
Chapter 1VECTOR AND TENSORCALCULUSThe physical quantities encountered in uid mechanics can be classi�ed into threeclasses: (a) scalars, such as pressure, density, viscosity, temperature, length, mass,volume and time; (b) vectors, such as velocity, acceleration, displacement, linearmomentum and force, and (c) tensors, such as stress, rate of strain and vorticitytensors.Scalars are completely described by their magnitude or absolute value, and theydo not require direction in space for their speci�cation. In most cases, we shalldenote scalars by lower case lightface italic type, such as p for pressure and � fordensity. Operations with scalars, i.e., addition and multiplication, follow the rules ofelementary algebra. A scalar �eld is a real-valued function that associates a scalar(i.e., a real number) with each point of a given region in space. Let us consider,for example, the right-handed Cartesian coordinate system of Fig. 1.1 and a closedthree-dimensional region V occupied by a certain amount of a moving uid at agiven time instance t. The density � of the uid at any point (x; y; z) of V de�nes ascalar �eld denoted by �(x; y; z). If the density is, in addition, time-dependent, onemay write �=�(x; y; z; t).Vectors are speci�ed by their magnitude and their direction with respect to agiven frame of reference. They are often denoted by lower case boldface type, suchas u for the velocity vector. A vector �eld is a vector-valued function that associatesa vector with each point of a given region in space. For example, the velocity ofthe uid in the region V of Fig. 1.1 de�nes a vector �eld denoted by u(x; y; z; t). Avector �eld which is independent of time is called a steady-state or stationary vector�eld. The magnitude of a vector u is designated by juj or simply by u.Vectors can be represented geometrically as arrows; the direction of the arrowspeci�es the direction of the vector and the length of the arrow, compared to somechosen scale, describes its magnitude. Vectors having the same length and the same1
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x yz

xy z(x; y; z)Vi jk OFigure 1.1. Cartesian system of coordinates.direction, regardless of the position of their initial points, are said to be equal. Avector having the same length but the opposite direction to that of the vector u isdenoted by �u and is called the negative of u.The sum (or the resultant) u+v of two vectors u and v can be found using theparallelogram law for vector addition, as shown in Fig. 1.2a. Extensions to sumsof more than two vectors are immediate. The di�erence u-v is de�ned as the sumu+(�v); its geometrical construction is shown in Fig. 1.2b.uv u+v uv u-v(a) (b)Figure 1.2. Addition and subtraction of vectors.The vector of length zero is called the zero vector and is denoted by 0. Obviously,there is no natural direction for the zero vector. However, depending on the problem,a direction can be assigned for convenience. For any vector u,u + 0 = 0 + u = uand u + (�u) = 0 :



3Vector addition obeys the commutative and associative laws. If u, v and w arevectors, then u + v = v + u Commutative law(u + v) + w = u + (v+w) Associative lawIf u is a nonzero vector andm is a nonzero scalar, then the product mu is de�nedas the vector whose length is jmj times the length of u and whose direction is thesame as that of u if m > 0, and opposite to that of u if m < 0. If m=0 or u=0,then mu=0. If u and v are vectors and m and n are scalars, thenmu = um Commutative lawm(nu) = (mn)u Associative law(m+ n)u = mu + nu Distributive lawm(u+ v) = mu + mv Distributive lawNote also that (�1)u is just the negative of u,(�1)u = �u :A unit vector is a vector having unit magnitude. The three vectors i, j andk which have the directions of the positive x, y and z axes, respectively, in theCartesian coordinate system of Fig. 1.1 are unit vectors.vu �Figure 1.3. Angle between vectors u and v.Let u and v be two nonzero vectors in a two- or three-dimensional space posi-tioned so that their initial points coincide (Fig. 1.3). The angle � between u and vis the angle determined by u and v that satis�es 0 � � � �. The dot product (orscalar product) of u and v is a scalar quantity de�ned byu � v � uv cos � : (1.1)If u, v and w are vectors and m is a scalar, thenu � v = v � u Commutative lawu � (v+w) = u � v + u �w Distributive lawm(u � v) = (mu) � v = u � (mv)



4 Chapter 1. Vector and Tensor CalculusMoreover, the dot product of a vector with itself is a positive number that is equalto the square of the length of the vector:u � u = u2 () u = pu � u : (1.2)If u and v are nonzero vectors andu � v = 0 ;then u and v are orthogonal or perpendicular to each other.A vector set fu1;u2; � � � ;ung is said to be an orthogonal set or orthogonal systemif every distinct pair of the set is orthogonal, i.e.,ui � uj = 0 ; i 6= j :If, in addition, all its members are unit vectors, then the set fu1;u2; � � � ;ung is saidto be orthonormal. In such a case,ui � uj = �ij ; (1.3)where �ij is the Kronecker delta, de�ned as�ij � ( 1; i = j0; i 6= j (1.4)The three unit vectors i, j and k de�ning the Cartesian coordinate system of Fig. 1.1form an orthonormal set: i � i = j � j = k � k = 1i � j = j � k = k � i = 0 (1.5)The cross product (or vector product or outer product) of two vectors u and v isa vector de�ned as u� v � uv sin � n ; (1.6)where n is the unit vector normal to the plane of u and v such that u, v and nform a right-handed orthogonal system, as illustrated in Fig. 1.4. The magnitude ofu � v is the same as that of the area of a parallelogram with sides u and v. If uand v are parallel, then sin �=0 and u� v=0. For instance, u� u=0.If u, v and w are vectors and m is a scalar, then



5vu �nu� vFigure 1.4. The cross product u� v.u� v = � v � u Not commutativeu� (v+w) = u� v + u�w Distributive lawm(u� v) = (mu)� v = u� (mv) = (u� v)mFor the three unit vectors i, j and k one gets:i � i = j� j = k� k = 0 ;i� j = k ; j� k = i ; k� i = j ;j� i = �k ; k� j = �i ; i�k = �j : (1.7)Note that the cyclic order (i; j;k; i; j; � � �), in which the cross product of any neighbor-ing pair in order is the next vector, is consistent with the right-handed orientationof the axes as shown in Fig. 1.1.The product u � (v�w) is called the scalar triple product of u, v and w, and isa scalar representing the volume of a parallelepiped with u, v and w as the edges.The product u� (v�w) is a vector called the vector triple product. The followinglaws are valid:(u � v)w 6= u (v �w) Not associativeu� (v �w) 6= (u� v)�w Not associativeu� (v �w) = (u �w) v � (u � v)w(u� v)�w = (u �w) v � (v �w) uu � (v�w) = v � (w � u) = w � (u� v)Thus far, we have presented vectors and vector operations from a geometrical view-point. These are treated analytically in Section 1.2.Tensors may be viewed as generalized vectors being characterized by their magni-tude and more than one ordered directions with respect to a given frame of reference.



6 Chapter 1. Vector and Tensor CalculusTensors encountered in uid mechanics are of second order, i.e., they are charac-terized by an ordered pair of coordinate directions. Tensors are often denoted byuppercase boldface type or lower case boldface Greek letters, such as � for the stresstensor. A tensor �eld is a tensor-valued function that associates a tensor with eachpoint of a given region in space. Tensor addition and multiplication of a tensor bya scalar are commutative and associative. If R, S and T are tensors of the sametype, and m and n are scalars, thenR + S = S + R Commutative law(R + S) + T = S + (R + T) Associative lawmR = Rm Commutative lawm(nR) = (mn)R Associative law(m+ n)R = mR + nR Distributive lawm(R+ S) = mR + mS Distributive lawTensors and tensor operations are discussed in more detail in Section 1.3.1.1 Systems of CoordinatesA coordinate system in the three-dimensional space is de�ned by choosing a set ofthree linearly independent vectors, B=fe1; e2; e3g, representing the three fundamen-tal directions of the space. The set B is a basis of the three-dimensional space, i.e.,each vector v of this space is uniquely written as a linear combination of e1, e2 ande3: v = v1 e1 + v2 e2 + v3 e3 : (1.8)The scalars v1, v2 and v3 are the components of v and represent the magnitudes ofthe projections of v onto each of the fundamental directions. The vector v is oftendenoted by v(v1; v2; v3) or simply by (v1; v2; v3).In most cases, the vectors e1, e2 and e3 are unit vectors. In the three coordinatesystems that are of interest in this book, i.e., Cartesian, cylindrical and sphericalcoordinates, the three vectors are, in addition, orthogonal. Hence, in all thesesystems, the basis B=fe1; e2; e3g is orthonormal:ei � ej = �ij : (1.9)(In some cases, nonorthogonal systems are used for convenience; see, for example,[1].) For the cross products of e1, e2 and e3, one gets:ei � ej = 3Xk=1 �ijk ek ; (1.10)



1.1 Systems of Coordinates 7where �ijk is the permutation symbol, de�ned as�ijk � 8><>: 1 ; if ijk=123, 231, or 312 (i.e, an even permutation of 123)�1 ; if ijk=321, 132, or 213 (i.e, an odd permutation of 123)0 ; if any two indices are equal (1.11)A useful relation involving the permutation symbol is the following:������� a1 a2 a3b1 b2 b3c1 c2 c3 ������� = 3Xi=1 3Xj=1 3Xk=1 �ijk aibjck : (1.12)
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Figure 1.5. Cartesian coordinates (x; y; z) with �1 < x < 1, �1 < y < 1 and�1 < z <1.The Cartesian (or rectangular) system of coordinates (x; y; z), with�1 < x <1 ; �1 < y <1 and �1 < z <1 ;has already been introduced, in previous examples. Its basis is often denoted byfi; j;kg or fex; ey; ezg. The decomposition of a vector v into its three components
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Figure 1.6. Cylindrical polar coordinates (r; �; z) with r � 0, 0 � � < 2� and�1 < z <1, and the position vector r.(r; �; z) �! (x; y; z) (x; y; z) �! (r; �; z)Coordinatesx = r cos � r = px2 + y2y = r sin � � = 8><>: arctan yx ; x > 0; y � 0� + arctan yx ; x < 02� + arctan yx ; x > 0; y < 0z = z z = zUnit vectorsi = cos � er � sin � e� er = cos � i+ sin � jj = sin � er + cos � e� e� = � sin � i + cos � jk = ez ez = kTable 1.1. Relations between Cartesian and cylindrical polar coordinates.



1.1 Systems of Coordinates 9
xy r�ij ere�Figure 1.7. Plane polar coordinates (r; �).
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Figure 1.8. Spherical polar coordinates (r; �; �) with r � 0, 0 � � � � and 0 � � �2�, and the position vector r.



10 Chapter 1. Vector and Tensor Calculus(r; �; �) �! (x; y; z) (x; y; z) �! (r; �; �)Coordinatesx = r sin � cos� r = px2 + y2 + z2y = r sin � sin � � = 8>><>>: arctan px2+y2z ; z > 0�2 ; z = 0� + arctan px2+y2z ; z < 0z = r cos � � = 8><>: arctan yx ; x > 0; y � 0� + arctan yx ; x < 02� + arctan yx ; x > 0; y < 0Unit vectorsi = sin � cos� er + cos � cos� e� � sin� e� er = sin � cos� i + sin � sin� j+ cos � kj = sin � sin� er + cos � sin� e� + cos� e� e� = cos � cos� i+ cos � sin � j� sin � kk = cos � er � sin � e� e� = � sin� i + cos� jTable 1.2. Relations between Cartesian and spherical polar coordinates.(vx; vy; vz) is depicted in Fig. 1.5. It should be noted that, throughout this book,we use right-handed coordinate systems.The cylindrical and spherical polar coordinates are the two most important or-thogonal curvilinear coordinate systems. The cylindrical polar coordinates (r; �; z),with r � 0 ; 0 � � < 2� and �1 < z <1 ;are shown in Fig. 1.6 together with the Cartesian coordinates sharing the sameorigin. The basis of the cylindrical coordinate system consists of three orthonormalvectors: the radial vector er, the azimuthal vector e�, and the axial vector ez . Notethat the azimuthal angle � revolves around the z axis. Any vector v is decomposedinto, and is fully de�ned by its components v(vr; v�; vz) with respect to the cylindri-cal system. By invoking simple trigonometric relations, any vector, including thoseof the bases, can be transformed from one system to another. Table 1.1 lists the for-mulas for making coordinate conversions from cylindrical to Cartesian coordinatesand vice versa.On the xy plane, i.e., if the z coordinate is ignored, the cylindrical polar coor-dinates are reduced to the familiar plane polar coordinates (r; �) shown in Fig. 1.7.



1.1 Systems of Coordinates 11The spherical polar coordinates (r; �; �), withr � 0 ; 0 � � � � and 0 � � < 2� ;together with the Cartesian coordinates with the same origin, are shown in Fig. 1.8.It should be emphasized that r and � in cylindrical and spherical coordinates are notthe same. The basis of the spherical coordinate system consists of three orthonormalvectors: the radial vector er, the meridional vector e�, and the azimuthal vectore�. Any vector v can be decomposed into the three components, v(vr; v�; v�),which are the scalar projections of v onto the three fundamental directions. Thetransformation of a vector from spherical to Cartesian coordinates (sharing the sameorigin) and vice-versa obeys the relations of Table 1.2.The choice of the appropriate coordinate system, when studying a uid mechan-ics problem, depends on the geometry and symmetry of the ow. Flow betweenparallel plates is conveniently described by Cartesian coordinates. Axisymmetric(i.e., axially symmetric) ows, such as ow in an annulus, are naturally describedusing cylindrical coordinates, and ow around a sphere is expressed in sphericalcoordinates. In some cases, nonorthogonal systems might be employed too. Moredetails on other coordinate systems and transformations can be found elsewhere [1].Example 1.1.1. Basis of the cylindrical systemShow that the basis B=fer ; e�; ezg of the cylindrical system is orthonormal.Solution:Since i � i = j � j = k � k=1 and i � j = j � k = k � i=0, we obtain:er � er = (cos � i+ sin � j) � (cos � i + sin � j) = cos2 � + sin2 � = 1e� � e� = (� sin � i+ cos � j) � (� sin � i + cos � j) = sin2 � + cos2 � = 1ez � ez = k � k = 1er � e� = (cos � i+ sin � j) � (� sin � i + cos � j) = 0er � ez = (cos � i+ sin � j) � k = 0e� � ez = (� sin � i+ cos � j) � k = 0 2Example 1.1.2. The position vectorThe position vector r de�nes the position of a point in space, with respect to acoordinate system. In Cartesian coordinates,r = x i + y j + z k ; (1.13)
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i jkx yz

xy zr = x i + y j+ z k
Figure 1.9. The position vector, r, in Cartesian coordinates.and thus jrj = (r � r) 12 = qx2 + y2 + z2 : (1.14)The decomposition of r into its three components (x; y; z) is illustrated in Fig. 1.9.In cylindrical coordinates, the position vector is given byr = r er + z ez with jrj = pr2 + z2 : (1.15)Note that the magnitude jrj of the position vector is not the same as the radialcylindrical coordinate r. Finally, in spherical coordinates,r = r er with jrj = r ; (1.16)that is, jrj is the radial spherical coordinate r. Even though expressions (1.15) and(1.16) for the position vector are obvious (see Figs. 1.6 and 1.8, respectively), we willderive both of them, starting from Eq. (1.13) and using coordinate transformations.In cylindrical coordinates,r = x i + y j + z k= r cos � (cos � er � sin � e�) + r sin � (sin � er + cos � e�) + z ez= r (cos2 � + sin2 �) er + r (� sin � cos � + sin � cos �) e� + z ez= r er + z ez :



1.1 Systems of Coordinates 13In spherical coordinates,r = x i + y j + z k= r sin � cos� (sin � cos� er + cos � cos� e� � sin � e�)+ r sin � sin � (sin � sin � er + cos � sin� e� + cos� e�)+ r cos � (cos � er � sin � e�)= r [sin2 � (cos2 �+ sin2 �) cos2 �] er+ r sin � cos � [(cos2 �+ sin2 �)� 1] e�+ r sin � (� sin� cos�+ sin� cos�) e�= r er : 2Example 1.1.3. Derivatives of the basis vectorsThe basis vectors i, j and k of the Cartesian coordinates are �xed and do not changewith position. This is not true for the basis vectors in curvilinear coordinate systems.From Table 1.1, we observe that, in cylindrical coordinates,er = cos � i + sin � j and e� = � sin � i+ cos � j ;therefore, er and e� change with �. Taking the derivatives with respect to �, weobtain: @er@� = � sin � i + cos � j = e�and @e�@� = � cos � i� sin � j = �er :All the other spatial derivatives of er, e� and ez are zero. Hence,@er@r = 0 @e�@r = 0 @ez@r = 0@er@� = e� @e�@� = �er @ez@� = 0@er@z = 0 @e�@z = 0 @ez@z = 0 (1.17)



14 Chapter 1. Vector and Tensor CalculusSimilarly, for the spatial derivatives of the unit vectors in spherical coordinates,we obtain:@er@r = 0 @e�@r = 0 @e�@r = 0@er@� = e� @e�@� = �er @e�@� = 0@er@� = sin � e� @e�@� = cos � e� @e�@� = � sin � er � cos � e� (1.18)Equations (1.17) and (1.18) are very useful in converting di�erential operators fromCartesian to orthogonal curvilinear coordinates. 21.2 VectorsIn this section, vector operations are considered from an analytical point of view.Let B=fe1; e2; e3g be an orthonormal basis of the three-dimensional space, whichimplies that ei � ej = �ij ; (1.19)and ei � ej = 3Xk=1 �ijk ek : (1.20)Any vector v can be expanded in terms of its components (v1; v2; v3):v = v1 e1 + v2 e2 + v3 e3 = 3Xi=1 vi ei : (1.21)Any operation between two or more vectors is easily performed, by �rst decom-posing each vector into its components and then invoking the basis relations (1.19)and (1.20). If u and v are vectors, thenu � v = (u1 � v1) e1 + (u2 � v2) e2 + (u3 � v3) e3 = 3Xi=1 (ui � vi) ei ; (1.22)i.e., addition (or subtraction) of two vectors corresponds to adding (or subtracting)their corresponding components. If m is a scalar, thenmv = m 3Xi=1 vi ei! = 3Xi=1 mvi ei ; (1.23)



1.2 Vectors 15i.e., multiplication of a vector by a scalar corresponds to multiplying each of itscomponents by the scalar.For the dot product of u and v, we obtain:u � v =  3Xi=1 ui ei! �  3Xi=1 vi ei! =)u � v = u1v1 + u2v2 + u3v3 = 3Xi=1 uivi : (1.24)The magnitude of v is thus given byv = (v � v) 12 = qv21 + v22 + v23 : (1.25). Finally, for the cross product of u and v, we getu� v =  3Xi=1 ui ei!� 0@ 3Xj=1 vj ej1A = 3Xi=1 3Xj=1 uivj ei � ej =)u� v = 3Xi=1 3Xj=1 3Xk=1 �ijk uivj ek (1.26)oru�v = ������� e1 e2 e3u1 u2 u3v1 v2 v3 ������� = (u2v3�u3v2)e1�(u1v3�u3v1)e2+(u1v2�u2v1)e3: (1.27)Example 1.2.1. The scalar triple productFor the scalar triple product (u� v) �w, we have:(u� v) �w = 0@ 3Xi=1 3Xj=1 3Xk=1 �ijk uivj ek1A �  3Xk=1 wk ek! =)(u� v) �w = 3Xi=1 3Xj=1 3Xk=1 �ijk uivjwk (1.28)



16 Chapter 1. Vector and Tensor Calculusor (u� v) �w = ������� u1 u2 u3v1 v2 v3w1 w2 w3 ������� : (1.29)Using basic properties of determinants, one can easily show the following identity:(u� v) �w = (w� u) � v = (v�w) � u : (1.30)2In the following subsections, we will make use of the vector di�erential operatornabla (or del), r. In Cartesian coordinates, r is de�ned byr � @@x i + @@y j + @@z k : (1.31)The gradient of a scalar �eld f(x; y; z) is a vector �eld de�ned byrf = @f@x i + @f@y j + @f@z k : (1.32)The divergence of a vector �eld v(x; y; z) is a scalar �eld de�ned byr � v = @vx@x + @vy@y + @vz@z : (1.33)More details aboutr and its forms in curvilinear coordinates are given in Section 1.4.1.2.1 Vectors in Fluid MechanicsAs already mentioned, the position vector, r, de�nes the position of a point withrespect to a coordinate system. The separation or displacement vector between twopoints A and B (see Figure 1.10) is commonly denoted by �r, and is de�ned as�rAB � rA � rB : (1.34)The velocity vector, u, is de�ned as the total time derivative of the position vector:u � drdt : (1.35)Geometrically, the velocity vector is tangent to the curve C de�ned by the motion ofthe position vector r (Fig. 1.11). The relative velocity of a particle A, with respectto another particle B, is de�ned accordingly byuAB � d�rABdt = drAdt � drBdt = uA � uB : (1.36)
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x yz A BrA rB�rAB

Figure 1.10. Position and separation vectors.
x yz Cr(t) u � drdt

Figure 1.11. Position and velocity vectors.



18 Chapter 1. Vector and Tensor CalculusThe acceleration vector, a, is de�ned bya � dudt = d2rdt2 : (1.37)The acceleration of gravity, g, is a vector directed towards the center of earth. Inproblems where gravity is important, it is convenient to choose one of the axes,usually the z axis, to be collinear with g. In such a case, g=�gez or gez .Example 1.2.2. Velocity componentsIn Cartesian coordinates, the basis vectors are �xed and thus time independent. So,u � ddt(xi + yj+ zk) = dxdt i + dydt j + dzdt k :Hence, the velocity components (ux; uy; uz) are given by:ux = dxdt ; uy = dydt ; uz = dzdt : (1.38)In cylindrical coordinates, the position vector is given by r=r er+z ez, where er istime dependent:u � ddt(r er + z ez) = drdt er + rderdt + dzdt ez = drdter + rderd� d�dt + dzdt ez =)u = drdt er + r
 e� + dzdt ez ;where 
 � d�=dt is the angular velocity. The velocity components (ur; u�; uz) aregiven by: ur = drdt ; u� = rd�dt = r
 ; uz = dzdt : (1.39)In spherical coordinates, all the basis vectors are time dependent. The velocitycomponents (ur; u�; u�) are easily found to be:ur = drdt ; u� = rd�dt ; u� = r sin � d�dt : (1.40)2



1.2 Vectors 19Example 1.2.3. Circular motion
xy ere�uaFigure 1.12. Velocity and acceleration vectors in circular motion.Consider plane polar coordinates and suppose that a small solid sphere rotates at aconstant distance, R, with constant angular velocity, 
, around the origin (uniformrotation). The position vector of the sphere is r=R er and, therefore,u � drdt = ddt(R er) = R derdt = R derd� d�dt =) u = R
 e� :The acceleration of the sphere is:a � dudt = ddt(R
 e�) = R
 de�d� d�dt =) a = � R
2 er :This is the familiar centripetal accelerationR
2 directed towards the axis of rotation.2The force vector, F, is combined with other vectors to yield:Work : W = F � rAB ; (1.41)Power : P = dWdt = F � drABdt ; (1.42)Moment : M � r� F : (1.43)In the �rst two expressions, the force vector, F, is considered constant.Example 1.2.4. Linear and angular momentumThe linear momentum, J, of a body of mass m moving with velocity u is de�ned by



20 Chapter 1. Vector and Tensor CalculusJ � mu. The net force F acting on the body is given by Newton's law of motion,F = dJdt = ddt(mu) : (1.44)If m is constant, then F = mdudt = ma ; (1.45)where a is the linear acceleration of the body.The angular momentum (or moment of momentum) is de�ned asJ� � r� J : (1.46)Therefore,dJ�dt = ddt(r� J) = drdt � J + r� dJdt = u� (mu) + r�F = 0 + r�F =)dJ�dt = r� F = M ; (1.47)where the identity u� u=0 has been used. 21.2.2 Unit Tangent and Normal VectorsConsider a smooth surface S, i.e., a surface at each point of which a tangent planecan be de�ned. At each point of S, one can then de�ne an orthonormal set consistingof two unit tangent vectors, t1 and t2, lying on the tangent plane, and a unit normalvector, n, which is perpendicular to the tangent plane:n � n = t1 � t1 = t2 � t2 = 1 and n � t1 = t1 � t2 = t2 � n = 0 :Obviously, there are two choices for n; the �rst is the vectort1 � t2jt1 � t2j ;and the second one is just its opposite. Once one of these two vectors is chosen asthe unit normal vector n, the surface is said to be oriented; n is then called theorientation of the surface. In general, if the surface is the boundary of a controlvolume, we assume that n is positive when it points away from the system boundedby the surface.
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x yzi jk z=h(x;y)n t1 t2OFigure 1.13. Unit normal and tangent vectors to a surface de�ned by z=h(x; y).The unit normal to a surface represented byf(x; y; z) = z � h(x; y) = 0 (1.48)is given by n = rfjrf j =) (1.49)n = �@h@x i � @h@y j + k"1 + �@h@x�2 + �@h@y�2#1=2 : (1.50)Obviously, n is de�ned only if the gradient rf is de�ned and jrf j 6= 0. Note that,from Eq. (1.50), it follows that the unit normal vector is considered positive whenit is upward, i.e., when its z component is positive, as in Fig. 1.13. One can easilychoose two orthogonal unit tangent vectors, t1 and t2, so that the set fn; t1; t2g isorthonormal. Any vector �eld u can then be expanded as follows,u = unn + ut1t1 + ut2t2 (1.51)where un is the normal component, and ut1 and ut2 are the tangential componentsof u. The dot product n � u represents the normal component of u, sincen � u = n � (unn + ut1t1 + ut2t2) = un :
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x y

z r(t) t CFigure 1.14. The unit tangent vector to a curve.The integral of the normal component of u over the surface S,Q � ZS n � u dS ; (1.52)is the ux integral or ow rate of u across S. In uid mechanics, if u is the velocityvector, Q represents the volumetric ow rate across S. Setting ndS=dS, Eq. (1.52)takes the form Q = ZS u � dS : (1.53)A curve C in the three dimensional space can be de�ned as the graph of theposition vector r(t), as depicted in Fig. 1.14. The motion of r(t) with parameter tindicates which one of the two possible directions has been chosen as the positivedirection to trace C. We already know that the derivative dr=dt is tangent to thecurve C. Therefore, the unit tangent vector to the curve C is given byt = drdt���drdt ��� ; (1.54)and is de�ned only at those points where the derivative dr=dt exists and is not zero.As an example, consider the plane curve of Fig. 1.15, de�ned byy = h(x) ; (1.55)
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x

y
ij n ty=h(x)Figure 1.15. Normal and tangent unit vectors to a plane curve de�ned by y=h(x).or, equivalently, by r(t)=xi+h(x)j. The unit tangent vector at a point of C is givenby t = drdt���drdt ��� = i + @h@x j�1 + �@h@x�2�1=2 : (1.56)By invoking the conditions n � t=0 and n � n=1, we �nd for the unit normal vectorn: n = � �@h@x i + j�1 + �@h@x�2�1=2 :Choosing n to have positive y-component, as in Fig. 1.15, we getn = �@h@x i + j�1 + �@h@x�2�1=2 : (1.57)Note that the last expression for n can also be obtained from Eq. (1.50), as adegenerate case.Let C be an arbitrary closed curve in the space, with the unit tangent vector toriented in a speci�ed direction, and u be a vector �eld. The integral� � IC t � u d` ; (1.58)



24 Chapter 1. Vector and Tensor Calculuswhere ` is the arc length around C, is called the circulation of u along C. If r is theposition vector, then td`=dr, and Equation (1.58) is written as follows� � IC u � dr : (1.59)1.3 TensorsLet fe1; e2; e3g be an orthonormal basis of the three dimensional space. This meansthat any vector v of this space can be uniquely expressed as a linear combinationof the three coordinate directions e1, e2 and e3,v = 3Xi=1 vi ei ; (1.60)where the scalars vi are the components of v.In the previous sections, two kinds of products that can be formed with any twounit basis vectors were de�ned, i.e. the dot product, ei � ej , and the cross product,ei � ej . A third kind of product is the dyadic product, eiej , also referred to as aunit dyad. The unit dyad eiej represents an ordered pair of coordinate directions,and thus eiej 6= ejei unless i=j. The nine possible unit dyads,fe1e1; e1e2; e1e3; e2e1; e2e2; e2e3; e3e1; e3e2; e3e3g ;form the basis of the space of second-order tensors. A second-order tensor, � , canthus be written as a linear combination of the unit dyads:� = 3Xi=1 3Xj=1 �ij eiej ; (1.61)where the scalars �ij are referred to as the components of the tensor � . Similarly, athird-order tensor can be de�ned as the linear combination of all possible unit triadseiejek , etc. Scalars can be viewed as zero-order tensors, and vectors as �rst-ordertensors.A tensor, � , can be represented by means of a square matrix as� = (e1; e2; e3) 264 �11 �12 �13�21 �22 �23�31 �32 �33 375 0B@ e1e2e3 1CA (1.62)



1.3 Tensors 25and often simply by the matrix of its components,� = 264 �11 �12 �13�21 �22 �23�31 �32 �33 375 : (1.63)Note that the equality sign \=" is loosely used, since � is a tensor and not a matrix.For a complete description of a tensor by means of Eq. (1.63), the basis fe1; e2; e3gshould be provided.The unit (or identity) tensor, I, is de�ned byI � 3Xi=1 3Xj=1 �ij eiej = e1e1 + e2e2 + e3e3 : (1.64)Each diagonal component of the matrix form of I is unity and the nondiagonalcomponents are zero: I = 264 1 0 00 1 00 0 1 375 : (1.65)The sum of two tensors, � and � , is the tensor whose components are the sumsof the corresponding components of the two tensors:� + � = 3Xi=1 3Xj=1 �ij eiej + 3Xi=1 3Xj=1 �ij eiej = 3Xi=1 3Xj=1 (�ij + �ij) eiej : (1.66)The product of a tensor, � , and a scalar, m, is the tensor whose components areequal to the components of � multiplied by m:m � = m 0@ 3Xi=1 3Xj=1 �ij eiej1A = 3Xi=1 3Xj=1 (m�ij) eiej : (1.67)The transpose, �T , of a tensor � is de�ned by�T � 3Xi=1 3Xj=1 �ji eiej : (1.68)The matrix form of �T is obtained by interchanging the rows and columns of thematrix form of � : �T = 264 �11 �21 �31�12 �22 �32�13 �23 �33 375 : (1.69)



26 Chapter 1. Vector and Tensor CalculusIf �T=� , i.e., if � is equal to its transpose, the tensor � is said to be symmetric. If�T=�� , the tensor � is said to be antisymmetric (or skew symmetric). Any tensor� can be expressed as the sum of a symmetric, S, and an antisymmetric tensor, U,� = S + U ; (1.70)where S = 12 (� + �T ) ; (1.71)and U = 12 (� � �T ) : (1.72)The dyadic product of two vectors a and b can easily be constructed as follows:ab =  3Xi=1 ai ei! 0@ 3Xj=1 bj ej1A = 3Xi=1 3Xj=1 aibj eiej : (1.73)Obviously, ab is a tensor, referred to as dyad or dyadic tensor. Its matrix form isab = 264 a1b1 a1b2 a1b3a2b1 a2b2 a2b3a3b1 a3b2 a3b3 375 : (1.74)Note that ab 6= ba unless ab is symmetric. Given that (ab)T=ba, the dyadicproduct of a vector by itself, aa, is symmetric.The unit dyads eiej are dyadic tensors, the matrix form of which has only oneunitary nonzero entry at the (i; j) position. For example,e2e3 = 264 0 0 00 0 10 0 0 375 :The most important operations involving unit dyads are the following:(i) The single-dot product (or tensor product) of two unit dyads is a tensor de�nedby (eiej) � (ekel) � ei (ej � ek) el = �jk eiel : (1.75)This operation is not commutative.



1.3 Tensors 27(ii) The double-dot product (or scalar product or inner product) of two unit dyadsis a scalar de�ned by(eiej) : (ekel) � (ei � el) (ej � ek) = �il�jk : (1.76)It is easily seen that this operation is commutative.(iii) The dot product of a unit dyad and a unit vector is a vector de�ned by(eiej) � ek � ei (ej � ek) = �jk ei ; (1.77)or ei � (ejek) � (ei � ej) ek = �ij ek : (1.78)Obviously, this operation is not commutative.Operations involving tensors are easily performed by expanding the tensors intocomponents with respect to a given basis and using the elementary unit dyad op-erations de�ned in Eqs. (1.75)-(1.78). The most important operations involvingtensors are summarized below.The single-dot product of two tensorsIf � and � are tensors, then� � � = 0@ 3Xi=1 3Xj=1 �ij eiej1A �  3Xk=1 3Xl=1 �kl ekel!= 3Xi=1 3Xj=1 3Xk=1 3Xl=1 �ij�kl (eiej) � (ekel)= 3Xi=1 3Xj=1 3Xk=1 3Xl=1 �ij�kl �jk eiel= 3Xi=1 3Xj=1 3Xl=1 �ij�jl eiel =)� � � = 3Xi=1 3Xl=1 0@ 3Xj=1 �ij�jl1A eiel : (1.79)The operation is not commutative. It is easily veri�ed that� � I = I � � = � : (1.80)



28 Chapter 1. Vector and Tensor CalculusA tensor � is said to be invertible if there exists a tensor ��1 such that� � ��1 = ��1 � � = I : (1.81)If � is invertible, then ��1 is unique and is called the inverse of � .The double-dot product of two tensors� : � = 3Xi=1 3Xj=1 �ij�ji eiej : (1.82)The dot product of a tensor and a vectorThis is a very useful operation in uid mechanics. If a is a vector, we have:� � a = 0@ 3Xi=1 3Xj=1 �ij eiej1A �  3Xk=1 ak ek!= 3Xi=1 3Xj=1 3Xk=1 �ijak (eiej) � ek= 3Xi=1 3Xj=1 3Xk=1 �ijak �jk ei= 3Xi=1 3Xj=1 �ijaj �jj ei =)� � a = 3Xi=1 0@ 3Xj=1 �ijaj1A ei : (1.83)Similarly, we �nd that a � � = 3Xi=1 0@ 3Xj=1 �jiaj1A ei : (1.84)The vectors � � a and a � � are not, in general, equal.The following identities, in which a, b, c and d are vectors, � and � are tensors,and I is the unit tensor, are easy to prove:(ab) � (cd) = (b � c) ad ; (1.85)(ab) : (cd) = (cd) : (ab) = (a � d) (b � c) ; (1.86)(ab) � c = (b � c) a ; (1.87)



1.3 Tensors 29c � (ab) = (c � a) b ; (1.88)a � I = I � a = a ; (1.89)� : ab = (� � a) � b ; (1.90)ab : � = a � (b ��) : (1.91)n � f=n� �Figure 1.16. The action of a tensor � on the normal vector n.The vectors forming an orthonormal basis of the three-dimensional space arenormal to three mutually perpendicular plane surfaces. If fn1;n2;n3g is such abasis and v is a vector, thenv = n1v1 + n2v2 + n3v3 ; (1.92)where v1, v2 and v3 are the components of v in the coordinate system de�ned byfn1;n2;n3g. Note that a vector associates a scalar with each coordinate direction.Since fn1;n2;n3g is orthonormal,v1 = n1 � v ; v2 = n2 � v and v3 = n3 � v : (1.93)The component vi=ni �v might be viewed as the result or ux produced by v throughthe surface with unit normal ni, since the contributions of the other two componentsare tangent to that surface. Hence, the vector v is fully de�ned at a point by theuxes it produces through three mutually perpendicular in�nitesimal surfaces. Wealso note that a vector can be de�ned as an operator which produces a scalar uxwhen acting on an orientation vector.Along these lines, a tensor can be conveniently de�ned as an operator of higherorder that operates on an orientation vector and produces a vector ux. The actionof a tensor � on the unit normal to a surface, n, is illustrated in Fig. 1.16. The dotproduct f=n� � is a vector that di�ers from n in both length and direction. If thevectors f1 = n1 � � ; f2 = n2 � � and f3 = n3 � � ; (1.94)



30 Chapter 1. Vector and Tensor Calculusn3=k jk dydx f3=n3� �
n2=ji kdz dx f2=n2� �x yzi jk O dy dzdx(x; y; z)v Projection andmagni�cationdzdy jn1=ikf1=n1� �Figure 1.17. Actions of a tensor � on three mutually perpendicular in�nitesimalplane surfaces.



1.3 Tensors 31are the actions of a tensor � on the unit normals n1, n2 and n3 of three mutuallyperpendicular in�nitesimal plane surfaces, as illustrated in Fig. 1.17, then � is givenby � = n1f1 + n2f2 + n3f3 : (1.95)The tensor � is thus represented by the sum of three dyadic products. Note that asecond-order tensor associates a vector with each coordinate direction. The vectorsf1, f2 and f3 can be further expanded into measurable scalar components,f1 = �11n1 + �12n2 + �13n3 ;f2 = �21n1 + �22n2 + �23n3 ;f3 = �31n1 + �32n2 + �33n3 : (1.96)The scalars that appear in Eq. (1.96) are obviously the components of � with respectto the system of coordinates de�ned by fn1;n2;n3g:� = 264 �11 �12 �13�21 �22 �23�31 �32 �33 375 : (1.97)The diagonal elements are the components of the normal on each of the three mu-tually perpendicular surfaces; the nondiagonal elements are the magnitudes of thetwo tangential or shear actions or uxes on each of the three surfaces.The most common tensor in uid mechanics is the stress tensor, T, which, whenacting on a surface of unit normal n, produces surface stress or traction,f = n �T : (1.98)The traction f is the force per unit area exerted on an in�nitesimal surface element.It can be decomposed into a normal component fN that points in the direction ofn, and a tangential or shearing component fT :f = fN + fT : (1.99)The normal traction, fN , is given byfN = (n � f) n = n � (n �T) n = (nn : T) n ; (1.100)and, therefore, for the tangetial traction we obtain:fT = f � fN = n �T � (nn : T) n : (1.101)



32 Chapter 1. Vector and Tensor CalculusIt is left to the reader to show that the above equation is equivalent tofT = n � (f � n) = f � (I� nn) ; (1.102)where I is the unit tensor.Example 1.3.1. Vector-tensor operations1Consider the Cartesian system of coordinates and the point r = p3j m. Mea-surements of force per unit area on a small test surface give the following time-independent results:Direction inwhich Measured traction onthe test surface faces the test surface (force=area)i 2 i+ jj i+ 4 j+ kk j+ 6 k(a) What is the state of stress at the point r = p3 j?(b) What is the traction on the test surface when it is oriented to face in thedirection n = (1=p3)(i+ j+ k)?(c) What is the moment of the traction found in Part (b)?Solution:(a) Let n1 = i ; n2 = j ; n3 = k ;f1 = 2i + j ; f2 = i+ 4j+ k and f3 = j+ 6k :The stress tensor, T, is given byT = n1f1 + n2f2 + n3f3= i(2i+ j) + j(i+ 4j+ k) + k(j+ 6k)= 2ii+ ij+ 0ik+ ji + 4jj+ jk+ 0ki+ kj+ 6kkThe matrix representation of T with respect to the basis (i; j;k) isT = 264 2 1 01 4 10 1 6 375 :1Taken from Ref. [2].



1.3 Tensors 33Notice that T is symmetric.(b) The traction f on the surface n is given byf = n �T = 1p3 (i+ j+k) � (2ii+ ij+ ji+4jj+ jk+kj+6kk) = 1p3 (3i+6j+ 7k) :(c) The moment of the traction at the point r = p3 j is a vector given byM = r� f = ������� i j k0 p3 03p3 6p3 7p3 ������� = 7i � 3k : 2Example 1.3.2. Normal and tangential tractionsConsider the state of stress given in Example 1.3.1. The normal and tangentialcomponents of the traction f1 are:f1N = (n1 � f1) n1 = i � (2i+ j) i = 2iand f1T = f � f1N = (2i+ j)� 2i = j ;respectively. Similarly, for the tractions on the other two surfaces, we get:f2N = 4j ; f2T = i + k ;f3N = 6k ; f3T = j :Note that the normal tractions on the three surfaces are exactly the diagonal ele-ments of the component matrixT = 264 2 1 01 4 10 1 6 375 :The nondiagonal elements of each line are the components of the correspondingtangential traction. 2



34 Chapter 1. Vector and Tensor Calculus1.3.1 Principal Directions and InvariantsLet fe1; e2; e3g be an orthonormal basis of the three dimensional space and � be asecond-order tensor, � = 3Xi=1 3Xj=1 �ij eiej ; (1.103)or, in matrix notation, � = 264 �11 �12 �13�21 �22 �23�31 �32 �33 375 : (1.104)If certain conditions are satis�ed, it is possible to identify an orthonormal basisfn1;n2;n3g such that � = �1 n1n1 + �2 n2n2 + �3 n3n3 ; (1.105)which means that the matrix form of � in the coordinate system de�ned by the newbasis is diagonal: � = 264 �1 0 00 �2 00 0 �3 375 : (1.106)The orthogonal vectors n1, n2 and n3 that diagonalize � are called the principaldirections, and �1, �2 and �3 are called the principal values of � . From Eq. (1.105),one observes that the vector uxes through the surface of unit normal ni, i=1,2,3,satisfy the relation fi = ni � � = � � ni = �ini ; i = 1; 2; 3 : (1.107)What the above equation says is that the vector ux through the surface with unitnormal ni is collinear with ni, i.e., ni� � is normal to that surface and its tangentialcomponent is zero. From Eq. (1.107) one gets:(� � �iI) � ni = 0 ; (1.108)where I is the unit tensor.In mathematical terminology, Eq. (1.108) de�nes an eigenvalue problem. Theprincipal directions and values of � are thus also called the eigenvectors and eigenval-ues of � , respectively. The eigenvalues are determined by solving the characteristicequation, det(� � �I) = 0 (1.109)



1.3 Tensors 35or ������� �11 � � �12 �13�21 �22 � � �23�31 �32 �33 � � ������� = 0 ; (1.110)which guarantees nonzero solutions to the homogeneous system (1.108). The char-acteristic equation is a cubic equation and, therefore, it has three roots, �i, i=1,2,3.After determining an eigenvalue �i, one can determine the eigenvectors, ni, asso-ciated with �i by solving the characteristic system (1.108). When the tensor (ormatrix) � is symmetric, all eigenvalues and the associated eigenvectors are real.This is the case with most tensors arising in uid mechanics.Example 1.3.3. Principal values and directions(a) Find the principal values of the tensor� = 264 x 0 z0 2y 0z 0 x 375 :(b) Determine the principal directions n1;n2;n3 at the point (0,1,1).(c) Verify that the vector ux through a surface normal to a principal direction niis collinear with ni.(d) What is the matrix form of the tensor � in the coordinate system de�ned byfn1;n2;n3g?Solution:(a) The characteristic equation of � is0 = det(� � �I) = ������� x� � 0 z0 2y � � 0z 0 x� � ������� = (2y � �) ����� x� � zz x� � ����� =)(2y � �) (x� �� z) (x� �+ z) = 0:The eigenvalues of � are �1=2y, �2=x � z and �3=x + z.(b) At the point (0; 1; 1),� = 264 0 0 10 2 01 0 0 375 = ik + 2jj + ki ;



36 Chapter 1. Vector and Tensor Calculusand �1=2, �2=�1 and �3=1. The associated eigenvectors are determined by solvingthe corresponding characteristic system:(� � �iI) � ni = 0 ; i = 1; 2; 3 :For �1=2, one gets264 0� 2 0 10 2� 2 01 0 0� 2 375264 nx1ny1nz1 375 = 264 000 375 =) �2nx1 + nz1 = 00 = 0nx1 � 2nz1 = 0 9>=>; =)nx1 = nz1 = 0 :Therefore, the eigenvectors associated with �1 are of the form (0; a; 0), where a isan arbitrary nonzero constant. For a=1, the eigenvector is normalized, i.e. it is ofunit magnitude. We set n1 = (0; 1; 0) = j :Similarly, solving the characteristic systems264 0 + 1 0 10 2 + 1 01 0 0 + 1 375264 nx2ny2nz2 375 = 264 000 375of �2=�1, and 264 0� 1 0 10 2� 1 01 0 0� 1 375264 nx3ny3nz3 375 = 264 000 375of �3=1, we �nd the normalized eigenvectorsn2 = 1p2 (1; 0;�1) = 1p2 (i� k)and n3 = 1p2 (1; 0; 1) = 1p2 (i+ k) :We observe that the three eigenvectors, n1 n2 and n3 are orthogonal:2n1 � n2 = n2 � n3 = n3 � n1 = 0 :2A well known result of linear algebra is that the eigenvectors associated with distinct eigenvaluesof a symmetric matrix are orthogonal. If two eigenvalues are the same, then the two linearlyindependent eigenvectors determined by solving the corresponding characteristic system may notbe orthogonal. From these two eigenvectors, however, a pair of orthogonal eigenvectors can beobtained using the Gram-Schmidt orthogonalization process; see, for example, [3].



1.3 Tensors 37(c) The vector uxes through the three surfaces normal to n1 n2 and n3 are:n1 � � = j � (ik + 2jj + ki) = 2j = 2 n1 ;n2 � � = 1p2(i � k) � (ik + 2jj + ki) = 1p2 (k� i) = �n2 ;n3 � � = 1p2(i + k) � (ik + 2jj + ki) = 1p2 (k+ i) = n3 :(d) The matrix form of � in the coordinate system de�ned by fn1;n2;n3g is� = 2n1n1 � n2n2 + n3n3 = 264 2 0 00 �1 00 0 1 375 : 2The trace, tr� , of a tensor � is de�ned bytr� � 3Xi=1 �ii = �11 + �22 + �33 : (1.111)An interesting observation for the tensor � of Example 1.3.3 is that its trace is thesame (equal to 2) in both coordinate systems de�ned by fi; j;kg and fn1;n2;n3g.Actually, it can be shown that the trace of a tensor is independent of the coordinatesystem to which its components are referred. Such quantities are called invariantsof a tensor.3 There are three independent invariants of a second-order tensor � :I � tr� = 3Xi=1 �ii ; (1.112)II � tr� 2 = 3Xi=1 3Xj=1 �ij�ji ; (1.113)III � tr� 3 = 3Xi=1 3Xj=1 3Xk=1 �ij�jk�ki ; (1.114)where � 2=� � � and � 3=� � � 2. Other invariants can be formed by simply takingcombinations of I , II and III . Another common set of independent invariants is the3From a vector v, only one independent invariant can be constructed. This is the magnitudev=pv � v of v.



38 Chapter 1. Vector and Tensor Calculusfollowing: I1 = I = tr� ; (1.115)I2 = 12 (I2 � II) = 12 [(tr�)2 � tr� 2] ; (1.116)I3 = 16 (I3 � 3I II + 2III) = det � : (1.117)I1, I2 and I3 are called basic invariants of � . The characteristic equation of � canbe written as4 �3 � I1�2 + I2� � I3 = 0 : (1.118)If �1, �2 and �3 are the eigenvalues of � , the following identities hold:I1 = �1 + �2 + �3 = tr� ; (1.119)I2 = �1�2 + �2�3 + �3�1 = 12 [(tr�)2 � tr� 2] ; (1.120)I3 = �1�2�3 = det � : (1.121)The theorem of Cayley-Hamilton states that a square matrix (or a tensor) is a rootof its characteristic equation, i.e.,� 3 � I1� 2 + I2� � I3 I = O : (1.122)Note that in the last equation, the boldface quantities I and O are the unit and zerotensors, respectively. As implied by its name, the zero tensor is the tensor whose allcomponents are zero.Example 1.3.4. The �rst invariantConsider the tensor � = 264 0 0 10 2 01 0 0 375 = ik + 2jj + ki ;encountered in Example 1.3.3. Its �rst invariant isI � tr� = 0 + 2 + 0 = 2 :4The component matrices of a tensor in two di�erent coordinate systems are similar. An im-portant property of similar matrices is that they have the same characteristic polynomial; hence,the coe�cients I1, I2 and I3 and the eigenvalues �1, �2 and �3 are invariant under a change ofcoordinate system.



1.3 Tensors 39Verify that the value of I is the same in cylindrical coordinates.Solution:Using the relations of Table 1.1, we have� = ik + 2jj + ki= (cos � er � sin � e�) ez + 2 (sin � er + cos � e�) (sin � er + cos � e�)+ ez (cos � er � sin � e�)= 2 sin2 � erer + 2 sin � cos � ere� + cos � erez +2 sin � cos � e�er + 2 cos2 � e�e� � sin � e�ez +cos � ezer � sin � eze� + 0 ezez :Therefore, the component matrix of � in cylindrical coordinates fer; e�; ezg is� = 264 2 sin2 � 2 sin � cos � cos �2 sin � cos � 2 cos2 � � sin �cos � � sin � 0 375 :Notice that � remains symmetric. Its �rst invariant isI = tr� = 2 �sin2 � + cos2 �� + 0 = 2 ;as it should be. 21.3.2 Index Notation and SummationConventionSo far, we have used three di�erent ways for representing tensors and vectors:(a) the compact symbolic notation, e.g., u for a vector and � for a tensor;(b) the so-called Gibbs' notation, e.g.,3Xi=1 ui ei and 3Xi=1 3Xj=1 �ij eiejfor u and � , respectively; and(c) the matrix notation, e.g., � = 264 �11 �12 �13�21 �22 �23�31 �32 �33 375



40 Chapter 1. Vector and Tensor Calculusfor � .Very frequently, in the literature, use is made of the index notation and the so-called Einstein's summation convention, in order to simplify expressions involvingvector and tensor operations by omitting the summation symbols.In index notation, a vector v is represented asvi � 3Xi=1 vi ei = v : (1.123)A tensor � is represented as�ij � 3Xi=1 3Xj=1 �ij ei ej = � : (1.124)The nabla operator, for example, is represented as@@xi � 3Xi=1 @@xi ei = @@x i + @@y j + @@z k = r ; (1.125)where xi is the general Cartesian coordinate taking on the values of x, y and z. Theunit tensor I is represented by Kronecker's delta:�ij � 3Xi=1 3Xj=1 �ij ei ej = I : (1.126)It is evident that an explicit statement must be made when the tensor �ij is to bedistinguished from its (i; j) element.With Einstein's summation convention, if an index appears twice in an expres-sion, then summation is implied with respect to the repeated index, over the rangeof that index. The number of the free indices, i.e., the indices that appear onlyonce, is the number of directions associated with an expression; it thus determineswhether an expression is a scalar, a vector or a tensor. In the following expressions,there are no free indices, and thus these are scalars:uivi � 3Xi=1 uivi = u � v ; (1.127)�ii � 3Xi=1 �ii = tr� ; (1.128)



1.3 Tensors 41@ui@xi � 3Xi=1 @ui@xi = @ux@x + @uy@y + @uz@z = r � u ; (1.129)@2f@xi@xi or @2f@x2i � 3Xi=1 @2f@x2i = @2f@x2 + @2f@y2 + @2f@z2 = r2f ; (1.130)where r2 is the Laplacian operator to be discussed in more detail in Section 1.4. Inthe following expression, there are two sets of double indices, and summation mustbe performed over both sets:�ij�ji � 3Xi=1 3Xj=1 �ij�ji = � : � : (1.131)The following expressions, with one free index, are vectors:�ijkuivj � 3Xk=10@ 3Xi=1 3Xj=1 �ijkuivj1A ek = u� v ; (1.132)@f@xi � 3Xi=1 @f@xi ei = @f@x i + @f@y j + @f@z k = rf ; (1.133)�ijvj � 3Xi=10@ 3Xj=1 �ijvj1A ei = � � v : (1.134)Finally, the following quantities, having two free indices, are tensors:uivj � 3Xi=1 3Xj=1 uivj eiej = uv ; (1.135)�ik�kj � 3Xi=1 3Xj=1 3Xk=1 �ik�kj! eiej = � � � ; (1.136)@uj@xi � 3Xi=1 3Xj=1 @uj@xi eiej = ru : (1.137)Note that ru in the last equation is a dyadic tensor.55Some authors use even simpler expressions for the nabla operator. For example, r � u is alsorepresented as @iui or ui;i, with a comma to indicate the derivative, and the dyadic ru is representedas @iuj or ui;j .



42 Chapter 1. Vector and Tensor Calculus1.3.3 Tensors in Fluid MechanicsFlows in the physical world are three dimensional, and so are the tensors involvedin the governing equations. Many ow problems, however, are often approximatedas two- or even one-dimensional, in which cases, the involved tensors and vectorsdegenerate to two- or one-dimensional forms. In this subsection, we give only a briefdescription of the most important tensors in uid mechanics. More details are givenin following chapters.The stress tensor, T, represents the state of the stress in a uid. When operatingon a surface, T produces a traction f=n�T, where n is the unit normal to the surface.In static equilibrium, the stress tensor is identical to the hydrostatic pressure tensor,TSE = �pH I ; (1.138)where pH is the scalar hydrostatic pressure. The traction on any submerged surfaceis given by fSE = n �TSE = n � (�pH I) = �pH n ; (1.139)and is normal to the surface; its magnitude is identical to the hydrostatic pressure:jfSEj = j � pH nj = pH :Since the resulting traction is independent of the orientation of the surface, thepressure tensor is isotropic, i.e., its components are unchanged by rotation of theframe of reference.In owing incompressible media, the stress tensor consists of an isotropic orpressure part, which is, in general, di�erent from the hydrostatic pressure tensor,and an anisotropic or viscous part, which resists relative motion:6T = �p I + �" TotalStress # = 264 IsotropicPressureStress 375 + 264 AnisotropicViscousStress 375 (1.140)The viscous stress tensor � is, of course, zero in static equilibrium. It is, in general,anisotropic, i.e., the viscous traction on a surface depends on its orientation: it6In some books (e.g., in [4] and [9]), a di�erent sign convention is adopted for the total stresstensor T, so that T = p I � � :An interesting discussion about the two sign conventions can be found in [9].



1.3 Tensors 43can be normal, shear (i.e., tangential) or mixture of the two. In matrix notation,Eq. (1.140) becomes264 T11 T12 T13T21 T22 T23T31 T32 T33 375 = 264 �p 0 00 �p 00 0 �p 375+ 264 �11 �12 �13�21 �22 �23�31 �32 �33 375 ; (1.141)and, in index notation, Tij = �p �ij + �ij : (1.142)The diagonal components, Tii, of T are normal stresses, and the nondiagonal onesare shear stresses.Equation (1.140) is the standard decomposition of the stress tensor, inasmuchas the measurable quantities are, in general, the total stress components Tij and notp or �ij . For educational purposes, the following decomposition appears to be moreillustrative: T = �pH I � pE I + �N + �SH (1.143)� TotalStress � = " HydrostaticPressureStress #+ " ExtraPressureStress #+ " ViscousNormalStress #+ " ViscousShearStress #or, in matrix form,264 T11 T12 T13T21 T22 T23T31 T32 T33 375 = 264 �pH 0 00 �pH 00 0 �pH 375+ 264 �pE 0 00 �pE 00 0 �pE 375+ 264 �11 0 00 �22 00 0 �33 375+ 264 0 �12 �13�21 0 �23�31 �32 0 375 (1.144)The hydrostatic pressure stress, �pHI, is the only nonzero stress component instatic equilibrium; it is due to the weight of the uid and is a function of the positionor elevation z, i.e., pH(z) = p0 � �g (z � z0) ; (1.145)where p0 is the reference pressure at z = z0, � is the density of the uid, and g isthe gravitational acceleration.The extra pressure stress, �pEI, arises in owing media due to the perpendic-ular motion of the particles towards a material surface, and is proportional to the



44 Chapter 1. Vector and Tensor Calculusconvective momentum carried by the moving molecules. In inviscid motions, whereeither the viscosity of the medium is vanishingly small or the velocity gradients arenegligible, the hydrostatic and extra pressure stresses are the only nonzero stresscomponents.The viscous normal stress, �N , is due to accelerating or decelerating perpendic-ular motions towards material surfaces and is proportional to the viscosity of themedium and the velocity gradient along the streamlines.Finally, the viscous shear stress, �SH , is due to shearing motions of adjacentmaterial layers next to material surfaces. It is proportional to the viscosity of themedium and to the velocity gradient in directions perpendicular to the streamlines.In stretching or extensional ows, where there are no velocity gradients in the di-rections perpendicular to the streamlines, the viscous shear stress is zero and thus�N is the only nonzero viscous stress component. In shear ows, such as ows inrectilinear channels and pipes, �N vanishes.In summary, the stress (or force per unit area) is the result of the momentumcarried by N molecules across the surface according to Newton's law of motion:n �T = f = F�S = 1�S NXi=1 ddt (miui) (1.146)Any ow is a superposition of the above mentioned motions, and, therefore, theappropriate stress expression is that of Eqs. (1.140) and (1.143). Each of the stresscomponents is expressed in terms of physical characteristics of the medium (i.e.,viscosity, density, and elasticity which are functions of temperature in nonisothermalsituations) and the velocity �eld by means of the constitutive equation which ishighlighted in Chapter 5.The strain tensor,C, represents the state of strain in a medium and is commonlycalled the Cauchy strain tensor. Its inverse, B=C�1, is known as the Finger straintensor. Both tensors are of primary use in non-Newtonian uid mechanics. Dottedwith the unit normal to a surface, the Cauchy strain tensor (or the Finger straintensor) yields the strain of the surface due to shearing and stretching. The compo-nents of the two tensors are the spatial derivatives of the coordinates with respectto the coordinates at an earlier (Cauchy) or later (Finger) time of the moving uidparticle [9].The velocity gradient tensor, ru, measures the rate of change of the separationvector, rAB, between neighboring uid particles at A and B, according toru = rdrABdt ; (1.147)



1.3 Tensors 45Shear ow: channel ow Extensional ow: opposing jetst = 0 t1 > 0 t2 > t1 0 t1 t2Figure 1.18. Rotational (weak) and irrotational (strong) deformation of materiallines in shear and extensional ows, respectively.and represents the rate of change of the magnitude (stretching or compression) andthe orientation (rotation) of the material vector rAB. ru is the dyadic tensor of thegeneralized derivative vectorr and the velocity vector u, as explained in Section 1.4.Like any tensor, ru can be decomposed into a symmetric, D, and an antisymmetricpart, S:7 ru = D + 
 : (1.148)The symmetric tensor D = 12 [ru+ (ru)T ] (1.149)is the rate of strain (or rate of deformation) tensor, and represents the state of theintensity or rate of strain. The antisymmetric tensorS = 12 [ru� (ru)T ] (1.150)is the vorticity tensor.8 If n is the unit normal to a surface, then the dot productn � D yields the rate of change of the distances in three mutually perpendicular7Some authors de�ne the rate-of-strain and vorticity tensors asD = ru+ (ru)T and S = ru� (ru)T ;so that 2ru = D + 
 :8Other symbols used for the rate-of-strain and the vorticity tensors are d, _ and E for D, and
, ! and � for S.



46 Chapter 1. Vector and Tensor CalculusTensor Orientation Operation Result or Vector � FluxStress; T unit normal; n n �T TractionRate of strain; D unit normal; n n �D Rate of stretchingunit tangent; t t �D Rate of rotationViscous Stress; � velocity gradient; ru � : ru Scalar viscous dissipationTable 1.3. Vector-tensor operations producing measurable result or ux.directions. The dot product n �S gives the rate of change of orientation along thesedirections.In purely shear ows the only strain is rotational. The distance between twoparticles on the same streamline does not change, whereas the distance betweenparticles on di�erent streamlines changes linearly with traveling time. Thus thereis both stretching (or compression) and rotation of material lines (or material vec-tors), and the ow is characterized as rotational or weak ow. In extensional ows,the separation vectors among particles on the same streamline change their lengthexponentially, whereas the separation vectors among particles on di�erent stream-lines do not change their orientation. These ows are irrotational or strong ows.Figure 1.18 illustrates the deformation of material lines, de�ned as one-dimensionalcollections of uid particles that can be shortened, elongated and rotated, in rota-tional shear ows and in irrotational extensional ows.The rate of strain tensor represents the strain state and is zero in rigid-bodymotion (translation and rotation), since this induces no strain (deformation). Thevorticity tensor represents the state of rotation, and is zero in strong irrotationalows. Based on these remarks, we can say that strong ows are those in whichthe vorticity tensor is zero; the directions of maximum strain do not rotate todirections of less strain, and, therefore, the maximum (strong) strain does not havethe opportunity to relax. Weak ows are those of nonzero vorticity; in this case, thedirections of maximum strain rotate, and the strain relaxes. Table 1.3 lists someexamples of tensor action arising in Mechanics.Example 1.3.5. Strong and weak owsIn steady channel ow (see Fig. 1.18), the velocity components are given byux = a (1� y2) ; uy = 0 and uz = 0 :Let (x0; y0; z0) and (x; y; z) be the positions of a particle at times t=0 and t, respec-



1.3 Tensors 47tively. By integrating the velocity components with respect to time, one gets:ux = dxdt = a (1� y2) =) x = x0 + a (1� y2) t ;uy = 0 =) y = y0 ;uz = 0 =) z = z0 :The uid particle at (x; y0; z0) is separated linearly with time from that at (x0; y0; z0),and, thus, the resulting strain is small. The matrix form of the velocity gradienttensor in Cartesian coordinates isru = 266664 @ux@x @uy@x @uz@x@ux@y @uy@y @uz@y@ux@z @uy@z @uz@z 377775 ; (1.151)and, therefore,ru = 264 0 0 0�2ay 0 00 0 0 375 ; D = 264 0 �ay 0�ay 0 00 0 0 375 ; S = 264 0 ay 0�ay 0 00 0 0 375 :The vorticity tensor is nonzero and thus the ow is weak.Let us now consider the extensional ow of Fig. 1.18. The velocity componentsare given by ux = "x ; uy = �"y and uz = 0 ;therefore, ux = dxdt = "x =) x = x0 e"t ;uy = dydt = �"y =) y = y0 e�"t ;uz = 0 =) z = z0 :Since the uid particle at (x; y; z0) is separated exponentially with time from thatat (x0; y0; z0), the resulting strain (stretching) is large. The velocity-gradient, rateof strain, and vorticity tensors are:ru = 264 " 0 00 �" 00 0 0 375 ; D = 264 " 0 00 �" 00 0 0 375 ; S = 264 0 0 00 0 00 0 0 375 :Since the vorticity tensor is zero, the ow is strong. 2



48 Chapter 1. Vector and Tensor Calculus1.4 Di�erential OperatorsThe nabla operator r, already encountered in previous sections, is a di�erential op-erator. In a Cartesian system of coordinates (x1; x2; x3), de�ned by the orthonormalbasis (e1; e2; e3),r � e1 @@x1 + e2 @@x2 + e3 @@x3 = 3Xi=1 ei @@xi ; (1.152)or, in index notation, r � @@xi : (1.153)The nabla operator is a vector operator which acts on scalar, vector, or tensor �elds.The result of its action is another �eld the order of which depends on the type ofthe operation. In the following, we will �rst de�ne the various operations of r inCartesian coordinates, and then discuss their forms in curvilinear coordinates.The gradient of a di�erentiable scalar �eld f , denoted byrf or gradf , is a vector�eld:rf =  3Xi=1 ei @@xi! f = 3Xi=1 ei @f@xi = e1 @f@x1 + e2 @f@x2 + e3 @f@x3 : (1.154)The gradient rf can be viewed as a generalized derivative in three dimensions; itmeasures the spatial change of f occurring within a distance dr(dx1; dx2; dx3).The gradient of a di�erentiable vector �eld u is a dyadic tensor �eld:ru =  3Xi=1 ei @@xi! ( 3Xj=1ujej) = 3Xi=1 3Xj=1 @uj@xi eiej : (1.155)As explained in Section 1.3.3, if u is the velocity, then ru is called the velocity-gradient tensor.The divergence of a di�erentiable vector �eld u, denoted by r � u or divu, is ascalar �eldr � u =  3Xi=1 ei @@xi! � ( 3Xj=1 ujej) = 3Xi=1 @ui@xi �ij = @u1@x1 + @u2@x2 + @u3@x3 : (1.156)r � u measures changes in magnitude, or ux through a point. If u is the velocity,then r �u measures the rate of volume expansion per unit volume; hence, it is zerofor incompressible uids. The following identity is easy to prove:r � (fu) = rf � u + f r � u : (1.157)



1.4 Di�erential Operators 49The curl or rotation of a di�erentiable vector �eld u, denoted by r�u or curluor rotu, is a vector �eld:r� u =  3Xi=1 ei @@xi! � ( 3Xj=1ujej) = ������� e1 e2 e3@@x1 @@x2 @@x3u1 u2 u3 ������� (1.158)or r� u = �@u3@x2 � @u2@x3� e1 + �@u1@x3 � @u3@x1� e2 + �@u2@x1 � @u1@x2� e3 : (1.159)The �eld r� u is often called the vorticity (or chirality) of u.The divergence of a di�erentiable tensor �eld � is a vector �eld:9r � � =  3Xk=1 ek @@xk! � 0@ 3Xi=1 3Xj=1 �ijeiej1A = 3Xi=1 3Xj=1 @�ij@xi ej : (1.160)Example 1.4.1. The divergence and the curl of the position vectorConsider the position vector in Cartesian coordinates,r = x i + y j + z k : (1.161)For its divergence and curl, we obtain:r � r = @x@x + @y@y + @z@z =)r � r = 3 ; (1.162)and r� r = �������� i j k@@x @@y @@zx y z �������� =)r� r = 0 (1.163)Equations (1.162) and (1.163) hold in all coordinate systems. 29The divergence of a tensor � is sometimes denoted by div� .



50 Chapter 1. Vector and Tensor CalculusOther useful operators involving the nabla operator are the Laplace operator r2and the operator u � r, where u is a vector �eld. The Laplacian of a scalar f withcontinuous second partial derivatives is de�ned as the divergence of the gradient:r2f � r � (rf) = @2f@x21 + @2f@x22 + @2f@x23 ; (1.164)i.e., r2 � r � r = @2@x21 + @2@x22 + @2@x23 : (1.165)A function whose Laplacian is identically zero is called harmonic.If u=u1e1+u2e2+u3e3 is a vector �eld, thenr2u = r2u1e1 +r2u2e2 +r2u3e3 : (1.166)For the operator u � r, we obtain:u � r = (u1e1 + u2e2 + u3e3) � �e1 @@x1 + e2 @@x2 + e3 @@x3� =)u � r = u1 @@x1 + u2 @@x2 + u3 @@x3 : (1.167)The above expressions are valid only for Cartesian coordinate systems. In curvi-linear coordinate systems, the basis vectors are not constant and the forms of r arequite di�erent, as explained in Example 1.4.3. Notice that gradient always raises theorder by one (the gradient of a scalar is a vector, the gradient of a vector is a tensorand so on), while divergence reduces the order of a quantity by one. A summary ofuseful operations in Cartesian coordinates (x; y; z) is given in Table 1.4.For any scalar function f with continuous second partial derivatives, the curl ofthe gradient is zero, r� (rf) = 0 : (1.168)For any vector function u with continuous second partial derivatives, the divergenceof the curl is zero, r � (r� u) = 0 : (1.169)Equations (1.168) and (1.169) are valid independently of the coordinate system.Their proofs are left as exercises to the reader (Problem 1.11). Other identitiesinvolving the nabla operator are given in Table 1.5.In uid mechanics, the vorticity ! of the velocity vector u is de�ned as the curlof u, ! � r� u : (1.170)



1.4 Di�erential Operators 51r = i @@x + j @@y + k @@zr2 = @2@x2 + @2@y2 + @2@z2u � r = ux @@x + uy @@y + uz @@zrp = @p@x i + @p@y j + @p@z kr � u = @ux@x + @uy@y + @uz@zr� u = �@uz@y � @uy@z � i + �@ux@z � @uz@x � j + �@uy@x � @ux@y � kru = @ux@x ii + @uy@x ij + @uz@x ik + @ux@y ji+ @uy@y jj + @uz@y jk + @ux@z ki + @uy@z kj + @uz@z kku � ru = �ux@ux@x + uy @ux@y + uz @ux@z � i + �ux@uy@x + uy @uy@y + uz @uy@z � j+ �ux@uz@x + uy @uz@y + uz @uz@z � kr � � = �@�xx@x + @�yx@y + @�zx@z � i + �@�xy@x + @�yy@y + @�zy@z � j+ �@�xz@x + @�yz@y + @�zz@z �kTable 1.4. Summary of di�erential operators in Cartesian coordinates (x; y; z); p,u and � are scalar, vector and tensor �elds, respectively.



52 Chapter 1. Vector and Tensor Calculusr(u � v) = (u � r) v + (v � r) u + u� (r� v) + v� (r� u)r � (fu) = f r � u + u � rfr � (u� v) = v � (r� u) � u � (r� v)r � (r� u) = 0r� (fu) = f r� u + rf � ur� (u� v) = ur � v � vr � u + (v � r) u � (u � r) vr� (r� u) = r(r � u) � r2ur� (rf) = 0r(u � u) = 2 (u � r) u + 2u� (r� u)r2(fg) = f r2g + gr2f + 2rf � rgr � (rf �rg) = 0r � (f rg � grf) = f r2g � gr2fTable 1.5. Useful identities involving the nabla operator; f and g are scalar �elds,and u and v are vector �elds. It is assumed that all the partial derivatives involvedare continuous.



1.4 Di�erential Operators 53r = er @@r + e� 1r @@� + ez @@zr2 = 1r @@r �r @@r� + 1r2 @2@�2 + @2@z2u � r = ur @@r + u�r @@� + uz @@zrp = @p@r er + 1r @p@� e� + @p@z ezr � u = 1r @@r(rur) + 1r @u�@� + @uz@zr� u = �1r @uz@� � @u�@z �er + �@ur@z � @uz@r � e� + h1r @@r (ru�)� 1r @ur@� iezru = @ur@r erer + @u�@r ere� + @uz@r erez + �1r @ur@� � u�r � e�er+ �1r @u�@� + urr � e�e� + 1r @uz@� e�ez + @ur@z ezer + @u�@z eze� + @uz@z ezezu � ru = hur @ur@r + u� �1r @ur@� � u�r �+ uz @ur@z i er+ hur @u�@r + u� �1r @u�@� + urr �+ uz @u�@z i e�+ hur @uz@r + u� 1r @uz@� + uz @uz@z i ezr � � = h1r @@r (r�rr) + 1r @��r@� + @�zr@z � ���r ier+ h 1r2 @@r(r2�r�) + 1r @���@� + @�z�@z � ��r � �r�r ie�+ h1r @@r (r�rz) + 1r @��z@� + @�zz@z iezTable 1.6. Summary of di�erential operators in cylindrical polar coordinates(r; �; z); p, u and � are scalar, vector and tensor �elds, respectively.



54 Chapter 1. Vector and Tensor Calculusr = er @@r + e� 1r @@� + e� 1r sin � @@�r2 = 1r2 @@r �r2 @@r� + 1r2 sin � @@� �sin � @@�� + 1r2 sin2 � @2@�2u � r = ur @@r + u�r @@� + u�r sin � @@�rp = @p@r er + 1r @p@� e� + 1r sin � @p@� e�r � u = 1r2 @@r(r2ur) + 1r sin � @@� (u� sin �) + 1r sin � @u�@�r� u = [ 1r sin � @@� (u� sin �)� 1r sin � @u�@� ]er + [ 1r sin � @ur@� � 1r @@r (ru�)]e�+[1r @@r(ru�)� 1r @ur@� ]e�ru = @ur@r erer + @u�@r ere� + @u�@r ere� + �1r @ur@� � u�r � e�er+ �1r @u�@� + urr � e�e� + 1r @u�@� e�e� + � 1r sin � @ur@� � u�r � e�er+� 1r sin � @u�@� � u�r cot �� e�e� + � 1r sin � @u�@� + urr + u�r cot �� e�e�u � ru = [ur @ur@r + u� �1r @ur@� � u�r �+ u�� 1r sin � @ur@� � u�r �] er+ [ur @u�@r + u� �1r @u�@� + urr �+ u� � 1r sin � @u�@� � u�r cot ��] e�+ [ur @u�@r + u� 1r @u�@� + u�� 1r sin � @u�@� + urr + u�r cot ��] e�r � � = [ 1r2 @@r (r2�rr) + 1r sin � @@� (��r sin �) + 1r sin � @��r@� � ��� + ���r ]er+ [ 1r3 @@r (r3�r�) + 1r sin � @@� (��� sin �) + 1r sin � @���@� + ��r � �r� � ��� cot �r ]e�+ [ 1r3 @@r (r3�r�) + 1r sin � @@� (��� sin �) + 1r sin � @���@� + ��r � �r� � ��� cot �r ]e�Table 1.7. Summary of di�erential operators in spherical polar coordinates (r; �; �);p, u and � are scalar, vector and tensor �elds, respectively.



1.4 Di�erential Operators 55Other symbols used for the vorticity, in the uid mechanics literature, are �, � and
. If, in a ow, the vorticity vector is zero everywhere, then the ow is said to beirrotational. Otherwise, i.e., if the vorticity is not zero, at least in some regions ofthe ow, then the ow is said to be rotational. For example, if the velocity �eld canbe expressed as the gradient of a scalar function, i.e., if u=rf , then according toEq. (1.168), ! � r� u = r� (rf) = 0 ;and, thus, the ow is irrotational.A vector �eld u is said to be solenoidal if its divergence is everywhere zero, i.e.,if r � u = 0 : (1.171)From Eq. (1.169), we deduce that the vorticity vector is solenoidal, sincer �! = r � (r� u) = 0 :Example 1.4.2. Physical signi�cance of di�erential operatorsConsider an in�nitesimal volume �V bounded by a surface �S. The gradient of ascalar �eld f can be de�ned asrf � lim�V!0 R�S n f dS�V ; (1.172)where n is the unit vector normal to the surface �S. The gradient here representsthe net vector ux of the scalar quantity f at a point where the volume �V ofsurface �S collapses in the limit. At that point, the above equation reduces toEq. (1.154).The divergence of the velocity vector u can be de�ned asr � u � lim�V!0 R�S(n � u) dS�V ; (1.173)and represents the scalar ux of the vector u at a point, which is equivalent to thelocal rate of expansion (see Example 1.5.3).Finally, the vorticity of u may be de�ned asr� u � lim�V!0 R�S(n� u)dS�V ; (1.174)and represents the vector net ux of the scalar angular component at a point, whichtends to rotate the uid particle at the point where �V collapses. 2



56 Chapter 1. Vector and Tensor CalculusExample 1.4.3. The nabla operator in cylindrical polar coordinates(a) Express the nabla operatorr = i @@x + j @@y + k @@z (1.175)in cylindrical polar coordinates.(b) Determine rc and r � u, where c is a scalar and u is a vector.(c) Derive the operator u � r and the dyadic product ru in cylindrical polar coor-dinates.Solution:(a) From Table 1.1, we have: i = cos � er � sin � e�j = sin � er + cos � e�k = ezTherefore, we just need to convert the derivatives with respect to x, y and z intoderivatives with respect to r, � and z. Starting with the expressions of Table 1.1and using the chain rule, we get:@@x = @r@x @@r + @�@x @@� = cos � @@r � sin �r @@�@@y = sin � @@r + cos �r @@�@@z = @@zSubstituting now into Eq. (1.175) givesr = (cos � er � sin � e�) �cos � @@r � sin �r @@��+ (sin � er + cos � e�) �sin � @@r + cos �r @@�� + ez @@z :After some simpli�cations and using the trigonometric identity sin2 �+sin2 �=1, weget r = er @@r + e� 1r @@� + ez @@z (1.176)



1.4 Di�erential Operators 57(b) The gradient of the scalar c is given byrc = er @c@r + e� 1r @c@� + ez @c@z : (1.177)For the divergence of the vector u, we haver � u = �er @@r + e� 1r @@� + ez @@z� � (urer + u�e� + uzez) :Noting that the only nonzero spatial derivatives of the unit vectors are@er@� = e� and @e�@� = �er(see Eq. 1.17), we obtainr � u = @ur@r + e� � 1r �ur @er@� + @u�@� e� + u� @e�@� � + @uz@z= @ur@r + 1r @u�@� + e� � 1r (ure� � u�er) + @uz@z= @ur@r + 1r @u�@� + urr + @uz@z =)r � u = 1r @@r(rur) + 1r @u�@� + @uz@z : (1.178)(c) u � r = (urer + u�e� + uzez) �er @@r + e� 1r @@� + ez @@z� =)u � r = ur @@r + u�r @@� + uz @@z : (1.179)Finally, for the dyadic product ru we haveru = �er @@r + e� 1r @@� + ez @@z� (urer + u�e� + uzez)= erer@ur@r + ere� @u�@r + erez @uz@r+ e�er 1r @ur@� + e� 1rur @er@� + e�e� 1r @e�@� + e� 1ru� @e�@� + e�ez 1r @uz@�+ ezer @ur@z + eze� @u�@z + ezez @uz@z =)



58 Chapter 1. Vector and Tensor Calculusru = erer @ur@r + ere� @u�@r + erez @uz@r+ e�er 1r �@ur@� � u�� + e�e� 1r �@u�@� + ur� + e�ez 1r @uz@�+ ezer @ur@z + eze� @u�@z + ezez @uz@z (1.180)2Any other di�erential operation in curvilinear coordinates is evaluated followingthe procedures of Example 1.4.3. In Tables 1.6 and 1.7, we provide the most impor-tant di�erential operations in cylindrical and spherical coordinates, respectively.1.4.1 The Substantial DerivativeThe time derivative represents the rate of change of a physical quantity experiencedby an observer who can be either stationary or moving. In the case of uid ow,a nonstationary observer may be moving exactly as a uid particle or not. Hence,at least three di�erent time derivatives can be de�ned in uid mechanics and intransport phenomena. The classical example of �sh concentration in a lake, providedin [4], is illustrative of the similarities and di�erences between these time derivatives.Let c(x; y; t) be the �sh concentration in a lake. For a stationary observer, saystanding on a bridge and looking just at a spot of the lake beneath him, the timederivative is determined by the amount of �sh arriving and leaving the spot ofobservation, i.e., the total change in concentration and thus the total time derivative,is identical to the partial derivative,dcdt = �@c@t�x;y ; (1.181)and is only a function of the local change of concentration. Imagine now the observerriding a boat which can move with relative velocity uRel with respect to that of thewater. Hence, if uBoat and uWater are the velocities of the boat and the water,respectively, then uRel = uBoat + uWater : (1.182)The concentration now is a function not only of the time t, but also of the positionof the boat r(x; y) too. The position of the boat is a function of time, and, in fact,drdt = uRel (1.183)



1.4 Di�erential Operators 59and so dxdt = uRelx and dydt = uRely : (1.184)Thus, in this case, the total time derivative or the change experienced by the movingobserver is, ddt [c(t; x; y)] � �@c@t�x;y + � @c@x�t;y dxdt + �@c@y�t;y dydt == �@c@t�x;y + uRelx � @c@x�t;y + uRely �@c@y�t;x (1.185)Imagine now the observer turning o� the engine of the boat so that uBoat = 0 anduRel = uWater. Then,ddt [c(t; x; y)] = �@c@t�x;y + �@c@x�t;y dxdt + �@c@y�t;x dydt= �@c@t�x;y + uWaterx � @c@x�t;y + uWatery �@c@y�t;x= @c@t + u � rcThis derivative is called the substantial derivative and is denoted by D=Dt:DcDt � @c@t + u � rc : (1.186)(The terms substantive,material or convective are sometimes used for the substantialderivative.) The substantial derivative expresses the total time change of a quantity,experienced by an observer following the motion of the liquid. It consists of a localchange, @c=@t, which vanishes under steady conditions (i.e., same number of �sharrive and leave the spot of observation), and of a traveling change, u �rc, which ofcourse is zero for a stagnant liquid or uniform concentration. Thus, for a steady-stateprocess, DcDt = u � rc = u1 @c@x1 + u2 @c@x2 + u3 @c@x3 : (1.187)For stagnant liquid or uniform concentration,DcDt = �@c@t�x;y;z = dcdt : (1.188)



60 Chapter 1. Vector and Tensor CalculusExample 1.4.4. Substantial derivative10Let T (x; y) be the surface temperature of a stationary lake. Assume that you attacha thermometer to a boat and take a path through the lake de�ned by x = a(t) andy = b(t). Find an expression for the rate of change of the thermometer temperaturein terms of the lake temperature.Solution: dT (x; y)dt = �@T@t �x;y + �@T@x�t;y dxdt + �@T@y �t;x dydt= 0 + �@T@x�y dadt + �@T@y �x dbdt :Limiting cases:If T (x; y) = c; then dTdt = 0 :If T (x; y) = f(x); then dTdt = dTdx dadt = dfdx dadt :If T (x; y) = g(y); then dTdt = dTdy dbdt = dgdy dbdt :Notice that the local time derivative is zero because T (x; y) is not a function of time.2The forms of the substantial derivative operator in the three coordinate systemsof interest are tabulated in Table 1.8.1.5 Integral TheoremsThe Gauss or divergence theoremThe Gauss theorem is one of the most important integral theorems of vector calculus.It can be viewed as a generalization of the fundamental theorem of calculus whichstates that Z ba d�dxdx = �(b)� �(a) ; (1.189)where �(x) is a scalar one-dimensional function which obviously must be di�eren-tiable. Equation (1.189) can also be written as follows:i Z ba �d�dx�dx = i [�(b)� �(a)] = [n�(x)]ba ; (1.190)10Taken from Ref. [6].



1.5 Integral Theorems 61Coordinate system DDt � @@t + u � r(x; y; z) @@t + ux @@x + uy @@y + uz @@z(r; �; z) @@t + ur @@r + u�r @@� + uz @@z(r; �; �) @@t + ur @@r + u�r @@� + u�r sin � @@�Table 1.8. The substantial derivative operator in various coordinate systems.O a b xi n=�i n=iR ba i �d�dx�dx= [n�(x)]baFigure 1.19. The fundamental theorem of calculus.where n is the unit vector pointing outwards from the one-dimensional interval ofintegration, a � x � b, as shown in Fig. 1.19.Equation (1.190) can be extended to two dimensions as follows. Consider thesquare S de�ned by a � x � b and c � y � d and a function �(x; y) with continuous�rst partial derivatives. ThenZS r� dS = Z dc Z ba �i@�@x + j@�@y�dxdy = i Z dc Z ba @�@xdxdy + j Z dc Z ba @�@y dxdy= i Z dc [�(b; y)� �(a; y)]dy+ j Z ba [�(x; d)� �(x; c)]dx= Z dc [n�(x; y)]bady + Z ba [n�(x; y)]dcdx =)ZS r� dS = ZC n � d` ; (1.191)



62 Chapter 1. Vector and Tensor Calculusn Surface SVx yz RV r � u dV= RS n � u dS
Figure 1.20. The Gauss or divergence theorem.where n is the outward unit normal to the boundary C of S, and ` is the arc lengtharound C. Note that Eq. (1.191) is valid for any surface S on the plane boundedby a curve C. Similarly, if V is an arbitrary closed region bounded by a surface S,and �(x; y; z) is a scalar function with continuous �rst partial derivatives, one gets:ZV r� dV = ZS n � dS ; (1.192)where n is the unit normal pointing outward from the surface S, as depicted inFig. 1.20. Equation (1.192) is known as the Gauss or divergence theorem. TheGauss theorem holds not only for tensor �elds of zeroth order (i.e., scalar �elds),but also for tensors of higher order (i.e., vector and second-order tensor �elds).If u and � are vector and tensor �elds, respectively, with continuous �rst partialderivatives, the Gauss theorem takes the following forms:ZV r � u dV = ZS n � u dS ; (1.193)and ZV r � � dV = ZS n � � dS : (1.194)In words, the Gauss theorem states that the volume integral of the divergence of avector or tensor �eld over an arbitrary control volume V is equal to the ow rate ofthe �eld across the surface S bounding the domain V . If a vector �eld u happens



1.5 Integral Theorems 63nt SCx yz RS n � (r� u) dS = HC t � u d`
Figure 1.21. The Stokes theorem.to be solenoidal, r � u=0 and, hence, the ow rate of u across S is zero:Zs n � u dS = 0 :The Stokes theoremConsider a surface S bounded by a closed curve C and designate one of its sides,as the outside. At any point of the outside, we de�ne the unit normal n to pointoutwards; thus, n does not cross the surface S. Let us also assume that the unittangent t to the boundary C is directed in such a way that the surface S is alwayson the left (Fig. 1.21). In this case, the surface S is said to be oriented accordingto the right-handed convention. The Stokes theorem states that the ow rate of thevorticity, r�u, of a di�erentiable vector �eld u through S is equal to the circulationof u along the boundary C of S:ZS n � (r� u) dS = IC t � u d` : (1.195)Another form of the Stokes theorem isZS(r� u) � dS = IC u � dr ; (1.196)



64 Chapter 1. Vector and Tensor Calculuswhere dS=ndS, dr=td`, and r is the position vector.One notices that the Gauss theorem expresses the volume integral of a di�eren-tiated quantity in terms of a surface integral which does not involve di�erentiation.Similarly, the Stokes theorem transforms a surface integral to a line integral eli-minating the di�erential operator. The analogy with the fundamental theorem ofcalculus in Eq. (1.189) is obvious.In the special case r � u=0, Eq. (1.196) indicates that the circulation of u iszero: IC u � dr = 0 : (1.197)If u represents a force �eld which acts on one object, Eq. (1.197) implies that thework done in moving the object from one point to another is independent of thepath joining the two points. Such a force �eld is called conservative. The necessaryand su�cient condition for a force �eld to be conservative is r� u=0.Example 1.5.1. Green's identitiesConsider the vector �eld �r , where � and  are scalar functions with continuoussecond partial derivatives. Applying the Gauss theorem, we getZV r � (�r ) dV = ZS(�r ) � n dS :Using the identity r � (�r ) = �r2 + r� � r ;we derive Green's �rst identity:ZV ��r2 + r� � r � dV = ZS(�r ) � n dS : (1.198)Interchanging � with  and subtracting the resulting new relation from the aboveequation yield Green's second identity:ZV ��r2 �  r2�� dV = ZS(�r �  r�) � n dS : (1.199)2The Reynolds transport theoremConsider a function f(x; t) involving a parameter t. The derivative of the de�niteintegral of f(x; t) from x=a(t) to x=b(t) with respect to t is given by Leibnitz'sformula:ddt Z x=b(t)x=a(t) f(x; t) dx = Z b(t)a(t) @f@t dx + f(b; t)dbdt � f(a; t)dadt : (1.200)



1.5 Integral Theorems 65In many cases, the parameter t can be viewed as the time. In such a case, thelimits of integration a and b are functions of time moving with velocities dadt and dbdt ,respectively. Therefore, another way to write Eq. (1.200) isi ddt Z x=b(t)x=a(t) f(x; t) dx = i Z b(t)a(t) @f@t dx + [n � (fu)]b(t)a(t) ; (1.201)where n is the unit vector pointing outwards from the one-dimensional interval ofintegration, and u denotes the velocity of the endpoints.The generalization of Eq. (1.201) in the three dimensional space is providedby the Reynolds Transport Theorem. If V (t) is a closed three-dimensional regionbounded by a surface S(t) moving with velocity u, r is the position vector, andf(r; t) is a scalar function, thenddt ZV (t) f(r; t) dV = ZV (t) @f@t dV + ZS(t) n � (fu) dS : (1.202)The theorem is valid for vectorial and tensorial �elds as well. If the boundary is�xed, u=0, and the surface integral of Eq. (1.202) is zero. In this case, the theoremsimply says that one can interchange the order of di�erentiation and integration.Example 1.5.2. Conservation of massAssume that a balloon, containing a certain amount of a gas, moves in the air andis deformed as it moves. The mass m of the gas is then given bym = ZV (t) � dV ;where V (t) is the region occupied by the balloon at time t, and � is the density ofthe gas. Since the mass of the gas contained in the balloon is constant,dmdt = ddt ZV (t) � dV = 0:From Reynolds transport theorem, we get:ZV (t) @�@t dV + ZS(t) n � (�u) dS = 0 ;where u is the velocity of the gas, and S(t) is the surface of the balloon. The surfaceintegral is transformed to a volume one by means of the Gauss theorem to give:ZV (t) @�@t dV + ZV (t)r � (�u) dV = 0 =)



66 Chapter 1. Vector and Tensor Calculus
FLOW t=t1 t=t2V (t1) V (t2)Figure 1.22. A control volume V (t) moving with the uid.ZV (t) �@�@t + r � (�u)� dV = 0 :Since the above result is true for any arbitrary volume V (t),@�@t + r � (�u) = 0 : (1.203)This is the well known continuity equation resulting from the conservation of massof the gas. This equation is valid for both compressible and incompressible uids. Ifthe uid is incompressible, then �=const., and Eq. (1.203) is reduced tor � u = 0 : (1.204)2Example 1.5.3. Local rate of expansionConsider an imaginary three-dimensional region V (t) containing a certain amountof uid and moving together with the uid, as illustrated in Fig. 1.22. Such a regionis called a moving control volume (see Chapter 2). As the balloon in the previousexample, the size and the shape of the control volume may change depending onthe ow. We shall show that the local rate of expansion (or contraction) of the uidper unit volume is equal to the divergence of the velocity �eld.Applying the Reynolds transport theorem with f=1, we �ndddt ZV (t) dV = 0 + Z(t) n � u dS =)dV (t)dt = ZS(t) n � u dS : (1.205)



1.6 Problems 67By means of the Gauss theorem, Eq. (1.205) becomesdV (t)dt = ZV (t)r � u dV : (1.206)Using now the mean-value theorem for integrals, we obtain1V (t) dV (t)dt = 1V (t) r � ujr� ; (1.207)where r� is a point within V (t). Taking the limit as V (t)! 0, i.e., allowing V (t) toshrink to a speci�c point, we �nd thatlimV (t)!0 1V (t) dV (t)dt = r � u ; (1.208)where r � u is evaluated at the point in question. This result provides a physicalinterpretation for the divergence of the velocity vector as the local rate of expansionor rate of dilatation of the uid. This rate is, of course, zero for incompressibleuids. 21.6 Problems1.1. The vector v has the representation v = (x2 + y2) i + xy j + k in Cartesiancoordinates. Find the representation of v in cylindrical coordinates that share thesame origin.1.2. Sketch the vector u = 3 i + 6 j with respect to the Cartesian system. Findthe dot products of u with the two basis vectors i and j and compare them withits components. Then, show the operation which projects a two-dimensional vectoron a basis vector and the one projecting a three-dimensional vector on each of themutually perpendicular planes of the Cartesian system.1.3. Prove the following identity for the vector triple producta� (b� c) = b(a � c)� c(a � b) ; (1.209)spelled mnemonically \abc equals back minus cab".1.4. Find the representation of u = ux i + uy j with respect to a new Cartesiansystem that shares the same origin but at angle � with respect to the original one.This rotation can be represented byu0 = A � u ; (1.210)



68 Chapter 1. Vector and Tensor Calculuswhere u0 is the new vector representation. What is the form of the matrix A?Repeat for a new Cartesian system translated at a distance L from the originalsystem. What is the matrix A in this case?Show that the motions of rigid-body rotation and translation described abovedo not change the magnitude of a vector. Does vector orientation change with thesemotions?1.5. Convert the following velocity pro�les from Cartesian to cylindrical coordinatessharing the same origin, or vice versa, accordingly:(a) Flow in a channel of half-width H : u = c(y2 �H2) i ;(b) Stagnation ow: u = cx i � cx j ;(c) Plug ow: u = c i ;(d) Flow in a pipe of radius R: u = c(r2 � R2) ez ;(e) Sink ow: u = cr er ;(f) Swirling ow: u = cr e� ;(g) Spiral ow: u = f(z) ez + !r e� :Note that c and ! are constants.Hint: �rst, sketch the geometry of the ow and set the common origin of the twocoordinate systems.1.6. A small test membrane in a moving uid is oriented in three directions insuccession, and the tractions are measured and tabulated as follows (� is a constant):Direction inwhich Measured traction onthe test surface faces the test surface (force=area)e1 = (i+ j)=p2 2(� � 1) (i+ j)e2 = (i� j)=p2 2(�� + 1) (i� j)e3 = k �p2 k(a) Establish whether the three orientations of the test surface are mutually per-pendicular.(b) Could this uid be in a state of mechanical equilibrium? State the reason foryour answer.(c) What is the state of uid stress at the point of measurement?(d) Are there any shear stresses at the point of measurement? Indicate your rea-soning.(e) What is the stress tensor with respect to the basis fe1; e2; e3g?1.7. Measurements of force per unit area were made on three mutually perpendi-



1.6 Problems 69cular test surfaces at point P with the following results:Direction inwhich Measured traction onthe test surface faces the test surface (force=area)i ij 3j� kk �j+ 3k(a) What is the state of stress at P?(b) What is the traction acting on the surface with normal n = i + j?(c) What is the normal stress acting on this surface?1.8. If � = ii + 3jj� jk� kj+ 3kk, or, in matrix notation,� = 264 1 0 00 3 �10 �1 3 375 ;determine the invariants, and the magnitudes and directions of the principal stressesof � . Check the values of the invariants using the principal stress magnitudes.1.9. In an extensional (stretching or compressing) ow, the state of stress is fullydetermined by the diagonal tensorT = a e1e1 + a e2e2 � 2a e3e3 ;where a is a constant.(a) Show that there are three mutually perpendicular directions along which theresulting stresses are normal.(b) What are the values of these stresses?(c) How do these directions and corresponding stress values relate to the principalones?Consider now a shear ow, in which the stress tensor is given by T = �pI + � ,where p is the pressure, and � is an o�-diagonal tensor:� = e1e2 + 2e1e3 + 3e2e3 + e2e1 + 2e3e1 + 3e3e2 :(d) What are the resulting stresses on the surfaces of orientations e1; e2 and e3?(e) Are these orientations principal directions? If not, which are the principal di-rections?(f) What are the principal values?1.10. Consider a point at which the state of stress is given by the dyadic ab+ ba,where the vectors a and b are not collinear. Let i be in the direction of a and j be



70 Chapter 1. Vector and Tensor Calculusperpendicular to i in the plane of a and b. Let also e! � i cos! + j sin! stand foran arbitrary direction in the plane of a and b.11(a) Show that t(!) � i sin! � j cos! is perpendicular to e!.(b) Find expressions for the normal and shear stresses on an area element facing inthe +e! direction, in terms of ! and the x- and y-components of a and b.(c) By di�erentiation with respect to !, �nd the directions and magnitudes of maxi-mum and minimum normal stress. Show that these directions are perpendicular.(d) Show that the results in (c) are the same as the eigenvectors and eigenvalues ofthe dyadic ab + ba in two dimensions.(e) Find the directions and magnitudes of maximum and minimum shear stresses.Show that the two directions are perpendicular.1.11. If f is a scalar �eld and u is a vector �eld, both with continuous secondpartial derivatives, prove the following identities in Cartesian coordinates:(a) r�rf = 0 (the curl of the gradient of f is zero);(b) r � (r� u) = 0 (the divergence of the curl of u is zero).1.12. Calculate the following quantities in Cartesian coordinates:(a) The divergence r � I of the unit tensor I.(b) The Newtonian stress tensor� � � [(ru) + (ru)T ] ; (1.211)where � is the viscosity, and u is the velocity vector.(c) The divergence r � � of the Newtonian stress tensor.1.13. Prove the following identity in Cartesian coordinates:r�r� u = r(r � u)� r2u : (1.212)1.14. If p is a scalar and u is a vector �eld,(a) �nd the form of r� u in cylindrical coordinates;(b) �nd rp and r � u in spherical coordinates.1.15 Calculate the velocity-gradient and the vorticity tensors for the following two-dimensional ows and comment on their forms:(a) Shear ow: ux = 1� y ; uy = uz = 0 ;(b) Extensional ow: ux = ax ; uy = �ay ; uz = 0 :Also �nd the principal directions and values of both tensors. Are these related?1.16. Derive the appropriate expression for the rate of change in �sh concentration,recorded by a marine biologist on a submarine traveling with velocity uSUB with11Taken from Ref. [2]



1.6 Problems 71respect to the water. What is the corresponding expression when the submarinetravels consistently at z=h below sea level?1.17. The concentration c of �sh away from a feeding point in a lake is given byc(x; y) = 1=(x2 + y2). Find the total change of �sh concentration detected by anobserver riding a boat traveling with speed u=10 m/sec straight away from thefeeding point. What is the corresponding change detected by a stationary observer?1.18. Calculate the velocity and the acceleration for the one-dimensional, linearmotion of the position vector described byr(t) = i x(t) = i x0eat ;with respect to an observer who(a) is stationary at x=x0;(b) is moving with the velocity of the motion;(c) is moving with velocity V in the same direction;(d) is moving with velocity V in the opposite direction.Hint: you may use the kinematic relation, dx=u(t)dt, to simplify things.1.19. A parachutist falls initially with speed 300 km/h; once his parachute opens,his speed is reduced to 20 km/h. Determine the temperature change experienced bythe parachutist in these two stages, if the atmospheric temperature decreases withelevation z according to T (z) = To � az ;where T0 is the sea-level temperature, and a=0.01oC/m.1.20. The ow of an incompressible Newtonian uid is governed by the continuityand the momentum equations, r � u = 0 ; (1.213)and ��@u@t + u � ru� � �DuDt = �rp+ �r2u+ �g ; (1.214)where � is the density, and g is the gravitational acceleration. Simplify the mo-mentum equation for irrotational ows (r � u=0). You may need to invoke boththe continuity equation and vector identities to simplify the terms u � ru andr2u = r � (ru).1.21. By means of the Stokes theorem, examine the existence of vorticity in thefollowing ows:



72 Chapter 1. Vector and Tensor Calculus(a) Plug ow: u = c i ;(b) Radial ow: u = cr er ;(c) Torsional ow: u = cr e� ;(d) Shear ow: u = f(y) i ;(e) Extensional ow: u = f(x) (i� j) :Hint: you may use any convenient closed curve in the ow �eld.1.22. Use the divergence theorem to show thatV = 13 ZS n � r dS ; (1.215)where S is the surface enclosing the region V , n is the unit normal pointing outwardfrom S, and r is the position vector. Then, use Eq. (1.215) to �nd the volume of(i) a rectangular parallelepiped with sides a, b and c;(ii) a right circular cone with height H and base radius R;(iii) a sphere of radius R.Use Eq. (1.215) to derive Archimedes principle of buoyancy from the hydrostaticpressure on a submerged body.1.23. Show by direct calculation that the divergence theorem does not hold forthe vector �eld u(r; �; z) = er=r in a cylinder of radius R and height H . Why doesthe theorem fail? Show that the theorem does hold for any annulus of radii R0 andR, where 0< R0 < R. What restrictions must be placed on a surface so that thedivergence theorem applies to a vector-valued function v(r; �; z).1.24. Show that Stokes theorem does not hold for u = (y i � x j)=(x2 + y2), ona circle of radius R centered at the origin of the xy-plane. Why does the theoremfail? Show that the theorem does hold for the circular ring of radii R0 and R, where0< R0 < R. In general, what restrictions must be placed on a closed curve so thatStokes' theorem will hold for any di�erentiable vector-valued function v(x; y)?1.25. Let C be a closed curve lying in the xy-plane and enclosing an area A, andt be the unit tangent to C. What condition must the di�erentiable vector �eld usatisfy such that IC u � t d` = A ? (1.216)Give some examples of vector �elds having this property. Then use line integrals to�nd formulas for the area of rectangles, right triangles and circles. Show that thearea enclosed by the plane curve C isA = 12 IC(r� t) � k d` (1.217)where r is the position vector, and k is the unit vector in the z-direction.



Sec. 1.7. References 731.7 References1. M.R. Spiegel, Vector Analysis and an Introduction to Tensor Analysis, Schaum'sOutline Series in Mathematics, McGraw-Hill, New York, 1959.2. L.E. Scriven, Fluid Mechanics Lecture Notes, University of Minnesota, 1980.3. G. Strang, Linear Algebra and its Applications, Academic Press, Inc., Orlando,1980.4. R.B. Bird, W.E. Stewart and E.N. Lightfoot, Transport Phenomena, John Wiley& Sons, New York, 1960.5. H.M. Schey, Div, Grad, Curl, and All That, Norton and Company, New York,1973.6. R.L. Panton, Incompressible Flow, John Wiley & Sons, New York, 1996.7. M.M. Lipschutz, Di�erential Geometry, Schaum's Outline Series in Mathemat-ics, McGraw-Hill, New York, 1969.8. G.E. Mase, Theory and Problems of Continuum Mechanics, Schaum's OutlineSeries in Engineering, McGraw-Hill, New York, 1970.9. R.B. Bird, R.C. Armstrong and O. Hassager, Dynamics of Polymeric Liquids,John Wiley & Sons, New York, 1987.




