Chapter 1

VECTOR AND TENSOR
CALCULUS

The physical quantities encountered in fluid mechanics can be classified into three
classes: (a) scalars, such as pressure, density, viscosity, temperature, length, mass,
volume and time; (b) vectors, such as velocity, acceleration, displacement, linear
momentum and force, and (c) tensors, such as stress, rate of strain and vorticity
tensors.

Scalars are completely described by their magnitude or absolute value, and they
do not require direction in space for their specification. In most cases, we shall
denote scalars by lower case lightface italic type, such as p for pressure and p for
density. Operations with scalars, i.e., addition and multiplication, follow the rules of
elementary algebra. A scalar field is a real-valued function that associates a scalar
(i.e., a real number) with each point of a given region in space. Let us consider,
for example, the right-handed Cartesian coordinate system of Fig. 1.1 and a closed
three-dimensional region V occupied by a certain amount of a moving fluid at a
given time instance ¢. The density p of the fluid at any point (z,y,z) of V defines a
scalar field denoted by p(z,y, z). If the density is, in addition, time-dependent, one
may write p=p(z,y, z,1).

Vectors are specified by their magnitude and their direction with respect to a
given frame of reference. They are often denoted by lower case boldface type, such
as u for the velocity vector. A vector fieldis a vector-valued function that associates
a vector with each point of a given region in space. For example, the velocity of
the fluid in the region V of Fig. 1.1 defines a vector field denoted by u(z,y,z,t). A
vector field which is independent of time is called a steady-state or stationary vector
field. The magnitude of a vector u is designated by |u| or simply by u.

Vectors can be represented geometrically as arrows; the direction of the arrow
specifies the direction of the vector and the length of the arrow, compared to some
chosen scale, describes its magnitude. Vectors having the same length and the same
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Figure 1.1. Cartesian system of coordinates.

direction, regardless of the position of their initial points, are said to be equal. A
vector having the same length but the opposite direction to that of the vector u is
denoted by —u and is called the negative of u.

The sum (or the resultant) u4v of two vectors u and v can be found using the
parallelogram law for vector addition, as shown in Fig. 1.2a. Extensions to sums
of more than two vectors are immediate. The difference u-v is defined as the sum
u+(—v); its geometrical construction is shown in Fig. 1.2b.
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Figure 1.2. Addition and subtraction of vectors.

The vector of length zero is called the zero vector and is denoted by 0. Obviously,
there is no natural direction for the zero vector. However, depending on the problem,
a direction can be assigned for convenience. For any vector u,

u+0=04+u=nu

and

u+ (—u) =0.



Vector addition obeys the commutative and associative laws. If u, v and w are
vectors, then

ut+tv=v-+nu Commutative law
(u+v)+w=u+ (v+w) Associative law

If u is a nonzero vector and m is a nonzero scalar, then the product mu is defined
as the vector whose length is |m| times the length of u and whose direction is the
same as that of u if m > 0, and opposite to that of u if m < 0. If m=0 or u=0,
then mu=0. If u and v are vectors and m and n are scalars, then

mu = um Commutative law
m(nu) = (mn)u Associative law
(m+n)u = mu + nu Distributive law
m(u+4v) = mu 4+ mv Distributive law

Note also that (—1)u is just the negative of u,
(=1)u = —u.

A unit vector is a vector having unit magnitude. The three vectors i, j and
k which have the directions of the positive z, y and z axes, respectively, in the
Cartesian coordinate system of Fig. 1.1 are unit vectors.
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Figure 1.3. Angle between vectors u and v.

Let u and v be two nonzero vectors in a two- or three-dimensional space posi-
tioned so that their initial points coincide (Fig. 1.3). The angle 8 between u and v
is the angle determined by u and v that satisfies 0 < # < w. The dot product (or
scalar product) of u and v is a scalar quantity defined by

u-v = uv cosf. (1.1)

If u, v and w are vectors and m is a scalar, then

-u Commutative law

u-v-=y
u-(v+w)=u-v+uw Distributive law
v
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Moreover, the dot product of a vector with itself is a positive number that is equal
to the square of the length of the vector:

vu=1uv < u= uu. (1.2)

If u and v are nonzero vectors and

then u and v are orthogonal or perpendicular to each other.
A vector set {uy,ug,---,u,} is said to be an orthogonal set or orthogonal system
if every distinct pair of the set is orthogonal, i.e.,

u-u; =0, 1#£7.

If, in addition, all its members are unit vectors, then the set {uy, uy,---,u,} is said
to be orthonormal. In such a case,

u; -u; = ;5 1.3
j i (1.3)

where 6;; is the Kronecker delta, defined as

o)L=y
§; = { o iz (1.4)

The three unit vectors i, j and k defining the Cartesian coordinate system of Fig. 1.1
form an orthonormal set:

(1.5)

ij=j-k=ki=0

The cross product (or vector product or outer product) of two vectors u and v is
a vector defined as
uxv = uvsinfn, (1.6)

where n is the unit vector normal to the plane of u and v such that u, v and n
form a right-handed orthogonal system, as illustrated in Fig. 1.4. The magnitude of
u X v is the same as that of the area of a parallelogram with sides u and v. If u
and v are parallel, then sin §=0 and u X v=0. For instance, u X u=0.

If u, v and w are vectors and m is a scalar, then



Figure 1.4. The cross product u X v.

uxXxv = -—-vxu Not commutative
X(v+w) =uxv+uxw Distributive law
(u><v) = (mu)xv = ux(mv) = (uxv)m

For the three unit vectors i, j and k one gets:

ixi=jxj=kxk=0,
ixj=k, jxk=1i, kxi=]j, (1.7)

jxi= -k, kxj=-i, ixk=-j.

Note that the cyclic order (i, j, k,1,j,- ), in which the cross product of any neighbor-
ing pair in order is the next vector, is consistent with the right-handed orientation
of the axes as shown in Fig. 1.1.

The product u- (v x w) is called the scalar triple product of u, v and w, and is
a scalar representing the volume of a parallelepiped with u, v and w as the edges.
The product u x (v X w) is a vector called the vector triple product. The following
laws are valid:

(u-v)w # u(v w) Not associative
ux (vxw) # (uxv)x Not associative
ux (vxw) = (u- )V—(u-v)w

(uxv)xw = (u-w)v - (v-w)u
u-(vxw)=v-(wxu) = w-(uxv)

Thus far, we have presented vectors and vector operations from a geometrical view-
point. These are treated analytically in Section 1.2.

Tensors may be viewed as generalized vectors being characterized by their magni-
tude and more than one ordered directions with respect to a given frame of reference.
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Tensors encountered in fluid mechanics are of second order, i.e., they are charac-
terized by an ordered pair of coordinate directions. Tensors are often denoted by
uppercase boldface type or lower case boldface Greek letters, such as 7 for the stress
tensor. A tensor field is a tensor-valued function that associates a tensor with each
point of a given region in space. Tensor addition and multiplication of a tensor by
a scalar are commutative and associative. If R, S and T are tensors of the same
type, and m and n are scalars, then

R+S=S+R Commutative law
R+S)+T=S+(R+T) Associative law
mR = Rm Commutative law
m(nR) = (mn)R Associative law
(m+n)R = mR + nR Distributive law
m(R+8) = mR + mS Distributive law

Tensors and tensor operations are discussed in more detail in Section 1.3.

1.1 Systems of Coordinates

A coordinate system in the three-dimensional space is defined by choosing a set of
three linearly independent vectors, B={e;, ey, e3}, representing the three fundamen-
tal directions of the space. The set B is a basis of the three-dimensional space, i.e.,
each vector v of this space is uniquely written as a linear combination of e{, e5 and
€3

v=ue + e + v3es. (1.8)

The scalars vy, vy and w3 are the components of v and represent the magnitudes of
the projections of v onto each of the fundamental directions. The vector v is often
denoted by v(v1, vz, v3) or simply by (v1,v2,vs).

In most cases, the vectors e, e; and ez are unit vectors. In the three coordinate
systems that are of interest in this book, i.e., Cartesian, cylindrical and spherical
coordinates, the three vectors are, in addition, orthogonal. Hence, in all these
systems, the basis B={ey,es, e3} is orthonormal:

e e = 0. (1.9)
(In some cases, nonorthogonal systems are used for convenience; see, for example,
[1].) For the cross products of e1, e; and es, one gets:

3

e Xe; = Z €5k €k (1.10)
k=1
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where ¢;;;, is the permutation symbol, defined as

1, if ijk=123, 231, or 312 (i.e, an even permutation of 123)
€ijk = -1, if ijk=321, 132, or 213 (i.e, an odd permutation of 123)  (1.11)
0, if any two indices are equal

A useful relation involving the permutation symbol is the following:

a; dag das 3 3 3
bl bg b3 = Z Z Z €k aib]‘Ck . (112)
cq Co C3 =1 7=1k=1
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Figure 1.5. Cartesian coordinates (z,y,z) with —co < & < 00, —00 < y < 00 and
— 0 < 2 < 0.

The Cartesian (or rectangular) system of coordinates (z,y, z), with
—xo<r<oo, —oo<y<oo and —ow0<z<o0,

has already been introduced, in previous examples. Its basis is often denoted by
{1,j,k} or {e;,e,,e.}. The decomposition of a vector v into its three components
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Figure 1.6. Cylindrical polar coordinates (r,0,z) with r > 0, 0 < 0 < 27 and
—00 < 2 < o0, and the position vector r.

(r,0,z) — (2,y,2) (z,y,2) — (r,0,2)
Coordinates
x = rcosf

arctany x>0, y>0
y=rsinf 7r—|—arctany <0

27r—|—arctany x>0, y<o0

l\z

Z=Zz

Unit vectors
i—cosfle, —sinfle; | e, = cosfi+sindj
j—sinfe, +cosfes | eg = —sinfi+ cosh]
k=e, e, =k

Table 1.1. Relations between Cartesian and cylindrical polar coordinates.



1.1 Systems of Coordinates 9
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Figure 1.7. Plane polar coordinates (r,8).

(T7 07 ¢)

Figure 1.8. Spherical polar coordinates (r,0,¢) withr > 0,0 <0 <7 and 0 < ¢ <
27, and the position vector r.
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(T,O,(b) - (xvyvz) (xvyvz) - (T,O,(b)
Coordinates
x = rsinfcos¢ r=+/x?+ y2 + 22
arctan xi+y2, z>0
y = rsinfsin ¢ =19 3, z=0
T + arctan xi+y2, z <0
arctan , x>0, y>0
z=rcosf ¢ =< mHarctanZ, <0
27 +arctan?, >0, y <0
Unit vectors
i=sinfcosge, +coscospes —singe, | e, =sinfcosgpi+sinfsingj+ cosfk
J=sinfsinge, +cosfsingpes+cosgpe, | eg = cosfcospi+ cosfsingj—sinfdk
k =cosfe, —sinf ey e; = —singi+ cosoj

Table 1.2. Relations between Cartesian and spherical polar coordinates.

(v, vy, v,) is depicted in Fig. 1.5. It should be noted that, throughout this book,
we use right-handed coordinate systems.
The cylindrical and spherical polar coordinates are the two most important or-

thogonal curvilinear coordinate systems. The cylindrical polar coordinates (r, 8, z),
with

r>0, 0<6<2r and —-o0<z< 0,

are shown in Fig. 1.6 together with the Cartesian coordinates sharing the same
origin. The basis of the cylindrical coordinate system consists of three orthonormal
vectors: the radial vector e,, the azimuthal vector ey, and the axial vector e,. Note
that the azimuthal angle # revolves around the z axis. Any vector v is decomposed
into, and is fully defined by its components v(v,, vg, v,) with respect to the cylindri-
cal system. By invoking simple trigonometric relations, any vector, including those
of the bases, can be transformed from one system to another. Table 1.1 lists the for-
mulas for making coordinate conversions from cylindrical to Cartesian coordinates
and vice versa.

On the zy plane, i.e., if the z coordinate is ignored, the cylindrical polar coor-
dinates are reduced to the familiar plane polar coordinates (r,8) shown in Fig. 1.7.
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The spherical polar coordinates (7,8, ¢), with
r>0, 0<6<7 and 0<¢<2rm,

together with the Cartesian coordinates with the same origin, are shown in Fig. 1.8.
It should be emphasized that r and # in cylindrical and spherical coordinates are not
the same. The basis of the spherical coordinate system consists of three orthonormal
vectors: the radial vector e,, the meridional vector ey, and the azimuthal vector
e;. Any vector v can be decomposed into the three components, v(v,,vg,v4),
which are the scalar projections of v onto the three fundamental directions. The
transformation of a vector from spherical to Cartesian coordinates (sharing the same
origin) and vice-versa obeys the relations of Table 1.2.

The choice of the appropriate coordinate system, when studying a fluid mechan-
ics problem, depends on the geometry and symmetry of the flow. Flow between
parallel plates is conveniently described by Cartesian coordinates. Azisymmetric
(i.e., azially symmetric) flows, such as flow in an annulus, are naturally described
using cylindrical coordinates, and flow around a sphere is expressed in spherical
coordinates. In some cases, nonorthogonal systems might be employed too. More
details on other coordinate systems and transformations can be found elsewhere [1].

Example 1.1.1. Basis of the cylindrical system

Show that the basis B={e,,eg,e.} of the cylindrical system is orthonormal.

Solution:

Sincei-i=j-j=k-k=1landi-j=j-k=k-1=0, we obtain:

e e = (cosfi+sindj) (cosfi+sinfj) = cos?6+sin?6=1
egreg = (—sinfi+cosfj)-(—sinfi+cosfj) = sin?f+ cos?6 =1
e,-e, = k-k=1

e e = (cosfi+sinfj)-(—sinfi+cosfj) =0

e -e, = (cosfi+sinfj)-k =0

€ e, (—sinfi+cosfj)-k =0

O
Example 1.1.2. The position vector

The position vector r defines the position of a point in space, with respect to a

coordinate system. In Cartesian coordinates,

r=zxz1+y]j+ zk, (1.13)
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r—zit+yj+zk

Figure 1.9. The position vector, r, in Cartesian coordinates.

and thus )
|I'| = (r-r)? = \/$2+y2—|—2’2. (114)

The decomposition of r into its three components (z,y, z) is illustrated in Fig. 1.9.
In cylindrical coordinates, the position vector is given by

r=re. + ze, with |r|] = Vr2+422. (1.15)

Note that the magnitude |r| of the position vector is not the same as the radial
cylindrical coordinate r. Finally, in spherical coordinates,

r =re, with || =r, (1.16)

that is, |r| is the radial spherical coordinate r. Even though expressions (1.15) and

(1.16) for the position vector are obvious (see Figs. 1.6 and 1.8, respectively), we will

derive both of them, starting from Eq. (1.13) and using coordinate transformations.
In cylindrical coordinates,

r — i1+ yj+ zk
rcosf (cosfe, —sinfey) + rsinf (sinfe, +cosbey) + ze,

r(c0520—|—sin20)eT + r(—sinfcosf +sinfcosf)es + ze,

= re, + ze,.
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In spherical coordinates,

r — i1+ y)+ zk
= rsinfcos¢ (sinfcospe, + cosbcospey —singey)
+ rsin@sin ¢ (sin fsin ¢ e, + cosfsin g ey + cos P ey)
+ rcosf (cosbe, —sinbep)
= 7r[sin? 0 (cos® ¢ + sin® ¢) cos® d] e,
+ rsinfcos @ [(cos2 ¢+ sin? ) —1]eq
+ rsinf (— sin ¢ cos ¢ 4 sin ¢ cos @) ey

= re,.

O
Example 1.1.3. Derivatives of the basis vectors
The basis vectors i, j and k of the Cartesian coordinates are fixed and do not change
with position. This is not true for the basis vectors in curvilinear coordinate systems.
From Table 1.1, we observe that, in cylindrical coordinates,

e, —cosfi+sinfj and e;— —sinfi+coshj;

therefore, e, and ey change with 8. Taking the derivatives with respect to 6, we
obtain:

8;; = —sinfi+ cosfj — ey
and

deg . ..

28 = —cosfi—sinfj = —e,.

All the other spatial derivatives of e, eg and e, are zero. Hence,

der _ deg _ de: _
87’_0 87’_0 87’_0
der _ oey _ _ de; _
% — € 55 = —¢ S5 =0 (1.17)
der _ oeg _ de; _
82_0 82_0 82_0
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Similarly, for the spatial derivatives of the unit vectors in spherical coordinates,

we obtain:
O T Ly
88% = sinf ey 88% = cosfe, 88% = —sinfle, — cosf ey

Equations (1.17) and (1.18) are very useful in converting differential operators from
Cartesian to orthogonal curvilinear coordinates.
|

1.2 Vectors

In this section, vector operations are considered from an analytical point of view.
Let B={ey,ey,e3} be an orthonormal basis of the three-dimensional space, which
implies that

e e = b, (1.19)

and
3

e Xe; = Z €5k €k - (1.20)
k=1

Any vector v can be expanded in terms of its components (v, v2,v3):

3
V20161+0262—|—0363:Z?}Z’6i. (1.21)
=1
Any operation between two or more vectors is easily performed, by first decom-
posing each vector into its components and then invoking the basis relations (1.19)
and (1.20). If u and v are vectors, then

3
utv = (uytovi)e; + (uztvy)ey + (ustovs)es = Z(Uiivi)eh (1.22)

=1
i.e., addition (or subtraction) of two vectors corresponds to adding (or subtracting)
their corresponding components. If m is a scalar, then

3 3
mv = m (Z v; ei) = Z muv; € , (1.23)
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i.e., multiplication of a vector by a scalar corresponds to multiplying each of its
components by the scalar.
For the dot product of u and v, we obtain:

3
U-v = w0y + uavy + usvy = Z U;V; . (1.24)
=1

The magnitude of v is thus given by
v = (V-V)% = \/v? + 02+ 3. (1.25)

Finally, for the cross product of u and v, we get

3 3 3 3
uxv = (Zuiei)x Z?}]‘ej :ZZuivjeiXej —
=1 7=1

=1 7=1

3 3 3

uxv = ZZ Z €5k UiV; € (1.26)

=1 j=1k=1
or
€ € €3

uxv = | u uz us | = (ugvz—usvy)e; —(ugvs—usvy)es+(u1vz—ugvy)es. (1.27)
v vy U3

Example 1.2.1. The scalar triple product

For the scalar triple product (u X v)-w, we have:

3 3 3

(uxv)-w = (>33 ejpuivjex (Z wkek) -
k=1

=1 j=1k=1

3 3 3

(uxv) w = ZZ Z €5k WiV W (1.28)

=1 j=1k=1
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or
(751 (15) Uus
(uxv)-w=|v vy w3 |. (1.29)
w, wy wWs
Using basic properties of determinants, one can easily show the following identity:
(uxv)-w = (wxu)-v=(VXw) u. (1.30)
O
In the following subsections, we will make use of the vector differential operator
nabla (or del), V. In Cartesian coordinates, V is defined by
0 0 0
V= —i —] — k. 1.31
oz + 33/'] + dz ( )
The gradient of a scalar field f(z,y, z) is a vector field defined by

of . of . of

The divergence of a vector field v(z,y, z) is a scalar field defined by
OV 0 v,
Vv =2z Z oy 20 (1.33)

Ox dy + 0z

More details about V and its forms in curvilinear coordinates are given in Section 1.4.

1.2.1 Vectors in Fluid Mechanics

As already mentioned, the position vector, r, defines the position of a point with
respect to a coordinate system. The separation or displacement vector between two
points A and B (see Figure 1.10) is commonly denoted by Ar, and is defined as

AI'AB = T4 —Trp. (1.34)
The wvelocity vector, u, is defined as the total time derivative of the position vector:

dr
e
Geometrically, the velocity vector is tangent to the curve C defined by the motion of
the position vector r (Fig. 1.11). The relative velocity of a particle A, with respect
to another particle B, is defined accordingly by

u = (1.35)

dAY 4B dry drp
= — - — = — . 1.36
di A MU (1.36)

Ugp =
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T4 AraRB

I'p

Figure 1.10. Position and separation vectors.

Figure 1.11. Position and velocity vectors.
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The acceleration vector, a, is defined by

du d*r (1.37)
a= — = —. .
dt dt?
The acceleration of gravity, g, is a vector directed towards the center of earth. In
problems where gravity is important, it is convenient to choose one of the axes,

usually the z axis, to be collinear with g. In such a case, g=—ge, or ge..

Example 1.2.2. Velocity components
In Cartesian coordinates, the basis vectors are fixed and thus time independent. So,

_d . . _de, o dy.  dz
u = %(m—l—y_}—l—zk) = El—l— 79 + Ek

Hence, the velocity components (ug, uy, 1) are given by:

dx dy dz
R - Y, == 1.38
“ dt ty dt “ dt (1.38)

In cylindrical coordinates, the position vector is given by r=r e;+z e,, where e; is
time dependent:

ﬁ _|_de7°_|_% _ﬁ _|_de7ﬂﬁ_|_% _—
a T T T w” T w” T ae w C

u=—(re +ze,) =

dt

u—ﬁe + rQle —I—%e
—dtr 4 di z

where = df/dt is the angular velocity. The velocity components (u,,ug,u.) are

given by:
dr do dz
U = g M=o =R, w = g (1.39)

In spherical coordinates, all the basis vectors are time dependent. The velocity
components (u,, ug, uy) are easily found to be:

dr dé
Up = — ug = r—

i uy = rsinf —. (1.40)
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Example 1.2.3. Circular motion

\\\\ (<
\ e,

Figure 1.12. Velocity and acceleration vectors in circular motion.

Consider plane polar coordinates and suppose that a small solid sphere rotates at a
constant distance, R, with constant angular velocity, £, around the origin (uniform

rotation). The position vector of the sphere is r=R e, and, therefore,

dr d de, de, df

u = = —(Re,) = R - R — = u= RQey.

dt — dt dt 7 do dt

The acceleration of the sphere is:

du d deg db

aE—:—(RQeg)IRQ—— - a:_RQQeT-

dt dt

This is the familiar centripetal acceleration RQY? directed towards the axis of rotation.

The force vector, F, is combined with other vectors to yield:

Work: W =F -rap ;

dW drap
P : P=—=F. ;
ower 7 i

Moment: M=r x F .

In the first two expressions, the force vector, F, is considered constant.

Example 1.2.4. Linear and angular momentum

a

(1.41)

(1.42)
(1.43)

The linear momentum, J, of a body of mass m moving with velocity u is defined by
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J = mu. The net force F acting on the body is given by Newton’s law of motion,

dJ d
If m is constant, then
L 1.45
= mo; = ma, (1.45)

where a is the linear acceleration of the body.
The angular momentum (or moment of momentum) is defined as

Jog =rxJ. (1.46)
Therefore,
dJ d d dJ
d—::%(rXJ):d—;XJ—I—rX%:uX(mu)—I—rXF:O—I—rXF =
dJy
— = F =M 1.47
where the identity u X u=0 has been used. O

1.2.2 Unit Tangent and Normal Vectors

Consider a smooth surface 5, i.e., a surface at each point of which a tangent plane
can be defined. At each point of S, one can then define an orthonormal set consisting
of two unit tangent vectors, t1 and ts, lying on the tangent plane, and a unit normal
vector, n, which is perpendicular to the tangent plane:

n'nItl'tlth'tzzl and n-tlztl-tgztz-n:0.

Obviously, there are two choices for n; the first is the vector

t1 X to
|t1 X t2| ’

and the second one is just its opposite. Once one of these two vectors is chosen as
the unit normal vector n, the surface is said to be oriented; n is then called the
orientation of the surface. In general, if the surface is the boundary of a control
volume, we assume that n is positive when it points away from the system bounded
by the surface.
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z=h(z,y)

Figure 1.13. Unit normal and tangent vectors to a surface defined by z=h(z,y).

The unit normal to a surface represented by

f(xvyvz) = £ = h($,y) =0 (1'48)
is given by
vV
n = —- - 1.49
i )
oh - oh

-521 - 5]+ k

n = o 9y (1.50)

ony? . (on)]""

[1 +(5e) + (a—y) ]
Obviously, n is defined only if the gradient V f is defined and |V f| # 0. Note that,
from Eq. (1.50), it follows that the unit normal vector is considered positive when
it is upward, i.e., when its z component is positive, as in Fig. 1.13. One can easily
choose two orthogonal unit tangent vectors, t; and to, so that the set {n,ty,t} is
orthonormal. Any vector field u can then be expanded as follows,

u = u,n + upgty + upts (1.51)
where u,, is the normal component, and u;; and uo are the tangential components

of u. The dot product n - u represents the normal component of u, since

n-u = n-(un + uaty + upta) = u, .
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z

Figure 1.14. The unit tangent vector to a curve.

The integral of the normal component of u over the surface 9,

QE/n-udS, (1.52)
S

is the flux integral or flow rate of u across S. In fluid mechanics, if u is the velocity
vector, () represents the volumetric flow rate across S. Setting ndS=dS, Eq. (1.52)
takes the form

Q = /Su-dS. (1.53)

A curve C in the three dimensional space can be defined as the graph of the
position vector r(?), as depicted in Fig. 1.14. The motion of r(¢) with parameter ¢
indicates which one of the two possible directions has been chosen as the positive
direction to trace C'. We already know that the derivative dr/dt is tangent to the
curve C'. Therefore, the unit tangent vector to the curve C' is given by

dr

_ di
t = 5, (1.54)

dt

and is defined only at those points where the derivative dr/dt exists and is not zero.
As an example, consider the plane curve of Fig. 1.15, defined by

y = ha), (1.55)
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Figure 1.15. Normal and tangent unit vectors to a plane curve defined by y=h(z).

or, equivalently, by r(¢)=zi+h(x)j. The unit tangent vector at a point of C is given
by
dr < Oh

= @ = 5 1/2 .
Fd [1 + (92 ]

By invoking the conditions n -t=0 and n - n=1, we find for the unit normal vector

n:

R IEN

@]

Choosing n to have positive y-component, as in Fig. 1.15, we get

~Gh

RO

Note that the last expression for n can also be obtained from Eq. (1.50), as a

(1.57)

degenerate case.
Let € be an arbitrary closed curve in the space, with the unit tangent vector t
oriented in a specified direction, and u be a vector field. The integral

rz]{t-udﬁ, (1.58)
C
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where ( is the arc length around C, is called the circulation of u along C. If r is the
position vector, then td{=dr, and Equation (1.58) is written as follows

I' = ]iu-dr. (1.59)

1.3 Tensors

Let {e1, ey, e3} be an orthonormal basis of the three dimensional space. This means
that any vector v of this space can be uniquely expressed as a linear combination
of the three coordinate directions ey, e; and es,

3
v = Zvi e, (1.60)
=1

where the scalars v; are the components of v.

In the previous sections, two kinds of products that can be formed with any two
unit basis vectors were defined, i.e. the dot product, e; - e;, and the cross product,
e; X e;. A third kind of product is the dyadic product, e;e;, also referred to as a
unit dyad. The unit dyad e;e; represents an ordered pair of coordinate directions,
and thus e;e; # e;e; unless i=j. The nine possible unit dyads,

{elel, ejey, e1€e3, €xe1, €xey, eye3, esze;, eszey, 6363} )

form the basis of the space of second-order tensors. A second-order tensor, 7, can
thus be written as a linear combination of the unit dyads:

roy

=1 7

Tij ee; , (1.61)

3
=1

where the scalars 7;; are referred to as the components of the tensor 7. Similarly, a
third-order tensor can be defined as the linear combination of all possible unit triads
e;e ey, etc. Scalars can be viewed as zero-order tensors, and vectors as first-order
tensors.

A tensor, 7, can be represented by means of a square matrix as

711 Ti12 713 €]
T =(ei,ez,€3) | 21 T2 To3 e (1.62)
T31 T32 733 €3
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and often simply by the matrix of its components,

711 Ti12 713
T = T21 722 7323 . (163)
731 T32 733

Note that the equality sign “=" is loosely used, since 7 is a tensor and not a matrix.
For a complete description of a tensor by means of Eq. (1.63), the basis {e, ez, e3}
should be provided.

The unit (or identity) tensor, I, is defined by

3 3
= ZZ&M e;e; = eje; + eye; + eses. (1.64)

=1 7=1

Each diagonal component of the matrix form of I is unity and the nondiagonal
components are zero:

1
I=10 (1.65)
0

o = O
= o O

The sum of two tensors, o and 7, is the tensor whose components are the sums
of the corresponding components of the two tensors:

3 3

33 33
o+ T = Z Z o ee; + Z Z T eie; = Z Z (0i; + 7i;) eej . (1.66)
7=1

=1 j=1 =1 j=1 =1

The product of a tensor, 7, and a scalar, m, is the tensor whose components are
equal to the components of 7 multiplied by m:

3 3 3
mro=m |y Y oijee| = Z Z (mTij) eje; . (1.67)

=1 j=1 1 5=1
The transpose, 771, of a tensor 7 is defined by
3 3
= Z Z Tji €€; . (1.68)
=1 j=1

The matrix form of 77 is obtained by interchanging the rows and columns of the
matrix form of 7:

711 T21 T31
T
TO= | Ti2 T2 T32 | - (1.69)
713 T23 733
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If 77=7, ie., if 7 is equal to its transpose, the tensor T is said to be symmetric. If

7T=—7, the tensor T is said to be antisymmetric (or skew symmetric). Any tensor

T can be expressed as the sum of a symmetric, S, and an antisymmetric tensor, U,

T=8+4 U, (1.70)
where
1
S = 3 (r +71), (1.71)
and
1
U = 5(7‘ - 71y, (1.72)

The dyadic product of two vectors a and b can easily be constructed as follows:

ab = (iai ei) (ibj ej) = iiaibi ee; . (1.73)

=1 7=1

Obviously, ab is a tensor, referred to as dyad or dyadic tensor. Its matrix form is

aiby  arby abs
ab = a2b1 a2b2 a2b3 . (174)
asby asby asbs

Note that ab # ba unless ab is symmetric. Given that (ab)?=ba, the dyadic
product of a vector by itself, aa, is symmetric.

The unit dyads e;e; are dyadic tensors, the matrix form of which has only one
unitary nonzero entry at the (7, j) position. For example,

@
[\
a
w
|
c oo
c oo
o= o

The most important operations involving unit dyads are the following:

(i) The single-dot product (or tensor product) of two unit dyads is a tensor defined
by
(eiej) : (ekel) = € (e]‘ : ek) e = 6jk e;e; . (1.75)

This operation is not commutative.
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(ii) The double-dot product (or scalar product or inner product) of two unit dyads
is a scalar defined by

(eiej) : (ekel) = (ei . el) (e]‘ . ek) = 6i16jk . (1.76)
It is easily seen that this operation is commutative.
(iii) The dot product of a unit dyad and a unit vector is a vector defined by
(eiej) e = € (e]‘ . ek) = 6jk e;, (1.77)

or
e; - (ejek) = (ei . e]‘) e. = (52']‘ e . (1.78)

Obviously, this operation is not commutative.

Operations involving tensors are easily performed by expanding the tensors into
components with respect to a given basis and using the elementary unit dyad op-
erations defined in Eqs. (1.75)-(1.78). The most important operations involving
tensors are summarized below.

The single-dot product of two tensors
If o and 7 are tensors, then

3 3 3 3
g -T7T = O'Z']‘ eie]‘ . Z Z Tkl €Le]
=1 j=1 k=1 =1

3
Z oi;Tri (ei€;) - (exer)

=1

ll
]
KM“
]

1k

Il
Il
—
Il

.
Il

13

Il
]
Me
]
]

o
Il
—
o
Il
—
o
Il
—
—
Il

0Tkl 05 €i€y
1

Il
NEE
NEE
]

0;;Tjl €;€] ——

o
Il
—

ECH
Il
—
—
Il

1

3

3
o-T = Z Z Z oiiTi | eer. (1.79)

=1 =1 \j=1

The operation is not commutative. It is easily verified that

c-I=10=o0. (1.80)



28 Chapter 1. Vector and Tensor Calculus

A tensor 7 is said to be invertible if there exists a tensor 7~* such that

rort =717 = 1. (1.81)

—1

If 7 is invertible, then 77" is unique and is called the inverse of .

The double-dot product of two tensors

3
= Z Z TiiTji eie; . (1.82)

=1 j=1

The dot product of a tensor and a vector
This is a very useful operation in fluid mechanics. If a is a vector, we have:

3 3
o-a = Z Z oia; | e . (1.83)
= \o

Similarly, we find that

3
a-o = Z Z oja; | e . (1.84)
; =

The vectors o - a and a - o are not, in general, equal.
The following identities, in which a, b, ¢ and d are vectors, o and T are tensors,
and I is the unit tensor, are easy to prove:

(ab)-(ed) = (b-c)ad, (1.85)
(ab): (cd) = (ed): (ab) (a-d)(b-c), (1.86)
(ab)-c = (b-c)a (1.87)
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c-(ab) = (c-a)b, (1.88)
a-I=1.a=a, (1.89)
oc:ab = (o-a)-b, (1.90)

(1.91)

Figure 1.16. The action of a tensor T on the normal vector n.

The vectors forming an orthonormal basis of the three-dimensional space are
normal to three mutually perpendicular plane surfaces. If {ny,ng, ns} is such a
basis and v is a vector, then

v = nyv; + nyvy + n3vs, (1.92)

where v, vo and v3 are the components of v in the coordinate system defined by
{ny,ny,n3}. Note that a vector associates a scalar with each coordinate direction.
Since {ny, ny, n3} is orthonormal,

vy = n;-v, vy = ny-v and w3 = n3-v. (1.93)

The component v;=n; -v might be viewed as the result or flux produced by v through
the surface with unit normal n;, since the contributions of the other two components
are tangent to that surface. Hence, the vector v is fully defined at a point by the
fluzes it produces through three mutually perpendicular infinitesimal surfaces. We
also note that a vector can be defined as an operator which produces a scalar flux
when acting on an orientation vector.

Along these lines, a tensor can be conveniently defined as an operator of higher
order that operates on an orientation vector and produces a vector flux. The action
of a tensor 7 on the unit normal to a surface, n, is illustrated in Fig. 1.16. The dot
product f=n- 7 is a vector that differs from n in both length and direction. If the
vectors

fi =n -7, f5 =ny-7 and f3 = n3-7, (1.94)
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ns=k /f3:n3- T

o :j

f2:n2‘ T

. Projection and
| magnification

dz

flznl- T

Figure 1.17. Actions of a tensor T on three mutually perpendicular infinitesimal

plane surfaces.
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are the actions of a tensor 7 on the unit normals ny, ny and nz of three mutually
perpendicular infinitesimal plane surfaces, as illustrated in Fig. 1.17, then 7 is given
by

T = Illfl + n2f2 + 113f3 . (195)
The tensor 7 is thus represented by the sum of three dyadic products. Note that a

second-order tensor associates a vector with each coordinate direction. The vectors
fy, fy and f3 can be further expanded into measurable scalar components,

fi = mung 4+ meng + Tisng,
f; = 7ong + 72ny + T3n3, (1.96)
fs = 73101 4 T390 + 73303

The scalars that appear in Eq. (1.96) are obviously the components of 7 with respect
to the system of coordinates defined by {ny, ny, ns}:

711 Ti2 T13
T = | T21 Ta2 T23 | - (1.97)

T31 T32 733

The diagonal elements are the components of the normal on each of the three mu-
tually perpendicular surfaces; the nondiagonal elements are the magnitudes of the
two tangential or shear actions or fluxes on each of the three surfaces.

The most common tensor in fluid mechanics is the stress tensor, T, which, when
acting on a surface of unit normal n, produces surface stress or traction,

f=mn-T. (1.98)

The traction f is the force per unit area exerted on an infinitesimal surface element.
It can be decomposed into a normal component fy that points in the direction of
n, and a tangential or shearing component fr:

f =1y + fr. (1.99)
The normal traction, fi, is given by
fv =(n-f)Yn =n-(n-T)n = (nn:T)n, (1.100)
and, therefore, for the tangetial traction we obtain:

fr=f-fy =n-T - (nn:T)n. (1.101)
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It is left to the reader to show that the above equation is equivalent to
fr = nx(fxn) =f - (I-nn), (1.102)
where I is the unit tensor.

Example 1.3.1. Vector-tensor operations'

Consider the Cartesian system of coordinates and the point r = v/3j m. Mea-
surements of force per unit area on a small test surface give the following time-
independent results:

Direction in which Measured traction on
the test surfacefaces the test surface (force/area)
i 2i4j
J i+4j+k

k j+6k

(a) What is the state of stress at the point r = /3 j?
(b) What is the traction on the test surface when it is oriented to face in the
direction n = (1/v/3)(i +j + k)?
(¢) What is the moment of the traction found in Part (b)?
Solution:

(a) Let
nlziv n2:j7 IlgIk,

f1:2i—|-j, f22i+4j—|-k and f3:j—|-6k
The stress tensor, T, is given by

T n;f; + nyfy 4 n3fy
(214 )+ j(i+ 4+ k) + k(j + 6k)

= 2ii 4 ij + 0ik + ji + 4jj + jk + 0ki + kj + 6kk

The matrix representation of T with respect to the basis (1, ], k) is

T =

S =N

1
4
1

Sy = O

!Taken from Ref. [2].
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Notice that T is symmetric.
(b) The traction f on the surface n is given by

fon.T= %(H—j—l—k) (28 43 + i + 45] + jk + Kj + 6kk) = %(3i—|—6j—|—7k).

(c) The moment of the traction at the point r = /3 j is a vector given by

a|® % [

S o =
She

Example 1.3.2. Normal and tangential tractions
Consider the state of stress given in Example 1.3.1. The normal and tangential
components of the traction f; are:

le:(nlfl)nlzi(Qi—l—j)i:Qi

and
fir=f-fin=(2i+))-21i=j,

respectively. Similarly, for the tractions on the other two surfaces, we get:
f2N24j, fQTIi—|-k7

fsn =6k, f3r=j.

Note that the normal tractions on the three surfaces are exactly the diagonal ele-
ments of the component matrix

H

[l
S = N
— s
S = O

The nondiagonal elements of each line are the components of the corresponding

tangential traction.
O
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1.3.1 Principal Directions and Invariants

Let {ey,es,e3} be an orthonormal basis of the three dimensional space and 7 be a
second-order tensor,

T = Z Tij ee; , (1.103)

=1 7=1

or, in matrix notation,

711 Ti12 713
T=| T2 T2 T3 | . (1.104)
731 T32 733
If certain conditions are satisfied, it is possible to identify an orthonormal basis
{ny, ny, n3} such that

T = Al n{mny + AQ Nony + Ag nsns, (1105)

which means that the matrix form of 7 in the coordinate system defined by the new
basis is diagonal:

M 0 0
=0 X 0 |. (1.106)
0 0 s

The orthogonal vectors ny, ny and ns that diagonalize T are called the principal
directions, and A1, Ay and Az are called the principal values of 7. From Eq. (1.105),
one observes that the vector fluxes through the surface of unit normal n;, :=1,2,3,
satisfy the relation

ff=n-7=7-n, = \sn;, ¢=1,2,3. (1.107)

What the above equation says is that the vector flux through the surface with unit
normal n; is collinear with n;, i.e., n;- 7 is normal to that surface and its tangential
component is zero. From Eq. (1.107) one gets:

(r—=XNI)-n, =0, (1.108)

where I is the unit tensor.

In mathematical terminology, Eq. (1.108) defines an eigenvalue problem. The
principal directions and values of 7 are thus also called the eigenvectors and eigenval-
ues of T, respectively. The eigenvalues are determined by solving the characteristic
equation,

det(t — AI) = 0 (1.109)
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or
T — A T12 T13
Tol T2 — A Tas =0, (1.110)
T31 T32 T33 — A

which guarantees nonzero solutions to the homogeneous system (1.108). The char-
acteristic equation is a cubic equation and, therefore, it has three roots, A;, 1=1,2,3.
After determining an eigenvalue A;, one can determine the eigenvectors, n;, asso-
ciated with A; by solving the characteristic system (1.108). When the tensor (or
matrix) 7 is symmetric, all eigenvalues and the associated eigenvectors are real.
This is the case with most tensors arising in fluid mechanics.

Example 1.3.3. Principal values and directions

(a) Find the principal values of the tensor

z 0 =z
T = 2y 0
z 0

(b) Determine the principal directions ny, ny, ns at the point (0,1,1).

(c) Verify that the vector flux through a surface normal to a principal direction n;
is collinear with n;.

(d) What is the matrix form of the tensor 7 in the coordinate system defined by
{n17 ny, HB}?

Solution:
(a) The characteristic equation of 7 is

x— A 0 z
0 = det(m — AI) = 0 2y—X 0 = (2y - \)
z 0 x— A

r— A z
z r— A

‘ 2
Ru—AN(z—-A=2)(z-A+2) = 0.
The eigenvalues of T are A\;=2y, Ay=z — z and Az=z + z.

(b) At the point (0,1,1),

o N O
o O =
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and A;=2, Ay=—1 and Az3=1. The associated eigenvectors are determined by solving
the corresponding characteristic system:

(r=XNI)-n, =0, i=1,2,3.

For Ay=2, one gets

0-—2 0 1 N1 0 —271951 + Ny, = 0
0 2—2 0 Tyl = 0 — 0=0 —
1 0 0-—2 1 0 Np1 — 27121 =0
Neg1 = N1 = 0.

Therefore, the eigenvectors associated with A; are of the form (0, a,0), where a is
an arbitrary nonzero constant. For a=1, the eigenvector is normalized, i.e. it is of
unit magnitude. We set

n, = (0,1,0) = j.

Similarly, solving the characteristic systems

[o+1 0 T ][ ng | [0 ]
0 2+1 0 ny | = |0
1 0 0+1 Mo 0
of Ag=—1, and
[o-1 0 1 ][ ngs | [0 ]
2-1 0 ny | = |0
1 0 0-1 N3 0

of A3=1, we find the normalized eigenvectors

1 1 .
ng = E(lvov 1) - ﬁ(l_k)
and ) )
Ny = —(1,0,1) = — (i+k).

V2 V2

We observe that the three eigenvectors, n; ny and ns3 are orthogonal:?

ny-nNg = Nop-N3 = Nz -ny = 0.

2 A well known result of linear algebra is that the eigenvectors associated with distinct eigenvalues
of a symmetric matrix are orthogonal. If two eigenvalues are the same, then the two linearly
independent eigenvectors determined by solving the corresponding characteristic system may not
be orthogonal. From these two eigenvectors, however, a pair of orthogonal eigenvectors can be
obtained using the Gram-Schmidt orthogonalization process; see, for example, [3].
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(¢) The vector fluxes through the three surfaces normal to ny n; and njs are:
n -7 = j . (ik + 2jj + ki) = 2j =2 n,
1 1
—(-k) - (k + 2] ki) = —
ﬁ(l ) - (ik + 2jj + ki) 7
1 1

E(Hk) - (ik + 2jj + ki) = %(kJri) = n3.

(d) The matrix form of 7 in the coordinate system defined by {ny, ny, ns} is

ny-1T = (k—1) = —ny,

n3 -7

2 0 0
T = 2nin; — ngny 4+ nsng = 0 -1 0
0 0 1
O
The trace, tr7, of a tensor 7 is defined by
3
trr = ZTii = T11 + To2 + T33. (1111)

=1

An interesting observation for the tensor T of Example 1.3.3 is that its trace is the
same (equal to 2) in both coordinate systems defined by {i,j,k} and {ny,ny, ns}.
Actually, it can be shown that the trace of a tensor is independent of the coordinate
system to which its components are referred. Such quantities are called invariants
of a tensor.® There are three independent invariants of a second-order tensor 7:

3
I=trr =) 7, (1.112)
=1
3 3
I = trr? = ZZTZ']‘T]‘Z', (1.113)
=1 j5=1
3 3 3
= trr® = ZZZTijTjkai, (1.114)
=1 j=1k=1

2 2

where 72=7 - 7 and 73=7 - 72. Other invariants can be formed by simply taking
combinations of I, II and III. Another common set of independent invariants is the

*From a vector v, only one independent invariant can be constructed. This is the magnitude
v=4/V - v of v.
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following:
L =1=trr, (1.115)
I = (=11 = C[(rr) — 177, (1.116)
I3 = é(ﬁ — 31 IT+20I) = det . (1.117)

I, Iy and I3 are called basic invariants of 7. The characteristic equation of 7 can
be written as®

No— AP+ L) — I, =0. (1.118)

If A1, Ay and A3 are the eigenvalues of 7, the following identities hold:

Il = A1—|-A2—|-A3 = tTT, (1119)
1

IQ = AIAQ + A2A3 + A3A1 = 5 [(tTT)z — tTT2] ) (1120)

13 = A1A2A3 = detT. (1121)

The theorem of Cayley-Hamilton states that a square matrix (or a tensor) is a root
of its characteristic equation, i.e.,

TS—Isz‘I‘IQT_I,?)I:O- (1122)

Note that in the last equation, the boldface quantities I and O are the unit and zero
tensors, respectively. As implied by its name, the zero tensoris the tensor whose all
components are zero.

Example 1.3.4. The first invariant

Consider the tensor

s]
ll
— o o

0 1
2 0| =ik + 2jj + ki,
00

encountered in Example 1.3.3. Its first invariant is

I =trr =04+24+0= 2.

*The component matrices of a tensor in two different coordinate systems are similar. An im-
portant property of similar matrices is that they have the same characteristic polynomial; hence,
the coefficients I1, 1o and Is and the eigenvalues A1, A2 and A3 are invariant under a change of
coordinate system.
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Verify that the value of [ is the same in cylindrical coordinates.

Solution:
Using the relations of Table 1.1, we have

T

ik + 2jj + ki
= (cosbe, —sinfes)e, + 2(sinfe, + cosfeg)(sinfe, + cosbep)

+e.(cosfe, —sinbey)
= 2sin’fe,e, + 2sinf cosfe,ey + cosbee, +
2 sin @ cosf ege, + 2 cos’fegey; — sinfege. +

cosbfe,e, — sinfe,ey + Oe,e, .
Therefore, the component matrix of 7 in cylindrical coordinates {e,,eg,e,} is

2 sin?6 2 sinf cosh cos 6
T = 2 sinf cos @ 2 cos?@ —sinb
cos 6 —sinf 0

Notice that 7 remains symmetric. Its first invariant is
I =trr =2 (sin20—|—c0520) +0=2,

as it should be. O

1.3.2 Index Notation and Summation
Convention

So far, we have used three different ways for representing tensors and vectors:
(a) the compact symbolic notation, e.g., u for a vector and 7 for a tensor;
(b) the so-called Gibbs’ notation, e.g.,

3 3 3
g u; e; and g g Tij e;e;
=1

=1 7=1

for u and 7 , respectively; and
(¢) the matriz notation, e.g.,

711 Ti12 713
T = T21 T22 T23
T31 T32 733
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for T .

Very frequently, in the literature, use is made of the index notation and the so-
called Finstein’s summation convention, in order to simplify expressions involving
vector and tensor operations by omitting the summation symbols.

In index notation, a vector v is represented as

v; = Zvi e = V. (1.123)

A tensor 7 is represented as
3 3
Tij = ZZTZ']‘ e e = 7. (1.124)
=1 7=1
The nabla operator, for example, is represented as

0 0 0 0 0

3
= i= 2 2 Tk =V, 1.125
dx; gaxie 8x1+ 33/'] + 0z ( )

where z; is the general Cartesian coordinate taking on the values of z, y and z. The
unit tensor I is represented by Kronecker’s delta:

3 3
(52']‘ = ZZ(S” e e; = I. (1.126)

=1 7=1

It is evident that an explicit statement must be made when the tensor 7;; is to be
distinguished from its (7, j) element.

With Einstein’s summation convention, if an index appears twice in an expres-
sion, then summation is implied with respect to the repeated index, over the range
of that index. The number of the free indices, i.e., the indices that appear only
once, is the number of directions associated with an expression; it thus determines
whether an expression is a scalar, a vector or a tensor. In the following expressions,
there are no free indices, and thus these are scalars:

3
u;v; = Zuwi =u-v, (1.127)
=1

3
Ty = Zm = tr7, (1.128)
i=1
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du, 3 du, Uy Oy u,
= - _Y = V- 1.129
dx; ZZ; dx; dx dy + 0z b ( )
9 f N S N Y |
= - = V? 1.130
Oz;0z; o ; ox? 9z + Oy? + 022 o )

where V2 is the Laplacian operator to be discussed in more detail in Section 1.4. In
the following expression, there are two sets of double indices, and summation must
be performed over both sets:

3 3
0Ty = DY 0Ty = 0T (1.131)
=1 7=1
The following expressions, with one free index, are vectors:
3

€ijpUivy = Y ZZQMUW] er = uX vV, (1.132)

k=1 \u=1 ;=1

O g 0 9 0
d

= i = o —k = Vf, 1.133

dx; pt dx; Lt 33/'] + 0z / ( )
3 3

vy = 3 | DT | e = TV, (1.134)
=1 \7=1

Finally, the following quantities, having two free indices, are tensors:

3 3
wiv; = ZZUM ee; = uv, (1.135)

i—lj—l
TikThkj = ZZ (Z Uszk]) ee; = 0T, (1.136)
1= 1] 1 =
8 .
8% = ZZ ee] = Vu. (1.137)
i =1 7= 1

Note that Vu in the last equation is a dyadic tensor.’

®Some authors use even simpler expressions for the nabla operator. For example, V - u is also
represented as 0;u; or «;,;, with a comma to indicate the derivative, and the dyadic Vu is represented
as O;u; OF ;5.
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1.3.3 Tensors in Fluid Mechanics

Flows in the physical world are three dimensional, and so are the tensors involved
in the governing equations. Many flow problems, however, are often approximated
as two- or even one-dimensional, in which cases, the involved tensors and vectors
degenerate to two- or one-dimensional forms. In this subsection, we give only a brief
description of the most important tensors in fluid mechanics. More details are given
in following chapters.

The stress tensor, T, represents the state of the stressin a fluid. When operating
on a surface, T produces a traction f=n-T, where n is the unit normal to the surface.
In static equilibrium, the stress tensor is identical to the hydrostatic pressure tensor,

T = —py 1, (1.138)

where pyy is the scalar hydrostatic pressure. The traction on any submerged surface
is given by
Y = n. T = n.(—pyI) = —pgn, (1.139)

and is normal to the surface; its magnitude is identical to the hydrostatic pressure:
%] = | = pun| = pu .

Since the resulting traction is independent of the orientation of the surface, the
pressure tensor is isotropic, i.e., its components are unchanged by rotation of the
frame of reference.

In flowing incompressible media, the stress tensor consists of an isotropic or
pressure part, which is, in general, different from the hydrostatic pressure tensor,

and an anisotropic or viscous part, which resists relative motion:®
T = —pl + T
Total Isotropic Anzl?otmpz'c (1.140)
= Pressure + Viscous
Stress
Stress Stress

The viscous stress tensor 7 is, of course, zero in static equilibrium. It is, in general,
anisotropic, i.e., the viscous traction on a surface depends on its orientation: it

In some books (e.g., in [4] and [9]), a different sign convention is adopted for the total stress
tensor T, so that
T=pl - 7.

An interesting discussion about the two sign conventions can be found in [9].
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can be normal, shear (i.e., tangential) or mixture of the two. In matrix notation,
Eq. (1.140) becomes

T T Tis -p 0 0 T11 Ti2 Ti3
T21 T22 T23 = 0 —p 0 —|— T21 722 723 ) (1141)
T3y 139 33 0 0 -p T31 T32 T33
and, in index notation,
Tij = —pbij + 75 - (1.142)

The diagonal components, T;;, of T are normal stresses, and the nondiagonal ones
are shear stresses.

Equation (1.140) is the standard decomposition of the stress tensor, inasmuch
as the measurable quantities are, in general, the total stress components 7;; and not
p or 7;;. For educational purposes, the following decomposition appears to be more

illustrative:
T = —pul —pp 1 + N + 750
(1.143)
Total Hydrostatic Extra Viscous Viscous
[ Sto “ :| = Pressure ] + [ Pressure ] + | Normal ] + Shear ]
ress Stress Stress Stress Stress
or, in matrix form,
Ty T2 Tis —PH 0 0 —PE 0 0
Tor T2 Tos = 0 —pm 0|+ 0 —-pE 0
T51 T35 Tas 0 0 —pu 0 0 —pE
[ 11 0 0 0 T12 713
+ 0 7292 0 + 721 0 723 (1144)
L 0 0 733 731 732 0

The hydrostatic pressure stress, —pgl, is the only nonzero stress component in
static equilibrium; it is due to the weight of the fluid and is a function of the position

or elevation z, i.e.,

pa(2) = po—pg (2 — 20), (1.145)

where pg is the reference pressure at z = 2y, p is the density of the fluid, and ¢ is
the gravitational acceleration.

The extra pressure stress, —pgl, arises in flowing media due to the perpendic-
ular motion of the particles towards a material surface, and is proportional to the
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convective momentum carried by the moving molecules. In inviscid motions, where
either the viscosity of the medium is vanishingly small or the velocity gradients are
negligible, the hydrostatic and extra pressure stresses are the only nonzero stress
components.

The viscous normal stress, T, is due to accelerating or decelerating perpendic-
ular motions towards material surfaces and is proportional to the viscosity of the
medium and the velocity gradient along the streamlines.

SH is due to shearing motions of adjacent
material layers next to material surfaces. It is proportional to the viscosity of the
medium and to the velocity gradient in directions perpendicular to the streamlines.
In stretching or extensional flows, where there are no velocity gradients in the di-

N

Finally, the viscous shear stress, T

rections perpendicular to the streamlines, the viscous shear stress is zero and thus

7N is the only nonzero viscous stress component. In shear flows, such as flows in

N vanishes.

rectilinear channels and pipes, 7
In summary, the stress (or force per unit area) is the result of the momentum

carried by N molecules across the surface according to Newton’s law of motion:

F 1 Xda
Tof= = LN 1.146
" AS AS;dt(m“) (1.146)

Any flow is a superposition of the above mentioned motions, and, therefore, the
appropriate stress expression is that of Eqs. (1.140) and (1.143). Each of the stress
components is expressed in terms of physical characteristics of the medium (i.e.,
viscosity, density, and elasticity which are functions of temperature in nonisothermal
situations) and the velocity field by means of the constitutive equation which is
highlighted in Chapter 5.

The strain tensor, C, represents the state of strain in a medium and is commonly
called the Cauchy strain tensor. Its inverse, B=C™!, is known as the Finger strain
tensor. Both tensors are of primary use in non-Newtonian fluid mechanics. Dotted
with the unit normal to a surface, the Cauchy strain tensor (or the Finger strain
tensor) yields the strain of the surface due to shearing and stretching. The compo-
nents of the two tensors are the spatial derivatives of the coordinates with respect
to the coordinates at an earlier (Cauchy) or later (Finger) time of the moving fluid
particle [9].

The velocity gradient tensor, Vu, measures the rate of change of the separation
vector, r 45, between neighboring fluid particles at A and B, according to

drp
dt '

Vu=V (1.147)
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Shear flow: channel flow Extensional flow: opposing jets

L
=

—
—‘/tZO th1 >0 to > 11

_/
N

Figure 1.18. Rotational (weak) and irrotational (strong) deformation of material
lines in shear and extensional flows, respectively.

and represents the rate of change of the magnitude (stretching or compression) and
the orientation (rotation) of the material vector r4p. Vu is the dyadic tensor of the
generalized derivative vector V and the velocity vector u, as explained in Section 1.4.
Like any tensor, Vu can be decomposed into a symmetric, D, and an antisymmetric
part, S:7

Vu=D+ Q. (1.148)

The symmetric tensor

D = = [Vu+ (Vu)] (1.149)

1
2
is the rate of strain (or rate of deformation) tensor, and represents the state of the
intensity or rate of strain. The antisymmetric tensor

S = ~[Vu— (Vu)?] (1.150)

1
2
is the wvorticity tensor.® If n is the unit normal to a surface, then the dot product
n - D yields the rate of change of the distances in three mutually perpendicular

"Some authors define the rate-of-strain and vorticity tensors as
D = Vu+(Vu)” and S = Vu—(Vu)",
so that
2Vu =D + Q.

8Other symbols used for the rate-of-strain and the vorticity tensors are d, ¥ and E for D, and
Q, w and E for S.
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Tensor Orientation Operation | Result or Vector — Flux
Stress, T unit normal, n n-T Traction
Rate of strain, D | unit normal, n n-D Rate of stretching
unit tangent, t t-D Rate of rotation
Viscous Stress, 7 | velocity gradient, Vu | 7 : Vu Scalar viscous dissipation

Table 1.3. Vector-tensor operations producing measurable result or fluz.

directions. The dot product n-S gives the rate of change of orientation along these
directions.

In purely shear flows the only strain is rotational. The distance between two
particles on the same streamline does not change, whereas the distance between
particles on different streamlines changes linearly with traveling time. Thus there
is both stretching (or compression) and rotation of material lines (or material vec-
tors), and the flow is characterized as rotational or weak flow. In extensional flows,
the separation vectors among particles on the same streamline change their length
exponentially, whereas the separation vectors among particles on different stream-
lines do not change their orientation. These flows are irrotational or strong flows.
Figure 1.18 illustrates the deformation of material lines, defined as one-dimensional
collections of fluid particles that can be shortened, elongated and rotated, in rota-
tional shear flows and in irrotational extensional flows.

The rate of strain tensor represents the strain state and is zero in rigid-body
motion (translation and rotation), since this induces no strain (deformation). The
vorticity tensor represents the state of rotation, and is zero in strong irrotational
flows. Based on these remarks, we can say that strong flows are those in which
the vorticity tensor is zero; the directions of maximum strain do not rotate to
directions of less strain, and, therefore, the maximum (strong) strain does not have
the opportunity to relax. Weak flows are those of nonzero vorticity; in this case, the
directions of maximum strain rotate, and the strain relaxes. Table 1.3 lists some
examples of tensor action arising in Mechanics.

Example 1.3.5. Strong and weak flows

In steady channel flow (see Fig. 1.18), the velocity components are given by

uy = a(l—y*), wuw, =0 and wu, = 0.

Let (20, Y0, 20) and (2, y, z) be the positions of a particle at times =0 and ¢, respec-



1.3 Tensors 47

tively. By integrating the velocity components with respect to time, one gets:

dz
ux:E:a(l—yz) = oz =29+ a(l—y*)t;
uy =0 = ¥y =yo;
u, = 0 — Z = zy.

The fluid particle at (z, yo, 20 ) is separated linearly with time from that at (zo, yo, 20),
and, thus, the resulting strain is small. The matrix form of the velocity gradient
tensor in Cartesian coordinates is

du, Ouy  du,

3396 x 3336

- | Qugz YUy Ou,

Vu= | Ge GE GE | (1.151)
du, Ouy  Ju,
0z 0z 0z
and, therefore,

0 0 0 0 —ay O 0 ay O
Vu=| -2ay 0 0f; D= | —ay 0 0|; S=1]—-ay 00
0 0 0 0 0 0 0 0 O

The vorticity tensor is nonzero and thus the flow is weak.

Let us now consider the extensional flow of Fig. 1.18. The velocity components
are given by

Uy = ex, Uy = —ey and wu, = 0;
therefore,
dx
uxzazex = oz = zge;
dy _
by = g = T = y = yoe

u, = 0 — Z = zy.

Since the fluid particle at (z,y, z0) is separated exponentially with time from that
at (2o, Yo, 20), the resulting strain (stretching) is large. The velocity-gradient, rate
of strain, and vorticity tensors are:

g 0 0 z 00 0 00
Vua=|0 —¢ 0|; D=0 — 0|; S=1]000
0 00 0 00 0 00

Since the vorticity tensor is zero, the flow is strong. |
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1.4 Differential Operators

The nabla operator V, already encountered in previous sections, is a differential op-
erator. In a Cartesian system of coordinates (1, 22, z3), defined by the orthonormal
basis (e, ez, es),

d d d L9
V= e — =z = p— 1.152
el dxq + e dxg T es dxs ;e dx; ( )
or, in index notation,
_ 9 (1.153)
= 3% .

The nabla operator is a vector operator which acts on scalar, vector, or tensor fields.
The result of its action is another field the order of which depends on the type of
the operation. In the following, we will first define the various operations of V in
Cartesian coordinates, and then discuss their forms in curvilinear coordinates.

The gradient of a differentiable scalar field f, denoted by V f or gradf. is a vector
field:

3 3
vi= (Zei%) f=2 e o :elﬁ+32§—$f2+e 4 (1.154)
=1

; pt dx; dxq

The gradient V f can be viewed as a generalized derivative in three dimensions; it
measures the spatial change of f occurring within a distance dr(dzq, dzo, dzs).
The gradient of a differentiable vector field u is a dyadic tensor field:

3 3

3 3 3 3 4
Vu = (Zei —396.) (D ujej) = D) —817 ee; . (1.155)

=1 7=1 ¢

As explained in Section 1.3.3, if u is the velocity, then Vu is called the velocity-
gradient tensor.
The divergence of a differentiable vector field u, denoted by V - u or divu, is a

scalar field
\V4 — ZS: ﬂ (ZS: 'l)_i%é'l_%—l_%—l_% (1156)
= Pt € ox; = 4ei) = — Ju; Y 9y Oxg Oz '

V - u measures changes in magnitude, or flux through a point. If u is the velocity,
then V - u measures the rate of volume expansion per unit volume; hence, it is zero
for incompressible fluids. The following identity is easy to prove:

V(fuy=Vf-u+4+ fV-u. (1.157)
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The curl or rotation of a differentiable vector field u, denoted by V X u or curlu
or rotu, is a vector field:

€] € €3

3 3
9 I B
Vxu = (E eia—xi) X (Elu]‘e]‘) = | 9u; Oz; O3 (1.158)
]:

=1 Uy U Us

or

8%3 OUQ) <3u1 8%3) (8%2 8u1)
v = (== — — . (1.159
xu ( ¢l + 8$3 8$1 2 + 8$1 8$2 3 ( )

The field V x u is often called the wvorticity (or chirality) of u.
The divergence of a differentiable tensor field 7 is a vector field:?

=1 7=1

3 9 3 3 3.3 9.
_ . . P —_ Ya.
V.1t = (kZ::l ey axk) (ZZTUeZeJ) = ZZ o, e . (1.160)

Example 1.4.1. The divergence and the curl of the position vector
Consider the position vector in Cartesian coordinates,

r=z1+uyj+ zk. (1.161)

For its divergence and curl, we obtain:

dr dy 0z
v b A et
g dr Oy + dz =
Ver =3, (1.162)
and
i j k
- |9 9 9
VXr = 55 dy 0Oz -
r Yy oz
Vxr=0 (1.163)
Equations (1.162) and (1.163) hold in all coordinate systems. ]

°The divergence of a tensor 7 is sometimes denoted by divr .
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Other useful operators involving the nabla operator are the Laplace operator V?
and the operator u -V, where u is a vector field. The Laplacian of a scalar f with
continuous second partial derivatives is defined as the divergence of the gradient:

orf  o?f  9%f

Vif =V (Vf) = —S5+-—5+—5 1.164
i.e.,
0? 0? 0?
VIi=V.V=——S4-—+-——. 1.165
du? + du’ + dul ( )
A function whose Laplacian is identically zero is called harmonic.
If u=ue;+usestuses is a vector field, then
Viu = Viuie; + Viuse, + Viuses . (1.166)

For the operator u- V, we obtain:

0 0 0
U'V:(Ulel-l-uzez-l-uzae:a)'( —‘|‘e2—+63—) —

€1 dxq dxg Jx3
9 9 9
-V = —_— —_— —_—. 1.167
u Uuq Ers + u9 91, + u38$3 ( )

The above expressions are valid only for Cartesian coordinate systems. In curvi-
linear coordinate systems, the basis vectors are not constant and the forms of V are
quite different, as explained in Example 1.4.3. Notice that gradient always raises the
order by one (the gradient of a scalar is a vector, the gradient of a vector is a tensor
and so on), while divergence reduces the order of a quantity by one. A summary of
useful operations in Cartesian coordinates (z,y, ) is given in Table 1.4.

For any scalar function f with continuous second partial derivatives, the curl of
the gradient is zero,

VxX(Vf)=0. (1.168)

For any vector function u with continuous second partial derivatives, the divergence
of the curl is zero,
V- (Vxu)=0. (1.169)

Equations (1.168) and (1.169) are valid independently of the coordinate system.
Their proofs are left as exercises to the reader (Problem 1.11). Other identities
involving the nabla operator are given in Table 1.5.

In fluid mechanics, the vorticity w of the velocity vector u is defined as the curl

of u,
w=Vxu. (1.170)
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0 0

07y

+ e+

z

0T s
] ) k

OTop \ s T, or, 0Ty \ -
oy T o )‘+ <3xy+ oy T 35’)J

Vg4t kg

uV:uxg—w—l—uya—y—l—uz%

Vp g—£i+g—§j+%k

V-u %+%+%

Vxu= (G-G) i (BE-Fe) i (TG

vu:%@xiw%ipr%%iwr%xji
+ i+ Gk + Gk + Qs 15 + 9tz ek

wov = (e B e B ) 5 (T G )
+ ux%u; +uy83uyz +u283u§)k

Table 1.4. Summary of differential operators in Cartesian coordinates (z,y,z); p,

u and 7T are scalar, vector and tensor fields, respectively.
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V(u-v) = (u-V)v + (v-V)u + ux (Vxv) + vx(Vxu)
V-(fu) = fV-u+u-Vf

Vo(uxv) = v-(Vxu) — u-(Vxv)

V.(Vxu) =0

Vx(fu) = fVxu+Vfxu

VX(uxv) = uV-v—vV-u+ (v-V)u — (u-V)v
Vx(Vxu) = V(V-u) — V’u

VX (V) =0

V(u-u) = 2(u-V)u + 2ux (VX u)

V3(fg) = fV%g + gVf + 2V f-Vyg

V- (VfxVg) =0

V-(fVg—gVf) = fVig - gV?f

Table 1.5. Useful identities involving the nabla operator; f and g are scalar fields,
and u and v are vector fields. It is assumed that all the partial derivatives involved
are continuous.
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ar \' dr 2 96? 022
—u 9 us 9 9
u- Vo= wgy T T og b vz
sza_fer+%8_ge€+%ez

ar ar T 00 T
+ (%% + %) egeqp + %%UOZ eqe, + % e.e, % e.ey + % €.€,
du, du,

r2 Or T 00 dz T
10 10719, |, 0T
+ [Far(rma) + 150 + G e

Table 1.6. Summary of differential operators in cylindrical polar coordinates
(r,8,2); p, w and T are scalar, vector and tensor fields, respectively.
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19 1 J
Tog T rsin 6 9¢

ou

v o l@_(rzi) S— i(sin@%) + 7*25111120%

_ Op 19p 1 Jp
Vp=grer T 756 t r5ngag e
_ 10 L0 (i L Jus
Vieu = r2 or(7 ) + g ag(vesing) + g P
— L 0 (4 sing)— —L 9Ot 1 du, 10
Vxu = [rsin030(u¢818n0) rsinf d¢ ler + [rsin0 0o T@r(ru¢)]e€
+H[E D (rug) - L9 ey
Vu = %u ee, + 37‘9 eeg+ 5.~ eep+ %%%T —%) ege,
10u Uy 1 Odu, U
+ (P55 %) ever + 1 eveo + (5t G —T(b) eger
0
T (rs%n@%—?g_?i‘_qute) eses (rs%n@#—l_%‘l'%wte) €4€s
_ ou, 10u, u 1 du, U
weVu = [ G+ (T 55 — %)+ <rsm0 99 _T(b)]e?“
0 0 , U
+ [u, G+ ug (%%M%)Jru(b (Tsilneai(g—%bcotO)]eg
0 0 0
—I_[UT%—I_W%%—I_?% (rs%n@#—l'%‘l'%wte)]‘%

o= (L0 (2 D Y- NS 1974 _ Too + Tye
Ver = [TQGT(T T”)—I_rsin@@O(TeTsme)—l_rsainO R ) ;
. Tho Tor — Tro — T COL
+ [%3%(7‘ Trg) + ﬁ%(me sin 0) + rsiln0 83;; + 62 O]eg
1 1 9 : 1L 9Tss | Tor = Try — Ty Cot
3ar(TTe) T g ag(Teesin ) + g R

€

T leg

Table 1.7. Summary of differential operators in spherical polar coordinates (r, 0, ¢);
p, u and T are scalar, vector and tensor fields, respectively.
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Other symbols used for the vorticity, in the fluid mechanics literature, are ¢, £ and
Q. If, in a flow, the vorticity vector is zero everywhere, then the flow is said to be
wrrotational. Otherwise, i.e., if the vorticity is not zero, at least in some regions of
the flow, then the flow is said to be rotational. For example, if the velocity field can
be expressed as the gradient of a scalar function, i.e., if u=V f, then according to
Eq. (1.168),

w=Vxu=Vx(Vf)=0,

and, thus, the flow is irrotational.
A vector field u is said to be solenoidal if its divergence is everywhere zero, i.e.,
if
V-ou=0. (1.171)

From Eq. (1.169), we deduce that the vorticity vector is solenoidal, since

Viw=V-(Vxu) =0.

Example 1.4.2. Physical significance of differential operators
Consider an infinitesimal volume AV bounded by a surface AS. The gradient of a

scalar field f can be defined as

Viz fim Jasnfd

Av—o AV (1.172)

where n is the unit vector normal to the surface AS. The gradient here represents
the net vector flur of the scalar quantity f at a point where the volume AV of
surface AS collapses in the limit. At that point, the above equation reduces to
Eq. (1.154).

The divergence of the velocity vector u can be defined as

o Jas(m-u)dS
Vouz= 1 = 1.173
RN Gt N (1173)
and represents the scalar flux of the vector u at a point, which is equivalent to the
local rate of expansion (see Example 1.5.3).
Finally, the vorticity of u may be defined as

1.174
AV S0 AV ’ ( )

and represents the vector net flux of the scalar angular component at a point, which
tends to rotate the fluid particle at the point where AV collapses.
O



56 Chapter 1. Vector and Tensor Calculus

Example 1.4.3. The nabla operator in cylindrical polar coordinates

(a) Express the nabla operator

.0 0
V_lax dy

D -y ¥

0

Jz

in cylindrical polar coordinates.

(b) Determine Ve and V - u, where ¢ is a scalar and u is a vector.
(¢) Derive the operator u-V and the dyadic product Vu in cylindrical polar coor-

dinates.

Solution:

(a) From Table 1.1, we have:
1 =
j =
k = e,

cosfe, —sinf ey

sinf e, + cosf ey

(1.175)

Therefore, we just need to convert the derivatives with respect to x, ¥y and z into
derivatives with respect to r, # and z. Starting with the expressions of Table 1.1

and using the chain rule, we get:

9 oo oo o sn0 o
dr  oxzdr ' 9xoe O ar 1 00
2 . 02 cos@ﬂ

ay Mo 00

9 _ 9

oz 0z

Substituting now into Eq. (1.175) gives
d sinf 0

V = (cosfe, —sinbep) (cos@— —

ar

)
infe, ] inf —
+ (sinfe, + cosf eg) (sm .

r 80)

cosf O
+ = )+ez

a9

0

dz

After some simplifications and using the trigonometric identity sin® 8 + sin? =1, we

get

9 10
V = e, — -
¢ r+e€7‘80

__I_e

9
70z

(1.176)
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(b) The gradient of the scalar ¢ is given by
de 1 d¢ de
Ve = e, % + €y ;% + €, % . (1177)
For the divergence of the vector u, we have
v B ( 0 N 10 N 8) ( N N )
u= (e o tes—op + e o Ure, + ugeg + u e,) .
Noting that the only nonzero spatial derivatives of the unit vectors are
de, d dey
a9 — MY g T T
(see Eq. 1.17), we obtain
v _ Ou, . l ( de, -I-% . @) u,
T e T \"ae T e T e GE
— auT+l%+ l( )_|_8u2
- or r 00 €6 WG T e, 0z
_ Ou, . 1 dug Uy . u, .
- or r 00 r 0z
a 1dug Ou,
Vou= - . 1.178
" VI (1.178)
(c)
V= (e tuertues) (e 2+ e be L) =
u = (wer +ugeg tuze;) (& oo + eg o + e
0 ug O 0

Finally, for the dyadic product Vu we have

Vu = ( 9 ety 2)( + +uze;)
u = e, o e€r80 e. Ep ure, + ugeg + u e,
B 3ur+ 3u€+ ou,
DT e €€,
o an Y] 0 an Y. b=
—I—ee%—l—ee%—l—ee%
ZT@Z 2982 2282

1 du.
r 06
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Vu = e”/’e”/’% + Teﬁ% + erez%
ar ar ar
1 /du, 1 /dug 1 du,
‘|‘e6’er; ( 90 —ue) + egee; <—0+ur) + eﬁez; 90
du, Jduyg u,
+ eZeTg + ezegg + ezezg (1180)
O

Any other differential operation in curvilinear coordinates is evaluated following
the procedures of Example 1.4.3. In Tables 1.6 and 1.7, we provide the most impor-
tant differential operations in cylindrical and spherical coordinates, respectively.

1.4.1 The Substantial Derivative

The time derivative represents the rate of change of a physical quantity experienced
by an observer who can be either stationary or moving. In the case of fluid flow,
a nonstationary observer may be moving exactly as a fluid particle or not. Hence,
at least three different time derivatives can be defined in fluid mechanics and in
transport phenomena. The classical example of fish concentration in a lake, provided
in [4], is illustrative of the similarities and differences between these time derivatives.
Let ¢(z,y,t) be the fish concentration in a lake. For a stationary observer, say
standing on a bridge and looking just at a spot of the lake beneath him, the time
derivative is determined by the amount of fish arriving and leaving the spot of
observation, i.e., the total change in concentration and thus the total time derivative,
is identical to the partial derivative,

de (80) (1.181)
dt — \ot),, ’ '

and is only a function of the local change of concentration. Imagine now the observer
riding a boat which can move with relative velocity uf**! with respect to that of the
water. Hence, if uPos Water

respectively, then

and u are the velocities of the boat and the water,

uRel — uBoat_I_uWateT . (1182)

The concentration now is a function not only of the time ¢, but also of the position
of the boat r(z,y) too. The position of the boat is a function of time, and, in fact,

dr Rel
il € 1.183
il ( )
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and so J J
z Rel Y Rel
3 = U and P (1.184)

Thus, in this case, the total time derivative or the change experienced by the moving
observer is,

d de de dx de dy

—[e(t = (= =) =4 (=) He

arltt-= )] (m)w * (w)w a "t (@)w dt

dc Rl(@c) Rl(@c)
= — “l— e 1.185
(815)1’7:[/ —I_ ul’ 8$ t,y + uy 8y t,x ( )

Imagine now the observer turning off the engine of the boat so that u??** = 0 and

uRel — uWateT‘ Then,
).+ (2, 5 (2,4
Ot ) .y dx ), di Ay )¢, di

(%) n ugVateT (&) n uWateT (%)
at z,y ax t,y Y ay t,x

J
= 8—§—|—u-Vc

Llett, )]

This derivative is called the substantial derivative and is denoted by D/Dt:
— =—+u-Ve. (1.186)

(The terms substantive, material or convective are sometimes used for the substantial
derivative.) The substantial derivative expresses the total time change of a quantity,
experienced by an observer following the motion of the liquid. It consists of a local
change, d¢/dt, which vanishes under steady conditions (i.e., same number of fish
arrive and leave the spot of observation), and of a traveling change, u- Ve, which of
course is zero for a stagnant liquid or uniform concentration. Thus, for a steady-state
process,

De de Do o
Dt N 8$1 U28$2 UB8$3 '

For stagnant liquid or uniform concentration,

=5 =% (1.188)
Dt \ot),,. dt’ '

(1.187)
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Example 1.4.4. Substantial derivative!°

Let T'(z,y) be the surface temperature of a stationary lake. Assume that you attach
a thermometer to a boat and take a path through the lake defined by 2 = a(t) and
y = b(t). Find an expression for the rate of change of the thermometer temperature
in terms of the lake temperature.

Solution:

Ten - () () 5 ()
dt S oNot/,, \ox/),,dt dy /)¢, di

-0 (30), 5+ ()
B d dt oy ), dt’

Limiting cases:

If T(z,y)=c, then fg —0.
d
If T(x,y)= f(z), then % = le_TcCll_ _ d_fili_?
d
If T(z,y)=g(y), then % _ Lé_% d_g%
Notice that the local time derivative is zero because T'(z, y) is not a function of time.

a

The forms of the substantial derivative operator in the three coordinate systems
of interest are tabulated in Table 1.8.

1.5 Integral Theorems

The Gauss or divergence theorem
The Gauss theorem is one of the most important integral theorems of vector calculus.
It can be viewed as a generalization of the fundamental theorem of calculus which
states that

b dCb

[ Lda = o) - ola). (1.150)

where ¢(z) is a scalar one-dimensional function which obviously must be differen-
tiable. Equation (1.189) can also be written as follows:

i [ (52)de = 3160) - ola] = ool (1.190)

Taken from Ref. [6].
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Coordinate system % = % fu-v
(7,9, 2) 9+ oud uyg—y +
(r.6,7) 2y gl D
(r.0.0) G rud+ 2%+ i

Table 1.8. The substantial derivative operator in various coordinate systems.

i (%) do= né(a)];

1 n=-—1 n=1

a b x

Figure 1.19. The fundamental theorem of calculus.

where n is the unit vector pointing outwards from the one-dimensional interval of
integration, ¢ < x < b, as shown in Fig. 1.19.

Equation (1.190) can be extended to two dimensions as follows. Consider the
square S defined by @ < 2 < band ¢ <y < d and a function ¢(x,y) with continuous
first partial derivatives. Then

/SqudS = //(——I—_]ay)davdy_l/C aba(bdxdy—l—_]// —dxdy
i [ 10(0.9)~ o)l +§ [ 6. d) — (. )}

C a

d b
= [ oty + [ moteplide =

C

/Sw s = /anbdﬁ, (1.191)
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JyV-udV= [¢n-udS

n Surface S

<

Figure 1.20. The Gauss or divergence theorem.

where n is the outward unit normal to the boundary C of S, and £ is the arc length
around C'. Note that Eq. (1.191) is valid for any surface S on the plane bounded
by a curve C. Similarly, if V is an arbitrary closed region bounded by a surface 5,
and ¢(z,y,z) is a scalar function with continuous first partial derivatives, one gets:

/dev - /Sn¢ds, (1.192)

where n is the unit normal pointing outward from the surface S, as depicted in
Fig. 1.20. Equation (1.192) is known as the Gauss or divergence theorem. The
Gauss theorem holds not only for tensor fields of zeroth order (i.e., scalar fields),
but also for tensors of higher order (i.e., vector and second-order tensor fields).
If u and 7 are vector and tensor fields, respectively, with continuous first partial
derivatives, the Gauss theorem takes the following forms:

V-udV:/n-udS, (1.193)
|4 S

and

V-TdV:/n-TdS. (1.194)
|4 S

In words, the Gauss theorem states that the volume integral of the divergence of a
vector or tensor field over an arbitrary control volume V is equal to the flow rate of
the field across the surface S bounding the domain V. If a vector field u happens
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Jon-(Vxu)dS = §.t-udl

n

Figure 1.21. The Stokes theorem.

to be solenoidal, V - u=0 and, hence, the flow rate of u across S is zero:

/ n-udS = 0.
S
The Stokes theorem

Consider a surface S bounded by a closed curve C and designate one of its sides,
as the outside. At any point of the outside, we define the unit normal n to point
outwards; thus, n does not cross the surface 5. Let us also assume that the unit
tangent t to the boundary C is directed in such a way that the surface S is always
on the left (Fig. 1.21). In this case, the surface S is said to be oriented according
to the right-handed convention. The Stokes theorem states that the flow rate of the
vorticity, V X u, of a differentiable vector field u through 5 is equal to the circulation
of u along the boundary C of S:

/Sn-(vXu)dsz]{Ot-udﬁ. (1.195)

Another form of the Stokes theorem is

/S(qu)-dS:]iu-dr, (1.196)
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where dS=ndS5, dr=td{, and r is the position vector.

One notices that the Gauss theorem expresses the volume integral of a differen-
tiated quantity in terms of a surface integral which does not involve differentiation.
Similarly, the Stokes theorem transforms a surface integral to a line integral eli-
minating the differential operator. The analogy with the fundamental theorem of
calculus in Eq. (1.189) is obvious.

In the special case V X u=0, Eq. (1.196) indicates that the circulation of u is
zero:

]{ u-dr = 0. (1.197)
c

If u represents a force field which acts on one object, Eq. (1.197) implies that the
work done in moving the object from one point to another is independent of the
path joining the two points. Such a force field is called conservative. The necessary
and sufficient condition for a force field to be conservative is V x u=0.

Example 1.5.1. Green’s identities
Consider the vector field ¢V, where ¢ and 1 are scalar functions with continuous
second partial derivatives. Applying the Gauss theorem, we get

/Vv-(¢w)dv - /S(¢V¢)-nd5.

Using the identity
V- (¢V) = ¢V + Vo -V,

we derive Green’s first identity:

/V (6V70 + Vo Vi) av = /S(<W¢)-nds. (1.198)

Interchanging ¢ with 1 and subtracting the resulting new relation from the above
equation yield Green’s second identity:

/V (670 — o¥%) dv = /S(qﬁvlb— ¥Vé) - nds. (1.199)

a

The Reynolds transport theorem
Consider a function f(z,t) involving a parameter . The derivative of the definite
integral of f(z,t) from az=a(t) to x=>b(t) with respect to t is given by Leibnitz’s
formula:

da

d [r=b@) b(t) of db
5/9@@) fla,t)de = /W) S+ fb, )= = flat) . (1.200)
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In many cases, the parameter ¢ can be viewed as the time. In such a case, the

limits of integration a and b are functions of time moving with velocities 22 and 2

dt dt
respectively. Therefore, another way to write Eq. (1.200) is
. d o=b(t) . b(t) of b(1)

where n is the unit vector pointing outwards from the one-dimensional interval of
integration, and u denotes the velocity of the endpoints.

The generalization of Eq. (1.201) in the three dimensional space is provided
by the Reynolds Transport Theorem. If V(t) is a closed three-dimensional region
bounded by a surface S(¢) moving with velocity u, r is the position vector, and
f(r,t) is a scalar function, then

4 B af |
7l /V(t) flx.t)dV = /V(t) oAV + /S(t)n (fu)ds. (1.202)

The theorem is valid for vectorial and tensorial fields as well. If the boundary is
fixed, u=0, and the surface integral of Eq. (1.202) is zero. In this case, the theorem
simply says that one can interchange the order of differentiation and integration.

Example 1.5.2. Conservation of mass
Asgsume that a balloon, containing a certain amount of a gas, moves in the air and
is deformed as it moves. The mass m of the gas is then given by

m = / pdV
V(t)

where V(t) is the region occupied by the balloon at time ¢, and p is the density of
the gas. Since the mass of the gas contained in the balloon is constant,

dm d
— = — dV = 0.
dt dt /v(t)p

From Reynolds transport theorem, we get:

ap /
—dV . ds =0
/V o i + s (pu) :

where u is the velocity of the gas, and S(¢) is the surface of the balloon. The surface
integral is transformed to a volume one by means of the Gauss theorem to give:

ap /
—dV V. dV =10 =
/V(t) at - V(t) (pw)
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V(t2)

FLOW
t=t, t=ts

Figure 1.22. A control volume V(1) moving with the fluid.

ap ]
— V. dV = 0.
L/L(t) [E?t TV lem)

Since the above result is true for any arbitrary volume V'(7),

0

Py V.(pu) = 0. (1.203)
ot

This is the well known continuity equation resulting from the conservation of mass
of the gas. This equation is valid for both compressible and incompressible fluids. If

the fluid is incompressible, then p=const., and Eq. (1.203) is reduced to
V-ou=0. (1.204)
O

Example 1.5.3. Local rate of expansion
Consider an imaginary three-dimensional region V(¢) containing a certain amount
of fluid and moving together with the fluid, as illustrated in Fig. 1.22. Such a region

is called a moving control volume (see Chapter 2). As the balloon in the previous
example, the size and the shape of the control volume may change depending on
the flow. We shall show that the local rate of expansion (or contraction) of the fluid
per unit volume is equal to the divergence of the velocity field.

Applying the Reynolds transport theorem with f=1, we find

i/ dV:O—I—/n-udS —

dt Jv () (1)
avit) :/ n-uds . (1.205)
dt S(t)
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By means of the Gauss theorem, Eq. (1.205) becomes
avit) _ / Voudv . (1.206)
dt V()

Using now the mean-value theorem for integrals, we obtain

1 dV(t) 1
- V-oul. , 1.207
vy o - v YUk (1.207)
where r* is a point within V (¢). Taking the limit as V(¢) — 0, i.e., allowing V() to

shrink to a specific point, we find that
— = V.u, (1.208)

where V - u is evaluated at the point in question. This result provides a physical
interpretation for the divergence of the velocity vector as the local rate of expansion
or rate of dilatation of the fluid. This rate is, of course, zero for incompressible
fluids. |

1.6 Problems

1.1. The vector v has the representation v = (2% + y?)i+ 2y j + k in Cartesian
coordinates. Find the representation of v in cylindrical coordinates that share the
same origin.

1.2. Sketch the vector u = 31+ 6J with respect to the Cartesian system. Find
the dot products of u with the two basis vectors 1 and jJ and compare them with
its components. Then, show the operation which projects a two-dimensional vector
on a basis vector and the one projecting a three-dimensional vector on each of the
mutually perpendicular planes of the Cartesian system.

1.3. Prove the following identity for the vector triple product
ax(bxc) =b(a-c)—c(a-b), (1.209)

spelled mnemonically “abc equals back minus cab”.

1.4. Find the representation of u = u, i1+ u, j with respect to a new Cartesian
system that shares the same origin but at angle 8 with respect to the original one.
This rotation can be represented by

v =Au, (1.210)
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where u’ is the new vector representation. What is the form of the matrix A?
Repeat for a new Cartesian system translated at a distance L from the original
system. What is the matrix A in this case?

Show that the motions of rigid-body rotation and translation described above
do not change the magnitude of a vector. Does vector orientation change with these
motions?

1.5. Convert the following velocity profiles from Cartesian to cylindrical coordinates

sharing the same origin, or vice versa, accordingly:
(a) Flow in a channel of half-width H: wu=c(y*— H?)i;

(b) Stagnation flow: u=cri—czj;

(¢) Plug flow: u=_ci;

(d) Flow in a pipe of radius R: u=c(r’- R¥e,;
(e) Sink flow: u= ‘e, ;

(f)  Swirling flow: u=creg;

(g) Spiral flow: u= f(z)e,+wreg.

Note that ¢ and w are constants.
Hint: first, sketch the geometry of the flow and set the common origin of the two
coordinate systems.

1.6. A small test membrane in a moving fluid is oriented in three directions in
succession, and the tractions are measured and tabulated as follows (7 is a constant):

Direction in which Measured traction on
the test surfacefaces the test surface (force/area)
er = (i+j)/v2 2(n—1) (i+1J)
e =(i-j)/v2 2(-n+1(i-J)
€3 — k —\/§ k

(a) Establish whether the three orientations of the test surface are mutually per-
pendicular.

(b) Could this fluid be in a state of mechanical equilibrium? State the reason for
your answer.

(c) What is the state of fluid stress at the point of measurement?

(d) Are there any shear stresses at the point of measurement? Indicate your rea-
soning.

(e) What is the stress tensor with respect to the basis {e;, ez, es}?

1.7. Measurements of force per unit area were made on three mutually perpendi-
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cular test surfaces at point P with the following results:

Direction in which Measured traction on
the test surfacefaces the test surface (force/area)

1 1
J 3Jj—k
k —j+ 3k

(a) What is the state of stress at P?
(b) What is the traction acting on the surface with normal n =1+ j?
¢) What is the normal stress acting on this surface?

(
1.8. If 7 =ii+ 3jj — jk — kj + 3kk, or, in matrix notation,

1 0 o0
r=|0 3 —1],
0 -1 3

determine the invariants, and the magnitudes and directions of the principal stresses
of 7. Check the values of the invariants using the principal stress magnitudes.

1.9. In an extensional (stretching or compressing) flow, the state of stress is fully
determined by the diagonal tensor

T = aeje; +aeyey; — 2aese;z,

where a is a constant.
(a) Show that there are three mutually perpendicular directions along which the
resulting stresses are normal.
(b) What are the values of these stresses?
(c) How do these directions and corresponding stress values relate to the principal
ones?

Consider now a shear flow, in which the stress tensor is given by T = —pl + T,
where p is the pressure, and 7 is an off-diagonal tensor:

T = ejey + 2e1es + 3ezes + ezeq + 2eseq + 3ese; .

(d) What are the resulting stresses on the surfaces of orientations eq, ey and es?
(e) Are these orientations principal directions? If not, which are the principal di-
rections?

(f) What are the principal values?

1.10. Consider a point at which the state of stress is given by the dyadic ab + ba,
where the vectors a and b are not collinear. Let i be in the direction of a and j be
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perpendicular to iin the plane of a and b. Let also e, = icosw + jsinw stand for
an arbitrary direction in the plane of a and b.!!

(a) Show that t(w) = isinw — jcosw is perpendicular to e,.

(b) Find expressions for the normal and shear stresses on an area element facing in
the +e, direction, in terms of w and the x- and y-components of a and b.

(¢) By differentiation with respect to w, find the directions and magnitudes of maxi-
mum and minimum normal stress. Show that these directions are perpendicular.
(d) Show that the results in (c) are the same as the eigenvectors and eigenvalues of
the dyadic ab + ba in two dimensions.

(e) Find the directions and magnitudes of maximum and minimum shear stresses.
Show that the two directions are perpendicular.

1.11. If f is a scalar field and u is a vector field, both with continuous second

partial derivatives, prove the following identities in Cartesian coordinates:
(a) V x V[ = 0 (the curl of the gradient of f is zero);
(b) V-(V xu) = 0 (the divergence of the curl of u is zero).

1.12. Calculate the following quantities in Cartesian coordinates:

(a) The divergence V -1 of the unit tensor I.
(b) The Newtonian stress tensor

T = [(Va)+ (Vu)l], (1.211)

where 1 is the viscosity, and u is the velocity vector.
(c¢) The divergence V - 7 of the Newtonian stress tensor.

1.13. Prove the following identity in Cartesian coordinates:
VxVxu=V(V-u)-Vu. (1.212)

1.14. If p is a scalar and u is a vector field,
(a) find the form of V X u in cylindrical coordinates;
(b) find Vp and V - u in spherical coordinates.

1.15 Calculate the velocity-gradient and the vorticity tensors for the following two-
dimensional flows and comment on their forms:

(a) Shear flow: Uy = 1—y, wy=1u,=0;

(b)  Euxtensional flow: u, = ax, u, = —ay, u,=0.
Also find the principal directions and values of both tensors. Are these related?
1.16. Derive the appropriate expression for the rate of change in fish concentration,
recorded by a marine biologist on a submarine traveling with velocity uY® with

HTaken from Ref. [2]
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respect to the water. What is the corresponding expression when the submarine
travels consistently at z=h below sea level?

1.17. The concentration ¢ of fish away from a feeding point in a lake is given by
c(z,y) = 1/(2* + y*). Find the total change of fish concentration detected by an
observer riding a boat traveling with speed u=10 m/sec straight away from the
feeding point. What is the corresponding change detected by a stationary observer?

1.18. Calculate the velocity and the acceleration for the one-dimensional, linear
motion of the position vector described by

r(t) = 1z(t) = izoe,

with respect to an observer who

(a) is stationary at z=xo;

(b) is moving with the velocity of the motion;

(c) is moving with velocity V' in the same direction;

(d) is moving with velocity V in the opposite direction.

Hint: you may use the kinematic relation, de=u(t)dt, to simplify things.

1.19. A parachutist falls initially with speed 300 km/h; once his parachute opens,
his speed is reduced to 20 km/h. Determine the temperature change experienced by
the parachutist in these two stages, if the atmospheric temperature decreases with
elevation z according to

T(z)="1T,—az,

where Ty is the sea-level temperature, and ¢=0.01°C/m.

1.20. The flow of an incompressible Newtonian fluid is governed by the continuity
and the momentum equations,

V-u=0, (1.213)
and
ou Du
— Vu)=p—=-V A& 1.214
p<8t+u u) T p+nViu+pg, ( )

where p is the density, and g is the gravitational acceleration. Simplify the mo-
mentum equation for irrotational flows (V x u=0). You may need to invoke both
the continuity equation and vector identities to simplify the terms u - Vu and
Viu=V.(Vu).

1.21. By means of the Stokes theorem, examine the existence of vorticity in the
following flows:
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(a) Plug flow: u=_ci;
(b)  Radial flow: u= ‘e, ;
(¢) Torsional flow: u=creg;
d) Shear flow: u= f(y)i;

(
(e) Extensional flow: u= f(z)(i-]).
Hint: you may use any convenient closed curve in the flow field.

1.22. Use the divergence theorem to show that
1
V:—/n-rdS, (1.215)
3Js

where S is the surface enclosing the region V', n is the unit normal pointing outward
from S, and r is the position vector. Then, use Eq. (1.215) to find the volume of
(i) a rectangular parallelepiped with sides a, b and c;

(ii) a right circular cone with height H and base radius R;

(iii) a sphere of radius R.

Use Eq. (1.215) to derive Archimedes principle of buoyancy from the hydrostatic
pressure on a submerged body.

1.23. Show by direct calculation that the divergence theorem does not hold for
the vector field u(r,#,z) = e,/r in a cylinder of radius R and height H. Why does
the theorem fail? Show that the theorem does hold for any annulus of radii Ry and
R, where 0< Ry < R. What restrictions must be placed on a surface so that the
divergence theorem applies to a vector-valued function v(r,0, z).

1.24. Show that Stokes theorem does not hold for u = (yi— =z j)/(2? + y?), on
a circle of radius R centered at the origin of the zy-plane. Why does the theorem
fail? Show that the theorem does hold for the circular ring of radii Ry and R, where
0< Rg < R. In general, what restrictions must be placed on a closed curve so that
Stokes’ theorem will hold for any differentiable vector-valued function v(z,y)?
1.25. Let C be a closed curve lying in the zy-plane and enclosing an area A, and
t be the unit tangent to C. What condition must the differentiable vector field u
satisfy such that

]{u-tdﬁzm (1.216)
C

Give some examples of vector fields having this property. Then use line integrals to
find formulas for the area of rectangles, right triangles and circles. Show that the
area enclosed by the plane curve C is

A:%]{O(rxt)-kdﬁ (1.217)

where r is the position vector, and k is the unit vector in the z-direction.
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