Chapter 2

INTRODUCTION TO THE
CONTINUUM FLUID

2.1 Properties of the Continuum Fluid

A flow can be of statistical (i.e., molecular) or of continuum nature, depending on
the involved length and time scales. Fluid mechanics is normally concerned with the
macroscopic behavior of fluids on length scales significantly larger than the mean
distance between molecules and on time scales significantly larger than those asso-
ciated with molecular vibrations. In such a case, a fluid can be approximated as a
continuum, i.e., as a hypothetical infinitely divisible substance, and can be treated
strictly by macroscopic methods. As a consequence of the continuum hypothesis,
a fluid property is assumed to have a definite value at every point in space. This
unique value is defined as the average over a very large number of molecules sur-
rounding a given point within a small distance, which is still large compared with
the mean intermolecular distance. Such a collection of molecules occupying a very
small volume is called fluid particle. Hence, the velocity of a particle is considered
equal to the mean velocity of the molecules it contains. The velocity so defined can
also be considered to be the velocity of the fluid at the center of mass of the fluid
particle. The continuum assumption implies that the values of the various fluid
properties are continuous functions of position and of time. This assumption breaks
down in rarefied gas flow, where the mean free path of the molecules may be of
the same order of magnitude as the physical dimensions of the flow. In this case, a
microscopic or statistical approach must be used.

Properties are macroscopic, observable quantities that characterize a state. They
are called extensive, if they depend on the amount of fluid; otherwise, they are
called intensive. Therefore, mass, weight, volume and internal energy are extensive
properties, whereas temperature, pressure, and density are intensive properties. The
temperature, T', is a measure of thermal energy, and may vary with position and time.
The pressure, p, is also a function of position and time, defined as the limit of the
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ratio of the normal force, AF,,, acting on a surface, to the area AA of the surface,
as AA — 0,

p= Al,lalrgo AA (2.1)
Hence, the pressure is a kind of normal stress. Similarly, the shear stressis defined as
the limit of the tangential component of the force, AF;, divided by AA, as AA — 0.
Shear and normal stresses are considered in detail in Chapter 5.

Under equilibrium conditions, i.e., in a static situation, pressure results from
random molecular collisions with the surface and is called equilibrium or thermo-
dynamic pressure. Under flow conditions, i.e., in a dynamic situation, the pressure
resulting from the directed molecular collisions with the surface is different from the
thermodynamic pressure and is called mechanical pressure. The thermodynamic
pressure can be determined from equations of state, such as the ideal gas law for
gases and the van der Waals equation for liquids. The mechanical pressure can be
determined only by means of energy-like conservation equations than take into ac-
count not just the potential and the thermal energy associated with equilibrium, but
also the kinetic energy associated with flow and deformation. The general relation-
ship between thermodynamic and mechanical pressures is considered in Chapter 5.

The density
A fundamental property of continuum is the mass density. The density of a fluid

= (Am) (2.2)
P= i \av) ‘

where Am is the mass of a very small volume AV surrounding the point, and L is a
very small characteristic length which, however, is significantly larger than the mean
distance between molecules. Density can be inverted to give the specific volume

at a point is defined as

v

D=

(2.3)

or the molecular volume

Vi

=[=

(2.4)

where M is the molecular weight.
The density of a homogeneous fluid is a function of temperature T', pressure p,
and molecular weight:

p = p(Tvva)' (2‘5)
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Equation (2.5) is an equation of state at equilibrium. An example of such an equation

is the ideal gas law,

pM

ﬁ ’

where R is the ideal gas constant which is equal to 8314 Nm/(Kg mole K).
The density of an incompressible fluid is independent of the pressure. The density

of a compressible fluid depends on the pressure, and may vary in time and space, even

under isothermal conditions. A measure of the changes in volume and, therefore,

in density, of a certain mass of fluid subjected to pressure or normal forces, under

constant temperature, is provided by the compressibility of the fluid, defined by

=), (5,

The compressibility of steel is around 5 x 1072 m? /N, that of water is 5 x 10710
m?/N, and that of air is identical to the inverse of its pressure (around 107> m?/N
at atmospheric pressure). Under isothermal conditions, solids, liquids and gases
are virtually incompressible at low pressures. (Gases are compressible at moderate
pressures, and their density is a strong function of pressure. Under nonisothermal
conditions, all materials behave like compressible ones, unless their coefficient of

thermal expansion,
a = (8_V) (2 8)
—\or/, '

Example 2.1.1. Air-density variations
The basic pressure-elevation relation of fluid statics is given by

p = (2.6)

is negligible.

dp

- 2.9
R Py, (2.9)
where ¢ is the gravitational acceleration, and z is the elevation. Assuming that air
is an ideal gas, we can calculate the air density distribution as follows. Substituting
Eq. (2.6) into Eq. (2.9), we get

dp _ _pMg _dp _ My

- _29 g,
dz RT » RT ©°

If pg and pg denote the pressure and the density, respectively, at z=0, then

(=) dp Mg [* Mgz
bt ek A N - _
[T [ = p = wew (-5

0
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and

Mgz)
RT )~

In reality, the temperature changes with elevation according to

p = poexp (—

T(z) = To—az

where a is called the atmospheric lapse rate [1]. If the temperature variation is taken
into account,

/p(Z)@ _ Mg 7 dz
w P R Jo Top—az
which yields
Mg
p(2) _ (TO — QZ) akR
Po To
and, therefore,
Mg 4
plz)  pz)To (TO—QZ) ok
Po po T'(2) 1o '

Thus, the density changes with elevation according to
Mg 1
1 dp B ( a) (Mg 1) (To—az)ﬁ_
Po dz N TO aR TO '

The viscosity

A fluid in static equilibrium is under normal stress, which is the hydrostatic or
thermodynamic pressure given by Eq. (2.1). As explained in Chapter 1, the total
stress tensor, T, consists of an isotropic pressure stress component, —pl, and of an
anisotropic viscous stress component, 7,

T =-pl+ 1. (2.10)

The stress tensor 7 comes from the relative motion of fluid particles and is zero
in static equilibrium. When there is relative motion of fluid particles, the velocity-
gradient tensor, Vu, and the rate-of-strain tensor,

D = -[Vu+ (Vu)?], (2.11)

1
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Figure 2.1. Behavior of various non-Newtonian fluids.

are not zero. Incompressible Newtonian fluids follow Newton’s law of viscosity (dis-
cussed in detail in Chapter 5) which states that the viscous stress tensor 7 is pro-
portional to the rate-of-strain tensor,

T =27D = 5[Vu+ (Vu)l] (2.12)
or, equivalently,
[Vu+ (Vo) = Z. (2.13)
n

The proportionality constant, n, which is a coefficient of momentum transfer in
Eq. (2.12) and resistance in Eq. (2.13), is called dynamic viscosity or, simply, vis-
cosity. The dynamic viscosity divided by density is called kinematic viscosity and is

usually denoted by v:

v =1 (2.14)

p

A fluid is called ideal or inviscid if its viscosity is zero; fluids of nonzero viscosity
are called viscous. Viscous fluids not obeying Newton’s law are generally called non-
Newtonian fluids. These are classified into generalized Newtonian and viscoelastic
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fluids. Note that the same qualifiers are used to describe the corresponding flow,
e.g., ideal flow, Newtonian flow, viscoelastic flow etc.

Generalized Newtonian fluids are viscous inelastic fluids that still follow Eq. (2.12),
but the viscosity itself is a function of the rate of strain tensor D; more precisely,
the viscosity is a function of the second invariant of D, n=n(llp). A fluid is said
to be shear thinning, if its viscosity is a decreasing function of IImy; when the op-
posite is true, the fluid is said to be shear thickening. Bingham plastic fluids are
generalized Newtonian fluids that exhibit yield stress. The material flows only when
the applied shear stress exceeds the finite yield stress. A Herschel-Bulkley fluid is a
generalization of the Bingham fluid, where, upon deformation, the viscosity is either
shear thinning or shear thickening. The dependence of the shear stress on Il is
illustrated in Fig. 2.1, for various non-Newtonian fluids.

Fluids that have both viscous and elastic properties are called viscoelastic fluids.
Many fluids of industrial importance, such as polymeric liquids, solutions, melts
or suspensions fall into this category. Fluids exhibiting elastic properties are often
referred to as memory fluids.

The field of Fluid Mechanics that studies the relation between stress and defor-
mation, called the constitutive equation, is called Rheology from the Greek words
“rheo” (to flow) and “logos” (science or logic), and is the subject of many textbooks
[2,3].

The surface tension

Surface tension, o, is a thermodynamic property which measures the anisotropy
of the interactions between molecules on the interface of two immiscible fluids A
and B. At equilibrium, the capillary pressure (i.e., the effective pressure due to
surface tension) on a curved interface is balanced by the difference between the
pressures in the fluids across the interface. The jump in the fluid pressure is given
by the celebrated Young-Laplace equation of capillarity [4],

11
Ap = pgp—pa = 0 [ —+ — 2.15
pP=pPB—ps =0 <R1 Rz) , (2.15)

where Ry and R, are the principal radii of curvature, i.e., the radii of the two mu-
tually perpendicular maximum circles which are tangent to the (two-dimensional)
surface at the point of contact. In Chapter 4, these important principles are ex-
panded to include liquids in relative motion.

Example 2.1.2. Capillary pressure

A spherical liquid droplet is in static equilibrium in stationary air at low pressure
pa. How does the pressure p inside the droplet change for droplets of different radii
R, for infinite, finite and zero surface tension?
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Solution:
In the case of spherical droplets, Ri=R;=R, and the Young-Laplace equation is
reduced to
20
P—pra = R

The above formula says that the pressure within the droplet is higher than the
pressure of the air. The liquid pressure increases with the surface tension and
decreases with the size of the droplet. As the surface tension increases, the pressure
difference can be supported by bigger liquid droplets. As the pressure difference
increases, smaller droplets are formed under constant surface tension. O

Measurement of fluid properties
The density, the viscosity and the surface tension of pure, incompressible, New-
tonian liquids are functions of temperature and, to a much lesser extent, functions
of pressure. These properties, blended with processing conditions, define a set of
dimensionless numbers which fully characterize the behavior of the fluid under flow
and processing. Three of the most important dimensionless numbers of fluid me-
chanics are briefly discussed below.
The Reynolds number expresses the relative magnitude of inertia forces to viscous
forces, and is defined by
Re = 1% (2.16)
n
where L is a characteristic length of the flow geometry (i.e., the diameter of a tube),
and 7 is a characteristic velocity of the flow (e.g., the mean velocity of the fluid).
The Stokes number represents the relative magnitude of gravity forces to viscous
forces, and is defined by ,
st = P9 (2.17)
i
The capillary number expresses the relative magnitude of viscous forces to surface
tension forces, and is defined by

Ca = 1. (2.18)
o

The first two dimensionless numbers, Re and St, arise naturally in the dimensionless
conservation of momentum equation; the third, C'a, appears in the dimensionless
stress condition on a free surface. The procedure of nondimensionalizing these equa-
tions is described in Chapter 7, along with the asymptotic analysis which is used
to construct approximate solutions for limiting values of the dimensionless numbers
[5]. The governing equations of motion under these limiting conditions are simplified



8 Chapter 2. Introduction to the Continuum Fluid

p=0.1 atm p=1 atm p=10 atm
Property Fluid | 4°C 20°C 4°C 20°C 40°C 20°C 40°C
Density (Kg/m?) Air 0.129 0.120 1.29 1.20 1.13 12 11.3
Water | 1000 998 1000 998 992 998 992
Viscosity (cP) Air 0.0158  0.0175 | 0.0165 0.0181 0.0195 | 0.0184 0.0198

Water | 1.792 1.001 1.792 1.002 0.656 1.002 0.657
Surface tension Air - - - - - - -
with air (dyn/cm) Water | 75.6 73 75.6 73 69.6 73 69.6

Table 2.1. Density, viscosity and surface tension of air and water at several process
conditions.

by eliminating terms that are multiplied or divided by the limiting dimensionless
numbers, accordingly.

Flows of highly viscous liquids are characterized by a vanishingly small Reynolds
number and are called Stokes or creeping flows. Most flows of polymers are creeping
flows [6]. The Reynolds number also serves to distinguish between laminar and
turbulent flow. Laminar flows are characterized by the parallel sliding motion of
adjacent fluid layers without intermixing, and persist for Reynolds numbers below a
critical value that depends on the flow. For example, for flow in a pipe, this critical
value is 2,100. Beyond that value, eddies start to develop within the fluid layers
that cause intermixing and chaotic, oscillatory fluid motion, which characterizes
turbulent flow. Laminar flows at Reynolds numbers sufficiently high that viscous
effects are negligible are called potential or Fuler flows. The Stokes number is zero
in strictly horizontal flows and high in vertical flows of heavy liquids. The capillary
number appears in flows with free surfaces and interfaces [7]. The surface tension,
and thus the capillary number, can be altered by the addition of surfactants to the
flowing liquids.

The knowledge of the dimensionless numbers and the prediction of the flow
behavior demand an a priori measurement of density, viscosity and surface tension
of the liquid under consideration. Density is measured by means of pycnometers,
the function of which is primarily based on the Archimedes principle of buoyancy.
Viscosity is measured by means of viscometers or rheometers in small-scale flows;
the torque necessary to drive the flow and the resulting deformation are related
according to Newton’s law of viscosity. Surface tension is measured by tensiometers.
These are sensitive devices that record the force which is necessary to overcome the
surface tension force, in order to form droplets and bubbles or to break thin films.
More sophisticated methods, usually based on optical techniques, are employed when
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accuracy is vital [8]. The principles of operation of pycnometers, viscometers and
tensiometers are highlighted in several chapters starting with Chapter 4. Densities,
viscosities and surface tension of air and water at several process conditions are
tabulated in Table 2.1.

2.2 Macroscopic and Microscopic Balances

The control volume is an arbitrary synthetic cut in space which can be either fixed or
moving. It is appropriately chosen within or around the system under consideration,
in order to apply the laws that describe its behavior. In flow systems, these laws
are the equations of conservation (or change) of mass, momentum, and energy. To
obtain information on average or boundary quantities (e.g., of the velocity and the
temperature fields inside the flow system), without a detailed analysis of the flow, the
control volume is usually taken to contain or to coincide with the real flow system.
The application of the principles of conservation to this finite system produces the
macroscopic conservation equations.

However, in order to derive the equations that yield detailed distributions of
fields of interest, the control volume must be of infinitesimal dimensions that can
shrink to zero, yielding a point-volume. This approach reduces the quantities to
point-variables. The application of the conservation principles to this infinitesimal
system produces the microscopic or differential conservation equations. In this case,
there is generally no contact between the imaginary boundaries of the control volume
and the real boundaries of the system. It is always convenient to choose the shape of
the infinitesimal control volume to be similar to that of the geometry of the actual
system; a cube for a rectangular geometry, an annulus for a cylindrical geometry
and a spherical shell for a spherical geometry.

Conservation of mass

Consider an arbitrary, fixed control volume V', bounded by a surface .S, as shown
in Fig. 2.2. According to the law of conservation of mass, the rate of increase of
the mass of the fluid within the control volume V is equal to the net influx of fluid
across the surface S:

Rate of change ] _ [ Rate of addition (2.19)

of mass within V of mass across S

The mass m of the fluid contained in V is given by

m :/ pdV (2.20)
|4
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Surrounding fluid

Surface element d.5

Control volume V

Surface S

Figure 2.2. Control volume in a flow field.

and, hence, the rate of change in mass is

dm d
—_— = — dv . 2.21
- dt /v P (2.21)

Since the control volume V is fixed, the time derivative can be brought inside the
integral:

dm ap
— = —dV . 2.22
dt /V ot ( )

As for the mass rate across 5, this is given by

—/Sn-(pu)dS,

where n is the outwardly directed unit vector normal to the surface S, and pu is the
mass flux (i.e., mass per unit area per unit time). The minus sign accounts for the
fact that the mass of the fluid contained in the control volume decreases, when the
flow is outward, i.e., when n - (pu) is positive. By substituting the last expression
and Eq. (2.22) in Eq. (2.19), we obtain the following form of the equation of mass
conservation for a fixed control volume:

dm ap
E_/Vadv_—/sn-(pu)dS. (2.23)

Example 2.2.1. Macroscopic balances
A reactant in water flows down the wall of a cylindrical tank in the form of thin
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Figure 2.3. Macroscopic and microscopic balances on a source-sink system.

film at flow rate (). The sink at the center of the bottom, of diameter d, discharges
water at average velocity @ = 2kh, where k is a constant. Initially, the sink and the
source are closed and the level of the water is hg. What will be the level h(t) after
time ¢?

Solution:

We consider a control volume containing the flow system, as illustrated in Fig. 2.3.
The rate of change in mass within the control volume is

dm d d d [ =D? D% dh
W=l = G =g (—4 h) =P

We assume that water is incompressible. The net influx of mass across the surface
S of the control volume is

d? d?
—/n-(pu)ds = p(Q~ Qo) = p (Q—%u) =y (Q—%kh) ,
S
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where () and @, are the volumetric flow rates at the inlet and the outlet, respec-
tively, of the flow system (see Fig. 2.3). Therefore, the conservation of mass within
the control volume gives:

= Q-——kh. (2.24)

The solution to this equation, subjected to the initial condition

h(t=0) = hg,
is
2kd?
_2Q 20 —( D2 )t
i) = o (m% - ho) ’ (2.25)
The steady-state elevation is
: 2¢)
hss = tlggo h(t) = 7 (2.26)

Since, Eq. (2.24) is a macroscopic equation, its solution, given by Eq. (2.25),
provides no information on the velocity from the wall to the sink, nor on the pressure
distribution within the liquid. These questions are addressed in Example 2.2.2. O

Example 2.2.2. Microscopic balances
Assume now that the system of Example 2.2.1 is a kind of chemical reactor. Find an

estimate of the residence time of a reactant particle (moving with the liquid) from
the wall to the sink.

Solution:

The reactant flows down the vertical wall and enters the radial reacting flow at
r=D/2 directed towards the cylindrical sink at r=d/2 (r is the distance from the
center of the sink). If u(r) is the pointwise radial velocity of the fluid, then

u(r) = i’
and, therefore, the residence time of the fluid in the reaction field is given by
/2
t = / - (2.27)

D/2 ul(r)

Obviously, we need to calculate u(r) as a function of r. The average velocity
found in Example 2.2.1 is of no use here. The velocity u(r) can be found only by
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performing a microscopic balance. A convenient microscopic control volume is an
annulus of radii » and r + dr, and of height dz, shown in Fig. 2.3. For this control
volume, the conservation of mass states that

d

%(p%rr dr dz) = [2nrpu(r)dz], 44, — [27rpu(r)dz], . (2.28)
Assume, for the sake of simplicity, that the reactor operates at steady state, which
means that d/dt=0 and h=h,s. From Eq. (2.28), we get:

[ru(r)]r4ar — [ru(r)], = 0.

Dividing the above equation by dr, making the volume to shrink to zero by taking
the limit as dr — 0, and invoking the definition of the total derivative, we get a
simple, ordinary differential equation:

d [ru(r)]ly4ar — [ru(r)],

%[ru(r)] = dl;go e =0, (2.29)

The solution of the above equation is

u(r) = —, (2.30)

where ¢ is a constant to be determined. The boundary condition at steady state
demands that

d

2¢ Q
= =2 _hss r = - dhss - = = - .
Q T 2 ! r=d/2 T d ‘ Qﬂhss

The wvelocity profile is, therefore, given by

Q 1
2nhgs 1

u(r) =

(2.31)

We can now substitute Eq. (2.31) in Eq. (2.27) and calculate the residence time:

4/2 onh wh
t = — Brdr = —22(D?* - d?%) . 2.32
/D/z o T g ( ) (2:32)

The pressure distribution can be calculated using Bernoulli’s equation, developed
in Chapter 5. Along the radial streamline,

(2.33)
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For d/D < 1, it is reasonable to assume that at r=D/2, v =0 and p =0, and,
therefore,

_ Poa o pQ% 1
p(r) = —§u (r) = _87r2h§5 2 <0. (2.34)

Equation (2.34) predicts an increasingly negative pressure towards the sink. Under
these conditions, cavitation and even boiling may occur, when the pressure p(r) is
identical to the vapor pressure of the liquid. These phenomena, which are impor-
tant in a diversity of engineering applications, cannot be predicted by macroscopic
balances. |

Conservation of linear momentum

An isolated solid body of mass m moving with velocity u possesses momentum,
J = mu. According to Newton’s law of motion, the rate of change of momentum of
the solid body is equal to the force F exerted on the mass m:

dJ

d
i F, = —(mu)=F. (2.35)

dt

The force F in Eq. (2.35) is a body force, i.e. an external force exerted on the mass
m. The most common body force is the gravity force,

Fo =mg, (2.36)

which is directed to the center of the Earth (g is the acceleration of gravity). Elec-
tromagnetic forces are another kind of body force. Equation (2.35) describes the
conservation of linear momentum of an isolated body or system:

Rate of change Body
of momentum = | Jorce |- (2.37)
of an isolated system

In the case of a non-isolated flow system, i.e., a control volume V', momentum
is convected across the bounding surface S due to (a) the flow of the fluid across
S, and (b) the molecular motions and interactions at the boundary S. The law of
conservation of momentum is then stated as follows:

Rate of Rate of
Rate of inflow of inflow of
increase of momentum momentum Body
(2.38)
momentum across S across S force
within V by bulk by molecular
flow processes
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The momentum J of the fluid contained within a control volume V is given by

J :/ pudV | (2.39)
14
and, therefore,
dJ d
—_— = — dv . 2.40
i dt/v i (2.40)

The rate of addition of momentum due to the flow across S is
—/ n-(pujuds = —/ n-(puu)ds,
S S

where n is the unit normal pointing outwards from the surface 5. The minus sign
in the above expression accounts for the fact that the content of the control volume
increases when the velocity vector u points inwards to the control volume. The
dyadic tensor puu is the momentum fluz (i.e., momentum per unit area per unit
time). The momentum flux is obviously a symmetric tensor. Its component pu;u;ij
represents the j component of the momentum convected in the ¢ direction, per unit
area per unit time.

The additional momentum flux due to molecular motions and interactions be-
tween the fluid and its surroundings is another symmetric tensor, the total stress
tensor T, defined in Eq. (2.10). Therefore, the rate of addition of momentum across
S, due to molecular processes, is

/Sn-TdS: /Sn-(—pI—I—T)dS. (2.41)

As already mentioned, the anisotropic viscous stress tensor 7 accounts for the rel-
ative motion of fluid particles. In static equilibrium, the only non-zero stress con-
tribution to the momentum flux comes from the hydrostatic pressure p. The vector
n - T is the traction produced by T on a surface element of orientation n. The
term (2.41) is often interpreted physically as the resultant of the surface (or con-
tact) forces exerted by the surrounding fluid on the fluid inside the control volume
V. It is exactly the hydrodynamic force acting on the boundary 5, as required by
the principle of action-reaction (Newton’s third law).

Assuming that the only body force acting on the fluid within the control volume

V' is due to gravity, i.e.,
1%

and substituting the above expressions into Eq. (2.38), we obtain the following form
of the law of conservation of momentum:

/,oudV: —/ n-(puu)dS—l—/n-(—pI—l—T)dS—l—/ pgdV .  (2.42)
|4 S S |4
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The surface integrals of Eqs. (2.23) and (2.42) can be converted to volume in-
tegrals by means of the Gauss divergence theorem. As explained in Chapter 3, this
step is necessary for obtaining the differential forms of the corresponding conserva-
tion equations.

2.3 Local Fluid Kinematics

Fluids cannot support any shear stress without deforming or flowing, and continue
to flow as long as shear stresses persist. The effect of the externally applied shear
stress is dissipated away from the boundary due to the viscosity. This gives rise
to a relative motion between different fluid particles. The relative motion forces
fluid material lines that join two different fluid particles to stretch (or compress)
and to rotate as the two fluid particles move with different velocities. In general,
the induced deformation gives rise to normal and shear stresses, similar to internal
stresses developed in a stretched or twisted rubber cylinder. The difference between
the two cases is that, when the externally applied forces are removed, the rubber
cylinder returns to its original undeformed and unstressed state, whereas the fluid
remains in its deformed state. In the field of rheology, it is said that rubber exhibits
perfect memory of its rest or undeformed state, whereas viscous inelastic liquids,
which include the Newtonian liquids, exhibit no memory at all. Viscoelastic materi-
als exhibit fading memory and their behavior is between that of ideal elastic rubber
and that of viscous inelastic liquids. These distinct behaviors are determined by the
constitutive equation, which relates deformation to stress.

Since the conservation equations and the constitutive equation are expressed
in terms of relative kinematics, i.e., velocities, gradients of velocities, strains and
rates of strain, it is important to choose the most convenient way to quantify these
variables. The interconnection between these variables requires the investigation and
representation of the relative motion of a fluid particle with respect to its neighbors.

Flow kinematics, i.e., the relative motion of fluid particles, can be described by
using either a Lagrangian or an Fulerian description. In the Lagrangian or material
description, the motion of individual particles is tracked; the position r* of a marked
fluid particle is considered to be a function of time and of its label, such as its initial
position ry, r*=r*(rf, ¢). For a fixed rjj, we have

r* = r(1), (2.43)

which is a parametric equation describing the locus of the marked particle, called a
path line. The independent variables in Lagrangian formulations are the position of
a marked fluid particle and time, t. This is analogous to an observer riding a fluid
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particle and marking his/her position while he/she records the traveling time and
other quantities of interest. For example, the pressure p in Lagrangian variables is
given by p=p(r,1).

In the Eulerian description, dependent variables, such as the velocity vector and
pressure, are considered to be functions of fized spatial coordinates and of time, e.g.,
u=u(r,t), p=p(r,t), etc. If all dependent variables are independent of time, the flow
is said to be steady.

Since both Lagrangian and Fulerian variables describe the same flow, there must
be a relation between the two. This relation is expressed by the substantial derivative
which in the Lagrangian description is identical to the common total derivative.
The Lagrangian acceleration, a*, is related to the Eulerian acceleration, a=du/dt,

as follows: D 5
N u u
at = — = — u-Vu. 2.44
Dt ot + ( )
Note that the velocity u in the above equation is the Eulerian one. In steady flows,
the Eulerian acceleration, a=du/dt, is zero, whereas the Lagrangian one, a*, may

not be so, if finite spatial velocity gradients exist.

Zo a1 T2 Tp

® ® ® * —»
I ! ! T
'=0 31 5 ty

Figure 2.4. Positions of a fluid particle in one-dimensional motion.

We will illustrate the two flow descriptions using an idealized one-dimensional
example. Consider steady motion of fluid particles along the z-axis, such that

af = al ety —tii1)?, (2.45)

where 27 is the position of a fluid particle at time ¢; (Fig. 2.4), and ¢ is a positive
constant. The Lagrangian description of motion gives the position of the particle in
terms of its initial position, xf, and the lapsed traveling time, t',

e (x5, ) = ab +ct?. (2.46)
The velocity of the particle is
da*
wi(ag,t) = —5 =2t (2.47)
which, in this case, is independent of 2. The corresponding acceleration is
d %
a (a5 1) = S0 = 23>0, (2.48)

dt
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The separation distance between two particles 1 and 2 (see Fig. 2.4),
Ax* = a3 —af = c(tf —1}), (2.49)
changes with time according to

dAz™

o = 2 (th—1]) = us—ui>0, (2.50)

and is, therefore, continuously stretched, given that u3 > uj. The velocity gradient

is,
du* 1 du* 2¢ 1

= = = = —. (2.51)
dz* w*(t') dt’ 2ct! t

In the above expressions, the traveling time ¢’ is related to the traveling distance by
the simple kinematic argument,

dz* = u(t")dt', (2.52)

and is different from the time t which characterizes an unsteady flow, under the
Eulerian description.
In the Eulerian description, the primary variable is

w(z) = 2w — 20)/2. (2.53)

Note that time, ¢, does not appear due to the fact that the motion is steady. Equa-
tion (2.44) is easily verified in this steady, one-dimensional flow:

1
— 4+ u— =0+ 261/2($—$0)1/25261/2($—$0)_1/2 =2c=a".

The Eulerian description may not be convenient to describe path lines but it is
more appropriate than the Lagrangian description in calculating streamlines. These
are lines to which the velocity vector is tangent at any instant. Hence, streamlines
can be calculated by

uxdr =0, (2.54)

where r is the position vector describing the streamline. In Cartesian coordinates,

Eq. (2.54) is reduced to
dv  dy  dz

2.55
Uy Uy Uy ( )
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When the flow is steady, a path line coincides with the streamline that passes
through r§. The surface formed instantaneously by all the streamlines that pass
through a given closed curve in the fluid is called streamtube.

From Eq. (2.55), the equation of a streamline in the zy-plane is given by
dy

d
& =  uydr — uydy = 0. (2.56)
Uy Uy

A useful concept related to streamlines, in two-dimensional bidirectional flows, is the

stream function. In the case of incompressible flow,! the stream function, ¥ (z,y),
is defined by?

_ 9%

Up = ~ay

An important feature of the stream function is that it automatically satisfies the
continuity equation,

)
and w, = 8—¢ (2.57)
x

Quy | Dy
dx dy

as can easily be verified. The stream function is a useful tool in solving creeping,
two-dimensional bidirectional flows. Its definitions and use, for various classes of

=0, (2.58)

incompressible flow, are examined in detail in Chapter 10.
Substituting Eqs. (2.57) into Eq. (2.56), we get
o o

dy = —dzx —dy = 0. 2.59
b= gl t gy (2.59)
Therefore, the stream function, 1, is constant along a streamline. Moreover, from
the definition of a streamline, we realize that there is no flow across a streamline. The
volume flow rate, @, per unit distance in the z direction, across a curve connecting
two streamlines (see Fig. 2.5) is the integral of di along the curve. Since the

1For steady, compressible flow in the zy-plane, the stream function is defined by

2
oz

pug = ——— and puy =
In this case, the difference ¥, —, is the mass flow rate (per unit depth) between the two streamlines.

?Note that many authors define the stream function with the opposite sign, i.e.,

_ 9 _%
T oy dr

Uz and Uy =
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//¢:¢2

2

Q=121 P=1h

Figure 2.5. Volume flow rate per unit depth across a curve connecting two stream-
lines.

differential of 1 is exact, this integral depends only on the end points of integration,
i.e.,

2
Qz/l dip = 1py — . (2.60)

Example 2.3.1. Stagnation flow

Consider the steady, two-dimensional stagnation flow against a solid wall, shown in

Fig. 2.6. Outside a thin boundary layer near the wall, the position of a particle,
located initially at r§(zg, y5), obeys the following relations:

(x5, t) = ap e and oy (s, t) = g e, (2.61)

which is, of course, the Lagrangian description of the flow. The corresponding
velocity components are

da” * _et! * dy* ket
dt’ ar ~ he

wi(zg,t') = = exje and  uy(yp.t') = (2.62)

Eliminating the traveling time ¢’ from the above equations results in the equation
of the path line,

koK

Y = an (2.63)

which is a hyperbola, in agreement with the physics of the flow.
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Streamline

Figure 2.6. Stagnation flow.

In the Eulerian description, the velocity components are:
uy = ex  and  u, = —ey. (2.64)
The streamlines of the flow are calculated by means of Eq. (2.55):

dx dy dx dy

Uy Uy ex —ey

Equations (2.65) and (2.63) are identical: since the flow is steady, streamlines and
path lines coincide. O

The Lagrangian description is considered a more natural choice to represent
the actual kinematics and stresses experienced by fluid particles. However, the
use of this description in solving complex flow problems is limited, due to the fact
that it requires tracking of fluid particles along a priori unknown streamlines. The
approach is particularly convenient in flows of viscoelastic liquids, i.e., of fluids with
memory, that require particle tracking and calculation of deformation and stresses
along streamlines. The Eulerian formulation is, in general, more convenient to use
because it deals only with local or present kinematics. In most cases, all variables
of interest, such as strain (deformation), rate of strain, stress, vorticity, streamlines
and others, can be calculated from the velocity field. An additional advantage of the
Eulerian description is that it involves time, as a variable, only in unsteady flows,
whereas the Lagrangian description uses traveling time even in steady-state flows.
Finally, quantities following the motion of the liquid can be reproduced easily from
the FEulerian variables by means of the substantial derivative.
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u(r,t)
Pl
du=u(r,t)-u(rg,?)

u(ro, 1)

r dr=r-rq

z
P
o u(ro, 1)
Y
x

Figure 2.7. Relative motion of adjacent fluid particles.

2.4 Elementary Fluid Motions

The relative motion of fluid particles gives rise to velocity gradients that are directly
responsible for strain (deformation). Strain, in turn, creates internal shear and
extensional stresses that are quantified by the constitutive equation. Therefore, it is
important to study how relative motion between fluid particles arises and how this
relates to strain and stress.

Consider the adjacent fluid particles P and P’ of Fig. 2.7, located at points rg
and r, respectively, and assume that the distance dr=r-rg is vanishingly small. The
velocity u(r,t) of the particle P’ can be locally decomposed into four elementary
motions:

(a) rigid-body translation;

(b) rigid-body rotation;

(¢) isotropic expansion; and

(d) pure straining motion without change of volume.
Actually, this decomposition is possible for any vector u in the three-dimensional
space.
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Expanding u(r,?) in a Taylor series with respect to r about rg, we get
u(r,t) = u(rp,t) + dr-Vu + O[(dr)?, (2.66)
where Vu is the velocity gradient tensor. Retaining only the linear term, we have
u(r,t) = u(rg,t) + du, (2.67)
where the velocity u(rg,t) of P represents, of course, rigid-body translation, and
du = dr-Vu (2.68)

represents the relative velocity of particle P’ with respect to P. The rigid-body
translation component, u(rg,?), does not give rise to any strain or stress, and can
be omitted by placing the frame origin or the observer on a moving particle. All the
information for the relative velocity du is contained in the velocity gradient tensor.
The relative velocity can be further decomposed into two components corresponding
to rigid-body rotation and pure straining motion, respectively. Recall that Vu can
be written as the sum of a symmetric and an antisymmetric tensor,

Vu=D+ S, (2.69)
where )
D = _[Vu+ (Vu)T] (2.70)
is the symmetric rate-of-strain tensor, and
1 T
S = 3 [Vu— (Vu)'] (2.71)

is the antisymmetric vorticity tensor. Substituting Eqs. (2.69) to (2.71) in Eq. (2.68),
we get

1 1
du = dr-(D+S) = dr- §[Vu +(Vu)] + dr- §[Vu —(Vu)l]. (2.72)
The first term,
1
u®) = dr-D = dr- S[Vu+ (Vu)T] (2.73)

represents the pure straining motion of P’ about P. The second term

u) = dr-S = dr. %[Vu— (V)] (2.74)
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represents the rigid-body rotation of P’ about P. A flow in which D is zero ev-
erywhere corresponds to rigid-body motion (including translation and rotation).
Rigid-body motion does not alter the shape of fluid particles, resulting only in their
displacement. On the other hand, straining motion results in deformation of fluid
particles.

Note that the matrix forms of Vu, D and S in Cartesian coordinates are given

by

du, Ouy  du,
= | Qupy YUy du.
Vu = 3y 9y 95 | (2.75)
du, Uy Ju,
dz dz dz
2z ay+%) (%= + %97)
1 du, , Ou u u du,
D= | (BeeGe) 2% (FEedr) | e
dug | O duy | Qu, du,
( 0z W) (W + dy ) 297
and
duy  Ju, Juy,  Ou,
0 (W =y ) (5= - 5%)
_ 1 duy  du, du, Ouy
_ (3% _ 3u2) ou, Ouy 0
dz dx dy dz

Any antisymmetric tensor has only three independent components and may, there-
fore, be associated with a vector, referred to as the dual vector of the antisymmetric
tensor. The dual vector of the vorticity tensor S is the vorticity vector,

w=Vxu. (2.78)

In Cartesian coordinates, it is easy to verify that, if

w = wyl + wyj + wk, (2.79)
then
1 0 —W, Wy
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and
1
dr-S:§w><dr. (2.81)

The vorticity tensor in Eq. (2.74) can be replaced by its dual vorticity vector,
according to

u) = dr. %[Vu - (Vu)T] = —(VXxu)xdr = %w X dr . (2.82)

1
2
In irrotational flows, the vorticity w is everywhere zero, and, as a result, the rigid-
body rotation component ul”) is zero. If the vorticity is not everywhere zero, then
the flow is called rotational. The rigid-body rotation component u(") also obeys the
relation

u”) = Qxdr, (2.83)

where €2 is the angular velocity. Therefore, the vorticity vector w is twice the
angular velocity of the local rigid-body rotation. It should be emphasized that the
vorticity acts as a measure of the localrotation of fluid particles, and it is not directly
connected with the curvature of the streamlines, i.e., it is independent of any global
rotation of the fluid.

It must be always kept in mind that the pure straining motion component ul®)
represents strain unaffected by rotation, i.e., strain experienced by an observer ro-
tating with the local vorticity. The straining part of the velocity gradient tensor,
which is the rate of strain tensor, can be broken into two parts: an extensional one
representing isotropic expansion, and one representing pure straining motion with-
out change of volume. In other words, the rate of strain tensor D can be written as
the sum of a properly chosen diagonal tensor and a symmetric tensor of zero trace:

D = %tr(D)I + [D- %tr(D)I]. (2.84)

The diagonal elements of the tensor [D — 1tr(D)I] represent normal or extensional
strains on three mutually perpendicular surfaces. The off-diagonal elements rep-
resent shear strains in two directions on each of the three mutually perpendicular
surfaces. Noting that

tr(D) = V-u, (2.85)

Eq. (2.84) takes the form:

1 1 2
D = oV.ul+ 5[vu+(vu)T— S(V-w Il (2.86)
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Therefore, the strain velocity, u(®=dr - D, can be written as

ul® = ul® 4 w0 (2.87)
where )
ul® = dr. S (V)T (2.88)
represents isotropic expansion, and
(st) 1 T 2
u'® = dr- 3 [Vu+ (Vu)' — 3 (V-u)I] (2.89)

represents pure straining motion without change of volume.
In summary, the velocity of a fluid particle in the vicinity of the point rq is
decomposed as

u(r,t) = u(re,?) + u” + u® 4+ ol (2.90)

or, in terms of the vorticity vector, the rate of strain tensor and the divergence of
the velocity vector,

u(r,t) = u(re,t) + %w><dr—|—dr-%V-uI—|—dr-%[Vu—l—(Vu)T—g(V-u)I]. (2.91)

Alternative expressions for all the components of the velocity are given in Table 2.2.

The isotropic expansion component u(®) accounts for any expansion or contrac-
tion due to compressibility. For incompressible fluids, tr(D)=V-u=0, and, therefore,
u'®) is zero. In Example 1.5.3, we have shown that the local rate of exzpansion per
unit volume is equal to the divergence of the velocity field,

A = lim —— =V.u. (2.92)
Since D is a symmetric tensor, it has three real eigenvalues, Ay, Ay and As, and

three mutually orthogonal eigenvectors. Hence, in the system of the orthonormal
basis {€], e}, eL} of its eigenvectors, D takes the diagonal form:

M 00
D'=1]0 X 0 (2.93)
0 0 s

If v'=(r], rh, r4) is the position vector in the system {e],e}, et}, then

Adr!
At

=ul = @' D (2.94)
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Velocity in the vicinity of rg

u(r,t) = u(re,t) + du
or

u(r,t) = u(re,t) + ul 4+ ul®
or

u(r,t) = u(ro,t) + ul) + ul® 4 ubH)

Rigid — body translation

u(ro, 1)

Relative velocity

du = dr-Vu = ul” 4+ u®)

Rigid — body rotation

ul) = dr-S = dr-i[Vu— (Vu)f] = Lwxdr = Qxdr

Pure straining motion

ul®) = dr-D = dr- % [Vu4 (Vu)T] = ul®) 1+ uls)

Isotropic expansion

ul® = dr-1r(D)I = dr-2(V-u)l

W=

Pure straining motion without change of volume

ult) = dr.[D - LrM)I] = dr- 1 [Vu+ (Vu)T = 2(V-u) 1]

2
3

Table 2.2. Decomposition of the velocity u(r,t) of a fluid particle in the vicinity of
the point rg.
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This vector equation is equivalent to three linear differential equations,

Adr! .
= Ndrl. i=12.3, (2.95)
The rate of change of the unit length along the axis of €} at {=0 is, therefore, equal
to A;. The vector field dr’ - D’ is merely expanding or contracting along each of
the axes €. For the rate of change of the volume V of a rectangular parallelepiped
whose sides dr/, dr}, and dr} are parallel to the three eigenvectors of D, we get

AV A Adr} Adr Adr,
ik E(dri,dré,dré) = —Atldrédré + dr} Atzdré + dridré—AtS =
AV
The trace of a tensor is invariant under orthogonal transformations. Hence,
1 AV
VE:A1+A2+A3:tTD/:tTD:V'u' (297)

This result is equivalent to Eq. (2.92).
Another way to see that u(®) accounts for the local rate of expansion is to show
that V- ul®=A. Recall that V - u is evaluated at ry, and dr is the position vector
of particle P’ with respect to a coordinate system centered at P. Hence,
(V-u)V-(dr-I) =

V-u(e):v(dré(V-u)I): (V.-u)V-dr =

1 1
3 3
Voul® = V.u=A. (2.98)

Moreover, it is easily shown that the velocity ul®) is irrotational, i.e., it produces no
vorticity:
(V-u)Vx(de-I) =

VXu(e):VX<dI"%(V-u)I): (V-u)Vxdr =

Wl
Wl

vxu® =o0. (2.99)

In deriving Eqs. (2.98) and (2.99), the identities V - dr=3 and V X dr=0 were used
(see Example 1.4.1).

Due to the conditions V-u(®=A and V x ul®)=0, the velocity u can be written
as the gradient of a scalar field ¢(¢),

u. = Vol (2.100)
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which satisfies the Poisson equation:
Viple) = AL (2.101)

A solution to Eqgs. (2.100) and (2.101) is given by

@) = L n_1 /

o) = - | AN g Vi) (2.102)
and . .

©r) = — nrt-r '

) = o= [ ) o V). (2.103)

where V is the volume occupied by the fluid.
The curl of the rotational velocity u(") is, in fact, equal to the vorticity w.
Invoking the vector identity

Vx(axb)=aV-b-bV.a+ (b-V)a - (a-V)b,

we get
1
Vxu = §V><(w><dr)
1
= §[wV-dr—drV-w—|—(dr-V)w—(w-V)dr].

Since V - dr=3, V -w=0 (the vorticity is solenoidal), (dr-V)w=0 (evaluated at ry),
and (w - V)dr=w, one gets

Vxu = w. (2.104)
Given that rigid motion is volume preserving, the divergence of the rotational ve-
locity is zero,
[dr - (VXw) — w-V xdr] =

V-u(T):%V-(der): (dr-0 —w-0) =

1 1
2 2
v.u = o, (2.105)

which can be verified by the fact that the vorticity tensor has zero trace. Equa-
tions (2.104) and (2.105) suggest a solution of the form,

u”) = v x B0, (2.106)

where B(") is a vector potential for u(" that satisfies Eq. (2.105) identically. From
Eq. (2.104), one gets

Vx(VxBM) =w = V(V.B")-vB" =, (2.107)
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Ifv.B=o0,
VB = —w. (2.108)

The solution to Eqs. (2.106) to (2.108) is given by

B (r) = ﬁ/v |ri”r/| dv (r') (2.109)
and .
W) = — b [ EZEIX@ (2.110)

ary =1
which suggest that rotational velocity, at a point r, is induced by the vorticity at
neighboring points, r’.
Due to the fact that the expansion, A, and the vorticity, w, are accounted for
by the expansion and rotational velocities, respectively, the straining velocity, uls?),
is both solenoidal and irrotational. Therefore,

V.ul?) = V-{dr-[Vqu(Vu)T—;(v-u) I]} =0 (2.111)

N | —

and

vV x ult = %V X {dr [Vu+ (Vu)T - ; (V-u) I]} =0. (2.112)

A potential function ¢**) such that

ul) = vl | (2.113)
satisfies Eq. (2.112) and reduces Eq. (2.111) to the Laplace equation,

V2t = 0. (2.114)

The Laplace equation has been studied extensively, and many solutions are known [9].
The key to the solution of potential flow problems is the selection of proper solu-
tions that satisfy the boundary conditions. By means of the divergence and Stokes
theorems, we get from Eqgs. (2.111) and (2.112)

/V-u(“) v = /n-u(St) ds = 0 (2.115)
14 S

and

/n-(v x ut)ds = / t-ulde = 0. (2.116)
S C



2.4 Elementary Fluid Motions 31

It is clear that the solution u(*? depends entirely on boundary data.

More details on the mechanisms, concepts and closed form solutions of local
and relative kinematics are given in numerous theoretical Fluid Mechanics [10-12],
Rheology [13] and Continuum Mechanics [14] publications.

Example 2.4.1. Local kinematics of stagnation flow
Consider the two-dimensional flow of Fig. 2.6, with Eulerian velocities

uy = ex and u, = —ey.
For the velocity gradient tensor we get
0 . ..
Vu:[6 ]:eu—e_]_].
Since Vu is symmetric,

D= Vu=—c¢il—¢jj,

and
S =0.

Therefore, the flow is irrotational. It is also incompressible, since
trD) =V.-u=¢e¢—-¢ =0.

For the velocities u(™, u(® and u®*), we find:

u(T) = dI‘-SIO,
ul® = dré(v-u)lzo,
ult) = dré[Vu-l-(V“)T_;(v‘u)I]:dr‘(€ii_€jj)‘

Therefore, expansion and rotation are zero, and there is only extension of the ma-
terial vector dr. If dr is of the form,

dr = adxi + bdyj,

then

st)

ul) = qedei — bedyj.

If, for instance, dr=adz i, then u*)=aedz i and extension is in the z-direction. O
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Example 2.4.2. Local kinematics of rotational shear flow
We consider here shear flow in a channel of width 2H. If the z-axis lies on the plane

of symmetry and points in the direction of the flow, the Eulerian velocity profiles
are
u, = c(H?*~-y*) and w, = u, = 0,

where ¢ is a positive constant. The resulting velocity gradient tensor is

0 0 .
Vll = [ —263/ 0 ] — _203/.]17
and thus
_ 1 T _ 0 —cy | _ _ co | e
D = - [Vu + (Vu)'] = l_cy 0 ] = —cy(ij+ji),
and
S= iwu- (v =] © Y| = cyii-j.
2 —cy O
Since

the flow is incompressible,
If dr is of the form,

then
G- dr-S = (adxi + bdyj)-cy(ij—ji) = cy(=bdyi+ada}),
u(e) = dr%VuI—O,
1
ul = dr- D - Veul] = (adri + bdyj)- ey (=ij - ji)

= —cy(bdyit+adzj).

Despite the fact that the fluid is not rotating globally (the streamlines are straight
lines), the flow is rotational,

du,
w:VXu:—d?;

k = 2cyk#0.

The vorticity is maximum along the wall (y=H), and zero along the centerline
(y=0). The existence of vorticity gives rise to extensional strain. This is known
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as vorticity induced extension, to avoid confusion with the strain induced extension,
represented by du(®). Unlike the latter, the vorticity induced extensional strain does
not generate any normal stresses, but it does contribute to shear stresses. O

The rate of strain tensor D results in extensional and shear strain. Consider
again the relative velocity between the particles P and P’ of Fig. 2.7,

du = dr-Vu = (Vu)l - dr. (2.117)
By definition,
_ Ddr Ddr B T
du = T = e = dr-Vu = (Vu)® -dr. (2.118)

Let a be the unit vector in the direction of dr and ds=|dr|, i.e., dr=ads. Then, from
Eq. (2.118) we get:

Dads B T 1 Dds B T
T ads-Vu = (Vu)' -ads a - = a-Vu = (Vu)' ra =
1 Dds B T 1 Dds 1 T
DL (a-Vu)-a = a-[(Vu) -a] = 7 D _a-Q[Vu—I—(Vu) la =
1 Dds
o = a-D-a. (2.119)

Equation (2.119) describes the extension of the material length ds with time. The
term a-D -ais called extensional strain rate. The extensional strain rate of a mate-
rial vector aligned with one Cartesian axis, dr=e;ds, is equal to the corresponding
diagonal element of D:

1 Dds du,
— =e-D-.e = Dy = :
ds Dt |g,qs © © dx;

(2.120)

Similar expressions can be obtained for the shear (or angular) strain. The shear-
ing of fluid particles depends on how the angle between material vectors evolves
with time. If a and b are unit material vectors originally at right angle, i.e., a-b=0,
then the angle 6, between the two material vectors, evolves according to

Do

— = —2a-D-b. 2.121
Dilys = 2 (2.121)
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The right-hand side of the above equation is the shear strain rate. Since D is
symmetric, the order of a and b in Eq. (2.121) is immaterial. The shear strain

rate between material vectors along two axes z; and z; of the Cartesian coordinate

system is opposite to the ij-component of the rate-of-strain tensor:

Dt eie, dz;  Oz;

Example 2.4.3. Deformation of material lines
We revisit here the two flows studied in Examples 2.4.1 and 2.4.2.

Irrotational extensional flow

For the material vector dr=ads with

ajl+az)
- a% + a% 7
the extensional strain rate is
d—lsDDiS:a-D-a:76111;_@2;-(eii—eij)-ialljaz; =
Vartay ai + a3
1 Dds a} — a’

— = €
ds Dt a% + a%

We observe that if ay=7ay, the material length ds does not change with time.

material vector along the z-direction (dr=ids) changes its length according to

D(lnds) 1 Dds _ ot
i @ b c T b= (s

Similarly, for dr=jds, we find that ds=(ds)y e™'.
The shear strain rate for a=1 and b=j is
Do

Ei,j = —2a-D-b = -2i-(cii—¢€jj)-j =0,

A

in agreement with the fact that shearing is not present in irrotational extensional

flows.

Rotational shear flow

We consider a material vector of arbitrary orientation,
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for which
D(Inds) 1 Dds
Dt ds Dt
a1i+ asj e ey @1itag] 2a1a
— ¥-[—cy(u—|—31)]-¥ _ Qizzcyv
a%—l—a% a%—l—a2 ay T~ a3
or

D(lnds)  ajay Ou,
Dt al+add oy

We easily deduce that a material vector parallel to the z-axis does not change length.
The shear strain rate for a=1 and b=j is

Do
—| = -2a-D-b = =21-[-cy(ij+ji)]-j = 2cy,
Dt l;
or
Do _ Ouy
Dt i,.i_ dy

2.5 Problems

2.1. Repeat Example 2.1.2 for cylindrical droplets of radius R and length L > R.
How does the inside pressure change with R, L and o7

2.2. The Eulerian description of a two-dimensional flow is given by
uy = ay and uy, =0,

where «a is a positive constant.

(a) Calculate the Lagrangian kinematics and compare with the Fulerian ones.

(b) Calculate the velocity-gradient, the rate-of-strain and the vorticity tensors.

(c¢) Find the deformation of material vectors parallel to the z- and y-axes.

(d) Find the deformation of material vectors diagonal to the two axes. Explain the
physics behind your findings.

2.3. Write down the Young-Laplace equation for interfaces of the following config-
urations: spherical, cylindrical, planar, elliptical, parabolic, and hyperbolic.

2.4. The motion of a solid body on the zy-plane is described by

r(t) = itacoswt + jbsinwt,
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where a, b and w are constants. How far is the body from the origin at any time
t? Find the velocity and the acceleration vectors. Show that the body moves on an
elliptical path.

2.5. Derive the equation that governs the pressure distribution in the atmosphere
by means of momentum balance on an appropriate control volume. You must utilize
the integral theorems of Chapter 1.

Free surface

Figure 2.8. Contraction of a round Newtonian jet at a high Reynolds number.

2.6. Consider the high Reynolds number flow of a Newtonian jet issuing from a
capillary of diameter D, as illustrated in Fig. 2.8. Upstream the exit of the capillary,
the flow is assumed to be fully-developed, i.e., the axial velocity is parabolic,

32Q (D?*
Uy = —— | ——7r ,
nD* \ 4

where 77 is the viscosity of the liquid, p is its density, and ¢ denotes the volumet-
ric flow rate. The liquid leaves the capillary as a free round jet and, after some
rearrangement, the flow downstream becomes plug, i.e.,

u, = V.

Using appropriate conservation statements, calculate the velocity V and the final
diameter d of the jet. Repeat the procedure for a plane jet issuing from a slit of
thickness H and width W.

2.7. Use the substantial derivative,

D(ds)  9(ds)
T T o +u-V(ds) (2.123)

to find how material lengths, ds, change along streamlines. Consider vectors tangent
and perpendicular to streamlines. Apply your findings to the following flows:
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(a) up=ex and uy=—cy;

(b) uy=ay and u,=0.

2.8. A material vector a enters perpendicularly a shear field given by u,=ay and
uy=0. Describe its motion and deformation as it travels in the field. Repeat for the
extensional field given by u,=cz and uy,=—cy.

v

_——

>

Figure 2.9. Plane Couette flow.

2.9. Calculate the configuration of a material square in the plane Couette flow, the
geometry of which is depicted in Fig. 2.9. The lower wall is fixed, the upper wall is
moving with speed V, and the z-component of the velocity is given by

Uy = 2V (2.124)
7]

Consider three entering locations: adjacent to each of the walls and at y=H /2. How
would you use this flow to measure velocity, vorticity and stress?

2.10. The velocity vector
u(t) = Qt)reg + u(t)e, + u. e,

describes a spiral flow in cylindrical coordinates.

(a) Calculate the acceleration vector a(t) and the position vector r(t).

(b) How things change when u,=0, Q(¢)=80 and u,(t)=ug? Sketch a representative
streamline.
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