 12[ru� (ru)T ] : (2.72)The �rst term, u(s) = dr �D = dr � 12[ru+ (ru)T ] (2.73)represents the pure straining motion of P 0 about P . The second termu(r) = dr � S = dr � 12[ru� (ru)T ] (2.74)



24 Chapter 2. Introduction to the Continuum Fluidrepresents the rigid-body rotation of P 0 about P . A 
ow in which D is zero ev-erywhere corresponds to rigid-body motion (including translation and rotation).Rigid-body motion does not alter the shape of 
uid particles, resulting only in theirdisplacement. On the other hand, straining motion results in deformation of 
uidparticles.Note that the matrix forms of ru, D and S in Cartesian coordinates are givenby ru = 266664 @ux@x @uy@x @uz@x@ux@y @uy@y @uz@y@ux@z @uy@z @uz@z 377775 ; (2.75)D = 12 26666664 2 @ux@x �@ux@y + @uy@x � �@ux@z + @uz@x ��@ux@y + @uy@x � 2 @uy@y �@uy@z + @uz@y ��@ux@z + @uz@x � �@uy@z + @uz@y � 2 @uz@z 37777775 ; (2.76)and S = 12 26666664 0 ��@uy@x � @ux@y � �@ux@z � @uz@x ��@uy@x � @ux@y � 0 ��@uz@y � @uy@z �� �@ux@z � @uz@x � �@uz@y � @uy@z � 0 37777775 : (2.77)Any antisymmetric tensor has only three independent components and may, there-fore, be associated with a vector, referred to as the dual vector of the antisymmetrictensor. The dual vector of the vorticity tensor S is the vorticity vector,! � r� u : (2.78)In Cartesian coordinates, it is easy to verify that, if! = !xi + !yj + !zk ; (2.79)then S = 12 264 0 �!z !y!z 0 �!x�!y !x 0 375 (2.80)



2.4 Elementary Fluid Motions 25and dr � S = 12 ! � dr : (2.81)The vorticity tensor in Eq. (2.74) can be replaced by its dual vorticity vector,according tou(r) = dr � 12[ru� (ru)T ] = 12 (r� u)� dr = 12 ! � dr : (2.82)In irrotational 
ows, the vorticity ! is everywhere zero, and, as a result, the rigid-body rotation component u(r) is zero. If the vorticity is not everywhere zero, thenthe 
ow is called rotational. The rigid-body rotation component u(r) also obeys therelation u(r) � 
� dr ; (2.83)where 
 is the angular velocity. Therefore, the vorticity vector ! is twice theangular velocity of the local rigid-body rotation. It should be emphasized that thevorticity acts as a measure of the local rotation of 
uid particles, and it is not directlyconnected with the curvature of the streamlines, i.e., it is independent of any globalrotation of the 
uid.It must be always kept in mind that the pure straining motion component u(s)represents strain una�ected by rotation, i.e., strain experienced by an observer ro-tating with the local vorticity. The straining part of the velocity gradient tensor,which is the rate of strain tensor, can be broken into two parts: an extensional onerepresenting isotropic expansion, and one representing pure straining motion with-out change of volume. In other words, the rate of strain tensor D can be written asthe sum of a properly chosen diagonal tensor and a symmetric tensor of zero trace:D = 13 tr(D) I + [D� 13tr(D) I] : (2.84)The diagonal elements of the tensor [D� 13tr(D)I] represent normal or extensionalstrains on three mutually perpendicular surfaces. The o�-diagonal elements rep-resent shear strains in two directions on each of the three mutually perpendicularsurfaces. Noting that tr(D) = r � u ; (2.85)Eq. (2.84) takes the form:D = 13r � u I + 12 [ru+ (ru)T � 23(r � u) I] : (2.86)



26 Chapter 2. Introduction to the Continuum FluidTherefore, the strain velocity, u(s)=dr �D, can be written asu(s) = u(e) + u(st) ; (2.87)where u(e) = dr � 13 (r � u) I (2.88)represents isotropic expansion, andu(st) = dr � 12 [ru+ (ru)T � 23 (r � u) I] (2.89)represents pure straining motion without change of volume.In summary, the velocity of a 
uid particle in the vicinity of the point r0 isdecomposed as u(r; t) = u(r0; t) + u(r) + u(e) + u(st) ; (2.90)or, in terms of the vorticity vector, the rate of strain tensor and the divergence ofthe velocity vector,u(r; t) = u(r0; t) + 12!�dr+ dr � 13r�uI+ dr � 12 [ru+(ru)T � 23(r�u)I] : (2.91)Alternative expressions for all the components of the velocity are given in Table 2.2.The isotropic expansion component u(e) accounts for any expansion or contrac-tion due to compressibility. For incompressible 
uids, tr(D)=r�u=0, and, therefore,u(e) is zero. In Example 1.5.3, we have shown that the local rate of expansion perunit volume is equal to the divergence of the velocity �eld,� = limV (t)!0 1V (t) dV (t)dt = r � u : (2.92)Since D is a symmetric tensor, it has three real eigenvalues, �1, �2 and �3, andthree mutually orthogonal eigenvectors. Hence, in the system of the orthonormalbasis fe01; e02; e03g of its eigenvectors, D takes the diagonal form:D0 = 264 �1 0 00 �2 00 0 �3 375 (2.93)If r0=(r01; r02; r03) is the position vector in the system fe01; e02; e03g, then�dr0�t = u(s) = dr0 �D0 : (2.94)



2.4 Elementary Fluid Motions 27Velocity in the vicinity of r0u(r; t) = u(r0; t) + duor u(r; t) = u(r0; t) + u(r) + u(s)or u(r; t) = u(r0; t) + u(r) + u(e) + u(st)Rigid � body translationu(r0; t)Relative velocitydu = dr � ru = u(r) + u(s)Rigid � body rotationu(r) = dr � S = dr � 12 [ru� (ru)T ] = 12 ! � dr = 
� drPure straining motionu(s) = dr �D = dr � 12 [ru+ (ru)T ] = u(e) + u(st)Isotropic expansionu(e) = dr � 13 tr(D) I = dr � 13 (r � u) IPure straining motion without change of volumeu(st) = dr � [D� 13 tr(D) I] = dr � 12 [ru+ (ru)T � 23 (r � u) I]Table 2.2. Decomposition of the velocity u(r; t) of a 
uid particle in the vicinity ofthe point r0.



28 Chapter 2. Introduction to the Continuum FluidThis vector equation is equivalent to three linear di�erential equations,�dr0i�t = �i dr0i ; i = 1; 2; 3 : (2.95)The rate of change of the unit length along the axis of e0i at t=0 is, therefore, equalto �i. The vector �eld dr0 � D0 is merely expanding or contracting along each ofthe axes e0i. For the rate of change of the volume V of a rectangular parallelepipedwhose sides dr01, dr02 and dr03 are parallel to the three eigenvectors of D, we get�V�t = ��t (dr01; dr02; dr03) = �dr01�t dr02dr03 + dr01�dr02�t dr03 + dr01dr02�dr03�t =)�V�t = (�1 + �2 + �3) V : (2.96)The trace of a tensor is invariant under orthogonal transformations. Hence,1V �V�t = �1 + �2 + �3 = trD0 = trD = r � u : (2.97)This result is equivalent to Eq. (2.92).Another way to see that u(e) accounts for the local rate of expansion is to showthat r � u(e)=�. Recall that r � u is evaluated at r0, and dr is the position vectorof particle P 0 with respect to a coordinate system centered at P . Hence,r � u(e) = r ��dr � 13 (r � u) I� = 13 (r � u)r � (dr � I) = 13 (r � u)r � dr =)r � u(e) = r � u = � : (2.98)Moreover, it is easily shown that the velocity u(e) is irrotational, i.e., it produces novorticity:r�u(e) = r��dr � 13 (r � u) I� = 13 (r�u)r� (dr � I) = 13 (r�u)r�dr =)r� u(e) = 0 : (2.99)In deriving Eqs. (2.98) and (2.99), the identities r � dr=3 and r� dr=0 were used(see Example 1.4.1).Due to the conditions r�u(e)=� and r�u(e)=0, the velocity ue can be writtenas the gradient of a scalar �eld �(e),ue = r�(e) ; (2.100)



2.4 Elementary Fluid Motions 29which satis�es the Poisson equation:r2�(e) = � : (2.101)A solution to Eqs. (2.100) and (2.101) is given by�(e)(r) = � 14� ZV �(r0) 1jr� r0j dV (r0) (2.102)and u(e)(r) = 14� ZV �(r0) r� r0jr� r0j3 dV (r0) ; (2.103)where V is the volume occupied by the 
uid.The curl of the rotational velocity u(r) is, in fact, equal to the vorticity !.Invoking the vector identityr� (a� b) = ar � b � br � a + (b � r) a � (a � r) b ;we get r� u(r) = 12r� (! � dr)= 12 [!r � dr � drr � ! + (dr � r) ! � (! � r) dr] :Since r �dr=3, r �!=0 (the vorticity is solenoidal), (dr �r)!=0 (evaluated at r0),and (! � r)dr=!, one gets r� u(r) = ! : (2.104)Given that rigid motion is volume preserving, the divergence of the rotational ve-locity is zero,r�u(r) = 12r� (!�dr) = 12 [dr � (r�!) � ! �r�dr] = 12 (dr �0 � ! �0) =)r � u(r) = 0 ; (2.105)which can be veri�ed by the fact that the vorticity tensor has zero trace. Equa-tions (2.104) and (2.105) suggest a solution of the form,u(r) = r�B(r) ; (2.106)where B(r) is a vector potential for u(r) that satis�es Eq. (2.105) identically. FromEq. (2.104), one getsr� (r�B(r)) = ! =) r(r �B(r)) � r2B(r) = ! : (2.107)



30 Chapter 2. Introduction to the Continuum FluidIf r �B(r)=0, r2B(r) = �! : (2.108)The solution to Eqs. (2.106) to (2.108) is given byB(r)(r) = 14� ZV !jr� r0j dV (r0) (2.109)and u(r)(r) = � 14� ZV (r� r0)� !jr� r0j3 dV (r0) ; (2.110)which suggest that rotational velocity, at a point r, is induced by the vorticity atneighboring points, r0.Due to the fact that the expansion, �, and the vorticity, !, are accounted forby the expansion and rotational velocities, respectively, the straining velocity, u(st),is both solenoidal and irrotational. Therefore,r � u(st) = 12 r � �dr � [ru+ (ru)T � 23 (r � u) I]� = 0 (2.111)and r� u(st) = 12 r� �dr � [ru+ (ru)T � 23 (r � u) I]� = 0 : (2.112)A potential function �(st), such thatu(st) = r�(st) ; (2.113)satis�es Eq. (2.112) and reduces Eq. (2.111) to the Laplace equation,r2�(st) = 0 : (2.114)The Laplace equation has been studied extensively, and many solutions are known [9].The key to the solution of potential 
ow problems is the selection of proper solu-tions that satisfy the boundary conditions. By means of the divergence and Stokestheorems, we get from Eqs. (2.111) and (2.112)ZV r � u(st) dV = ZS n � u(st) dS = 0 (2.115)and ZS n � (r� u(st)) dS = ZC t � u(st) d` = 0 : (2.116)



2.4 Elementary Fluid Motions 31It is clear that the solution u(st) depends entirely on boundary data.More details on the mechanisms, concepts and closed form solutions of localand relative kinematics are given in numerous theoretical Fluid Mechanics [10-12],Rheology [13] and Continuum Mechanics [14] publications.Example 2.4.1. Local kinematics of stagnation 
owConsider the two-dimensional 
ow of Fig. 2.6, with Eulerian velocitiesux = "x and uy = �"y :For the velocity gradient tensor we getru = " " 00 �" # = " ii � " jj :Since ru is symmetric, D = ru = " ii � " jj ;and S = O :Therefore, the 
ow is irrotational. It is also incompressible, sincetr(D) = r � u = " � " = 0 :For the velocities u(r), u(e) and u(st), we �nd:u(r) = dr � S = 0 ;u(e) = dr � 13 (r � u) I = 0 ;u(st) = dr � 12 [ru+ (ru)T � 23 (r � u) I] = dr � (" ii � " jj) :Therefore, expansion and rotation are zero, and there is only extension of the ma-terial vector dr. If dr is of the form,dr = adx i + bdy j ;then u(st) = a"dx i � b"dy j :If, for instance, dr=adx i, then u(st)=a"dx i and extension is in the x-direction. 2



32 Chapter 2. Introduction to the Continuum FluidExample 2.4.2. Local kinematics of rotational shear 
owWe consider here shear 
ow in a channel of width 2H . If the x-axis lies on the planeof symmetry and points in the direction of the 
ow, the Eulerian velocity pro�lesare ux = c (H2 � y2) and uy = uz = 0 ;where c is a positive constant. The resulting velocity gradient tensor isru = " 0 0�2c y 0 # = �2c y ji ;and thus D = 12 [ru + (ru)T ] = " 0 �c y�c y 0 # = �c y (ij+ ji) ;and S = 12 [ru � (ru)T ] = " 0 c y�c y 0 # = c y (ij� ji) :Since tr(D) = r � u = 0 ;the 
ow is incompressible,If dr is of the form, dr = adx i + bdy j ;then u(r) = dr � S = (adx i + bdy j) � c y (ij� ji) = c y (�b dy i + a dx j) ;u(e) = dr � 13 r � u I = 0 ;u(st) = dr � [D� 13 r � u I] = (adx i + bdy j) � c y (�ij� ji)= �c y (b dy i + a dx j) :Despite the fact that the 
uid is not rotating globally (the streamlines are straightlines), the 
ow is rotational,! = r� u = � duxdy k = 2c y k 6= 0 :The vorticity is maximum along the wall (y=H), and zero along the centerline(y=0). The existence of vorticity gives rise to extensional strain. This is known



2.4 Elementary Fluid Motions 33as vorticity induced extension, to avoid confusion with the strain induced extension,represented by du(e). Unlike the latter, the vorticity induced extensional strain doesnot generate any normal stresses, but it does contribute to shear stresses. 2The rate of strain tensor D results in extensional and shear strain. Consideragain the relative velocity between the particles P and P 0 of Fig. 2.7,du = dr � ru = (ru)T � dr : (2.117)By de�nition, du � DdrDt =) DdrDt = dr � ru = (ru)T � dr : (2.118)Let a be the unit vector in the direction of dr and ds=jdrj, i.e., dr=ads. Then, fromEq. (2.118) we get:DadsDt = ads �ru = (ru)T �ads =) a 1ds DdsDt = a �ru = (ru)T �a =)1ds DdsDt = (a�ru)�a = a�[(ru)T �a] =) 1ds DdsDt = a�12 [ru+(ru)T ]�a =)1ds DdsDt = a �D � a : (2.119)Equation (2.119) describes the extension of the material length ds with time. Theterm a �D �a is called extensional strain rate. The extensional strain rate of a mate-rial vector aligned with one Cartesian axis, dr=eids, is equal to the correspondingdiagonal element of D:1ds DdsDt ����eids = ei �D � ei = Dii = @ui@xi : (2.120)Similar expressions can be obtained for the shear (or angular) strain. The shear-ing of 
uid particles depends on how the angle between material vectors evolveswith time. If a and b are unit material vectors originally at right angle, i.e., a �b=0,then the angle �, between the two material vectors, evolves according toD�Dt �����=�2 = �2 a �D � b : (2.121)



34 Chapter 2. Introduction to the Continuum FluidThe right-hand side of the above equation is the shear strain rate. Since D issymmetric, the order of a and b in Eq. (2.121) is immaterial. The shear strainrate between material vectors along two axes xi and xj of the Cartesian coordinatesystem is opposite to the ij-component of the rate-of-strain tensor:D�Dt ����ei ;ej = �2 ei �D � ej = �2Dij = � @ui@xj + @uj@xi! : (2.122)Example 2.4.3. Deformation of material linesWe revisit here the two 
ows studied in Examples 2.4.1 and 2.4.2.Irrotational extensional 
owFor the material vector dr=ads witha = a1 i+ a2 jqa21 + a22 ;the extensional strain rate is1ds DdsDt = a �D � a = a1 i + a2 jqa21 + a22 � (" ii � " ij) � a1 i+ a2 jqa21 + a22 =)1ds DdsDt = a21 � a22a21 + a22 " :We observe that if a1=�a2, the material length ds does not change with time. Amaterial vector along the x-direction (dr=ids) changes its length according toD(ln ds)Dt = 1ds DdsDt = " =) ds = (ds)0 e"t :Similarly, for dr=jds, we �nd that ds=(ds)0 e�"t.The shear strain rate for a=i and b=j isD�Dt ����i;j = �2 a �D � b = �2 i � (" ii � " jj) � j = 0 ;in agreement with the fact that shearing is not present in irrotational extensional
ows.Rotational shear 
owWe consider a material vector of arbitrary orientation,dr = ads = a1 i+ a2 jqa21 + a22 ds ;



2.5 Problems 35for whichD(ln ds)Dt = 1ds DdsDt = a �D � a= a1 i+ a2 jqa21 + a22 � [�c y (ij + ji)] � a1 i + a2 jqa21 + a22 = � 2a1a2a21 + a22 c y ;or D(ln ds)Dt = a1a2a21 + a22 @ux@y :We easily deduce that a material vector parallel to the x-axis does not change length.The shear strain rate for a=i and b=j isD�Dt ����i;j = �2 a �D � b = �2 i � [�c y (ij+ ji)] � j = 2c y ;or D�Dt ����i;j = �@ux@y : 22.5 Problems2.1. Repeat Example 2.1.2 for cylindrical droplets of radius R and length L � R.How does the inside pressure change with R;L and �?2.2. The Eulerian description of a two-dimensional 
ow is given byux = ay and uy = 0 ;where a is a positive constant.(a) Calculate the Lagrangian kinematics and compare with the Eulerian ones.(b) Calculate the velocity-gradient, the rate-of-strain and the vorticity tensors.(c) Find the deformation of material vectors parallel to the x- and y-axes.(d) Find the deformation of material vectors diagonal to the two axes. Explain thephysics behind your �ndings.2.3. Write down the Young-Laplace equation for interfaces of the following con�g-urations: spherical, cylindrical, planar, elliptical, parabolic, and hyperbolic.2.4. The motion of a solid body on the xy-plane is described byr(t) = i a cos!t + j b sin!t ;



36 Chapter 2. Introduction to the Continuum Fluidwhere a, b and ! are constants. How far is the body from the origin at any timet? Find the velocity and the acceleration vectors. Show that the body moves on anelliptical path.2.5. Derive the equation that governs the pressure distribution in the atmosphereby means of momentum balance on an appropriate control volume. You must utilizethe integral theorems of Chapter 1. zrD dFree surfaceFigure 2.8. Contraction of a round Newtonian jet at a high Reynolds number.2.6. Consider the high Reynolds number 
ow of a Newtonian jet issuing from acapillary of diameter D, as illustrated in Fig. 2.8. Upstream the exit of the capillary,the 
ow is assumed to be fully-developed, i.e., the axial velocity is parabolic,uz = 32Q� D4  D24 � r2! ;where � is the viscosity of the liquid, � is its density, and Q denotes the volumet-ric 
ow rate. The liquid leaves the capillary as a free round jet and, after somerearrangement, the 
ow downstream becomes plug, i.e.,uz = V :Using appropriate conservation statements, calculate the velocity V and the �naldiameter d of the jet. Repeat the procedure for a plane jet issuing from a slit ofthickness H and width W .2.7. Use the substantial derivative,D(ds)Dt = @(ds)@t + u � r(ds) (2.123)to �nd how material lengths, ds, change along streamlines. Consider vectors tangentand perpendicular to streamlines. Apply your �ndings to the following 
ows:



2.5 References 37(a) ux="x and uy=�"y;(b) ux=ay and uy=0.2.8. A material vector a enters perpendicularly a shear �eld given by ux=ay anduy=0. Describe its motion and deformation as it travels in the �eld. Repeat for theextensional �eld given by ux="x and uy=�"y. ����������������������������������� ����������������������������������� 6y -x-V�����----- ?6HFigure 2.9. Plane Couette 
ow.2.9. Calculate the con�guration of a material square in the plane Couette 
ow, thegeometry of which is depicted in Fig. 2.9. The lower wall is �xed, the upper wall ismoving with speed V , and the x-component of the velocity is given byux = yH V : (2.124)Consider three entering locations: adjacent to each of the walls and at y=H/2. Howwould you use this 
ow to measure velocity, vorticity and stress?2.10. The velocity vectoru(t) = 
(t) r e� + ur(t) er + uz ezdescribes a spiral 
ow in cylindrical coordinates.(a) Calculate the acceleration vector a(t) and the position vector r(t).(b) How things change when uz=0, 
(t)=
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